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In several two-dimensional films that exhibit a magnetic field-tuned superconductor to insulator
transition (SIT), stable metallic phases have been observed. Building on the ‘dirty boson’ description
of the SIT, we suggest that the metallic region is analogous to the composite Fermi liquid observed
about half-filled Landau levels of the two-dimensional electron gas. The composite fermions here
are mobile vortices attached to one flux quantum of an emergent gauge field. The composite vortex
liquid is a 2D non-Fermi liquid metal, which we argue is stable to weak quenched disorder. We
describe several experimental consequences of the emergent composite vortex liquid.

I. INTRODUCTION

How is superconductivity destroyed by a perpendicular
magnetic field at T = 0 in a disordered thin film [1–13]?
There are two approaches to addressing this question.
The first is a fermionic description where the destruc-
tion of superconductivity is identified as the loss of su-
perconducting pairing amplitude [14]. The second, so
called ‘dirty boson’ approach, assumes the magnetic field
induces a superconductor to insulator transition (SIT),
where Cooper-pair localization occurs, while the ampli-
tude remains finite across the transition [15, 16].

In the presence of both disorder and a strong mag-
netic field (H > Hc1), superconductors and insulators
are sharply defined only at T = 0 in 2D [17]. Thus, the
field-tuned SIT is a rather unconventional quantum crit-
ical point. In contrast, the zero-field disorder-tuned SIT
[1, 18] has a line of finite-temperature superconducting
transitions that terminate at the zero-field disorder-tuned
SIT [19, 20]. This, along with the preservation of time-
reversal symmetry, implies that the zero-field disorder-
tuned SIT must be in a distinct universality class. Our
focus here will be on field-tuned transitions.

In strongly disordered films, where the normal state
resistance is well in excess of the Cooper-pair quantum
of resistance, RQ = h/4e2 ' 6.45kΩ/�, many predic-
tions of the dirty boson theory have been confirmed
[2, 3, 10, 12, 13, 21]. However, in somewhat cleaner films,
a direct transition from superconducting to insulating be-
havior is lost. Instead, an intervening metallic phase with
substantial superconducting fluctuations [22] has been
observed [4, 6, 7, 10–12]: the resistance approaches a
constant, field-dependent value R(T → 0, H) � RQ as
T → 0. To the extent that such metallic behavior ob-
served at finite temperature uncovers the properties of a
true zero temperature metal, it lies outside the scope of
dirty bosons.

Here, we address - at a phenomenological level - how
a metallic phase can emerge starting from the strongly
disordered dirty boson limit. Our analysis builds on the
analogy between direct SITs and quantum Hall plateau
transitions, which has been discussed in the literature
using a composite boson mapping [23, 26, 27]. In con-
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FIG. 1. Schematic T = 0 phase diagram in the vicinity of
the SIT of disordered thin films as a function of external
magnetic field Hext and disorder strength δ. The solid lines
denote phase transitions, while the dashed line denotes the
boundary (either transition or crossover) between a Bose in-
sulator of Cooper pairs and an electron insulator. A similar
phase diagram obtains for a 2DEG with the relabeling: super-
conductor ↔ integer quantum Hall effect, Bose insulator ↔
Hall insulator [23], and composite vortex liquid ↔ composite
Fermi liquid [24, 25]. Appendix B has a second possible phase
diagram.

trast, we employ the composite fermion description [28],
which more naturally accounts for the metallic behav-
ior. As summarized in Fig. 1, we suggest the metallic
point observed at the SIT in dirtier samples is closely re-
lated to the metallic phase in somewhat cleaner systems;
in both cases, the metal is analogous to the composite
Fermi liquid [24, 25] observed in half-filled Landau lev-
els of a 2D electron gas (2DEG) [29, 30]. The composite
fermions here are field-induced vortices attached to a unit
flux quantum of an emergent gauge field. The hypoth-
esis that composite fermions determine the low-energy
behavior in both systems straightforwardly allows for a
number of testable predictions as the two systems com-
plement and inform one another.



II. EFFECTIVE FIELD THEORY FOR THE SIT

We begin with an effective description of a disordered
2D superconductor close to a field-tuned SIT at T =
0. The effective Hamiltonian for the delocalized Cooper
pairs, Hs = H1 +H2, takes the following form:

H1 =
1

2

∑
r,r′

(
ns(r)− ns

)
Vr,r′

(
ns(r

′)− ns
)
,

H2 =−
∑
i,r

Ji,r cos
(

∆iθ(r) + e∗Ai(r)
)
. (1)

Here, the unit lattice spacing plays the role of a short-
distance cutoff, which is comparable to zero field, zero
temperature superconducting correlation length. The
amplitude of the Cooper-pair field, ψ ∼ eiθ, is assumed
frozen, while the Cooper-pair density ns(r) and phase
variable θ(r) at site r = (x, y) satisfy the equal-time com-
mutation relations, [ns(r), θ(r′)] = iδr,r′ . In Eq. (1),
Ai(r) = (Ax(r), Ay(r)) is the vector potential for the

background magnetic field, ∆iθ(r) ≡ θ(r+ î)− (~r) is the
lattice derivative, Vr,r′ parameterizes both the density-
density interaction and the coupling to disorder, Ji,r is
the superconducting phase stiffness, which can also vary
spatially due to strong disorder, and the Cooper pairs
carry electrical charge e∗ = 2e.

For a clean metal with Galilean invariance at T = 0,
the average Cooper-pair density 〈n(r)〉 ≡ ns = ne/2
where ne is the electronic carrier density of the metal.
If the same relation were to hold for the disordered films
considered here, the field scales required to tune to the
SIT would be incompatible with experiment. Instead,
for a disordered metal at T = 0, the average Cooper-pair
density can be substantially less than ne, since many of
the Cooper pairs will be strongly localized, and do not
participate in the low-energy effective field theory. An es-
timate of the relevant degrees of freedom can be made via

the formula: ns ∼ ne

3
`2

~D/(kBTc)
where ` is the electronic

mean-free path, D is the normal-state diffusion constant,
and Tc is the zero-field superconducting critical temper-

ature [31]. For disordered metals, `2

~D/(kBTc)
� 1 and so

the Cooper-pair density may be much reduced from its
value in the clean limit.

An important test of the reasoning above is a crude
estimation of SIT field scales. For a 40 Å thick MoGe
film of the type studied by Mason and Kapitulnik, the
3D carrier density ne ∼ 10−26m−3, ` ∼ 6 × 10−10m,
D ∼ 5 × 10−5m2/s, and Tc ∼ 1K [32]. We estimate
a 2D Cooper-pair density ns ∼ 2 × 1014m−2, which
is three orders of magnitude less than the clean esti-
mate of 2 × 1017m−2. The estimated Cooper pair den-
sity defines a magnetic field scale bv = nsΦ0 ∼ 0.5 T
at which the Cooper pairs are at unit filling fraction
ν = ns/(Hext/Φ0), where the magnetic flux quantum
Φ0 = hc/e∗ ≡ 2π/e∗. The metallic behavior observed
in MoGe films occurs at field scales, which are roughly
comparable to bv [33].

Having estimated the average density of mobile
Cooper-pairs in a disordered system, we implement the
following duality transformation,

ns(r) =
e∗
2π
b(r), ∆iθ(r) + e∗Ai(r) =

e∗
2π
ẑ × e(r), (2)

only to these mobile, low energy degrees of freedom. The
duality transformation relates the density and current
operators of the mobile Cooper pairs to the magnetic
b(r) and electric e(r) field of an emergent gauge field
that is minimally coupled to the dual vortex degrees of
freedom. The emergent electric field is constrained by
Gauss’ Law:

∆ · e(r) = 2π
(
nv(r)− nv

)
, (3)

where the average vortex density nv ≡ 〈nv(r)〉 =
Hext/Φ0 is sourced by the external magnetic field. The

resulting dual vortex Hamiltonian [34], H̃v = H̃1 + H̃2 +

H̃3:

H̃1 =
1

2

∑
r,r′

(
nv(r)− nv

)
Ṽr,r′

(
nv(r′)− nv

)
,

H̃2 =−
∑
i,r

J̃i,r cos
(

∆iφ(r)− e∗ai(r)
)
,

H̃3 =
∑
r

e(r) · e(r) +
∑
r,r′

b(r)Vr,r′b(r
′). (4)

In Eq. (4), φ(r) is the number operator conjugate to
nv(r), ai(r) = (ax(r), ay(r)) are the spatial components
of the emergent gauge field introduced in Eq. (2) with av-
erage emergent magnetic flux 〈b〉 = nsΦ0. The emergent
gauge charge carried by the vortices is equal and oppo-
site to the electromagnetic charge carried by the Cooper
pairs. The vortices are electrically neutral. Ṽr,r′ and J̃i,r
parameterize the density and phase interactions. Dual-
ity implies that the dimensionless electrical resistivity ρ̄
is equal to the dimensionless vortex conductivity (ρ̄v)−1

in units of h/4e2 and vice-versa. As the external field is
increased, nucleated vortices, pinned at first by disorder,
become mobile at the SIT due to quantum fluctuations,
and lead to non-zero resistance.

III. SELF-DUALITY AND COMPOSITE
VORTICES

A useful theoretical anchorpoint is the notion of self-
duality which implies nv = ns [35]. Since the super-
current is defined as I = e∗ṅs, whereas the Josephson
relation implies that the voltage, V = h

e∗
ṅv in the limit

of vanishingly small Hall resistivity, a spectacular predic-
tion of self-duality is that the resistance at the SIT must
be universal and equal to RQ. A triumph of the dirty
boson theory is the observation of roughly this value for
the critical resistance at the SIT in a variety of films
[3, 12, 13].
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In our phenomenological treatment here, we take the
observation of self-duality as an empirical fact and con-
sider its consequences. This in turn will enable us to
speculate on the nature of the ground state when self-
duality is broken by reducing film disorder.

Since ns = nv at a SIT with self-duality, the transition
represents the point where both the Cooper pairs and
vortices are on the verge of condensation. To extend this
description to the metallic phase, we must consider the
stability of the above picture. Since Cooper pairs ‘see’
a vortex as a unit of flux and vice-versa, and because
both particles are mutual bosons, it follows that in a
mean-field description, the ground state involves bosons
at ν = 1. However, in the presence of disorder and inter-
actions, such a mean-field treatment favors the mutually
contradictory ground states consisting either of localized
Cooper pairs or vortices.

A much more stable mean-field solution is obtained via
flux attachment [28]. Bosons at ν = 1 map onto a com-
posite fermion metal in zero net background magnetic
flux. Importantly, the Pauli principle is operative in the
fermionic description, which substantially stabilizes the
mean-field ground state. Thus, we propose that a com-
posite fermion metal provides an effective description for
a self-dual SIT with a finite T = 0 resistance. How this
picture quantitatively results in the observed experimen-
tal behavior requires additional work; nevertheless, it is
possible to explore a few of the immediate implications
of this hypothesis.

A. Emergent Metallic Phases

The most important consequence is the possibility that
the metallic point broadens into an emergent metallic
phase. To be specific, we consider a composite Fermi
liquid of composite vortices, which are bosonic vortices
bound to a unit flux of the emergent gauge field a, whose
curl equals the Cooper pair density. We propose the fol-
lowing scenario. At strong disorder, the finite density
of composite vortices is driven to a strong disorder fixed
point that describes the SIT. As the disorder is weakened
and the effects of a Fermi surface of composite vortices
becomes better defined, the fixed point broadens into a
metallic phase.

To motivate this hypothesis, we draw upon a well-
known analogy [26] between the SIT and quantum Hall
plateau transitions. Consider an integer quantum Hall
plateau transition from ν → ν − 1. Upon increasing the
external field, the electron chemical potential is lowered,
and holes are nucleated in the filled Landau level. These
holes are the precise analogs of the vortices nucleated
by a field in a superconductor. The holes are localized
until the field is tuned to its critical value at which the
plateau transition occurs. A consequence of Landau level
particle-hole symmetry – the analog of particle-vortex
symmetry – is that the Hall conductivity σyx = ν − 1/2
(in units of e2/h). In addition, the diagonal conductiv-

ity takes a universal value of e2/h [36, 37]. The metallic
point that obtains at a plateau transition is closely re-
lated to the composite Fermi liquid of half-filled Landau
levels. In samples with somewhat less disorder, there is
a metallic phase intervening between the two plateaus
[38]. The fact that the metallic point in dirtier 2DEGs
broadens into a metallic phase in cleaner 2DEGs reflects
the stability of the composite fermion metal relative to
either quantum Hall state with Hall conductivity of ν or
ν + 1. In the same manner, we suggest here that the
metallic phase related to the composite vortex liquid can
be a more stable phase than either the superconductor
or the insulator.

B. Composite Vortex Lagrangian

To test these ideas more quantitatively, we provide an
effective Hamiltonian for the composite vortex degrees
of freedom, generalizing H̃v. At unit filling fraction, the
composite vortices see zero effective magnetic field, form
a Fermi surface [39, 40], and interact via an emergent
gauge field ã in addition to the already present field a
introduced in H̃v. We consider the following “working”
effective Lagrangian, written in the continuum, for the
composite vortices ψ, Lcv = L0 + Lgauge + Lint:

L0 = ψ†
(
i∂t + (ãt − at) +

1

2mv
(∂j − i(ãj − aj))2

)
ψ,

Lgauge = − 1

4π
εµνρãµ∂ν ãρ +

e∗
2π
εµνρAµ∂νaρ,

Lint = −1

2

∫
d2r′

(
ψ†ψ(r)− nv

)
Ṽr,r′

(
ψ†ψ(r′)− nv

)
.

(5)

We take the composite vortex kinetic term L0 to be
that of a non-relativistic fermion, applicable to a metal-
lic phase without relativistic symmetry. The first term
in Lgauge implements the unit flux attachment, while the
second term describes the coupling of the Cooper-pair
current Jµ = e∗

2π εµνρ∂νaρ to the external electromag-
netic field Aµ. The third term Lint describes the com-
posite vortex density-density interactions inherited from
H̃v. Because the composite fermion ψ only couples to
the linear combination Ã = ã − a, we may simplify Lcv

and integrate out a to obtain [41]:

Lgauge = − e∗
2π
εµνρÃµ∂νAρ +

e2∗
4π
εµνρAµ∂νAρ. (6)

The first term in Lgauge describes the induced coupling
between the external gauge field A and the composite
vortices through Ã. The presence of the second term is
reminiscent of a composite fermion treatment of the holes
– the analog of the vortices of a superconductor – in a
filled Landau level [42] (see also [43]).
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C. Composite Vortex Response

Consider the consistency of the above scenario with the
general phase diagram depicted in Fig. 1. As explained
in Appendix A, we can relate the electrical conductivity
tensor σij to the composite vortex conductivity σcv

ij :

σij =
e2∗
2π

(
− εjk + (σcv)−1jk

)
. (7)

We concentrate on the DC response as T → 0.

1. Superconductor

To obtain an electrical superconductor, we must take
the composite vortices to be insulating, σcv

xx(T → 0) = 0
and σcv

xy(T → 0) = 0. An Anderson insulator of compos-
ite vortices is expected for low composite fermion density
when the external magnetic field is small. The Hall con-
ductivity is sensitive to the rate at which the various
components of the composite vortex conductivity tensor

vanish: (1) when limT→0
(σcv

xx)
2

σcv
xy
→ 0, σxy(T → 0) di-

verges, while (2) when limT→0
σcv
xy

(σcv
xx)

2 → 0, σxy(T → 0) is

finite. (Note that we always assume limT→0
σcv
xx

(σcv
xy)

2 → 0

in order to ensure superconducting behavior.) The sec-
ond case may be referred to as a Hall superconductor.
The Hall resistivity, however, vanishes in both cases.

2. Insulator

An electrical insulator obtains when the composite vor-
tices exhibit the integer quantum Hall effect, σcv

xx(T →
0) = 0 and σcv

xy(T → 0) = −1. Analogous to the situa-
tion with the superconductor, the precise value of the
Hall resistivity depends upon the rates by which the
components of the composite vortex conductivity ten-
sor approach their zero temperature values: (1) when

limT→0
(σcv

xx)
2

(1+σcv
xy)
→ 0, ρxy(T → 0) diverges, while (2)

when limT→0
(1+σcv

xy)

(σcv
xx)

2 → 0, ρxy(T → 0) is finite. (We

assume limT→0
σcv
xx

(1+σcv
xy)

2 → 0 in order to ensure insulat-

ing behavior.) The first case represents a trivial insula-
tor, while the second case may be called a Hall insulator
[23, 44].

As parameters in the laboratory are varied, we might
expect a crossover from a Hall insulator to a trivial insu-
lator (along with an analogous crossover in the supercon-
ducting phase), consistent with the various phases fur-
nished by the composite vortex Lagrangian.

D. Composite Vortices in the Weak Disorder Limit

We now address the stability of the composite vortex
liquid to disorder. The scaling theory of localization only
applies to Fermi liquids coupled to quenched chemical po-
tential disorder. By contrast, chemical potential disorder
in H̃v translates into random flux disorder of zero mean
and random chemical potential disorder. To see this, con-
sider the composite vortex Lagrangian in Eq. (5) where
the coupling of the composite vortex density to random
chemical potential disorder is implicitly included in Lint.
The equation of motion for the time-component ãt of the
emergent gauge field,

ψ†ψ(r) =
1

2π
b̃(r), (8)

relates the local composite vortex density to the emergent
gauge flux b̃ = ∂xãy − ∂yãx, thereby tying fluctuations
in the local chemical potential to those of the emergent
gauge field [45].

Happily, the problem of an electron hopping on a lat-
tice in the midst of random chemical potential and ran-
dom flux of zero mean was studied in [24, 46] with the
conclusion that localization is avoided. Random flux of
zero mean is of crucial importance. Random flux with
non-zero average effectively acts as an additional contri-
bution to the random chemical potential and results in
localization of non-interacting electrons. Thus, one of
the most important simplifying features of the compos-
ite fermion transformation wherein vortices at unit filling
fraction map to composite vortices in zero background
flux is also one of the most important in guaranteeing
stability of the resulting metal to weak disorder.

IV. EXPERIMENTAL CONSEQUENCES

We now briefly discuss a few experimental conse-
quences, many of which are readily adapted from the
corresponding implications of a composite fermion metal
in the 2DEG.

1. Heat Capacity

A simple, but remarkable thermodynamic signature of
the metallic phase should, in principle, arise in the heat
capacity. A linear in temperature heat capacity is ex-
pected for a Fermi liquid-like metal; additional correc-
tions due to the interactions of the composite vortices
with the Chern-Simons gauge field may be expected to
take the form δcV ∼ T 2/3 or δcV ∼ T log(T ) depend-
ing upon the effective composite vortex density-density
interaction. Distilling such behavior in 2DEGs has thus
far proven difficult [47, 48].
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2. Quantum Oscillations

Quantum oscillations indicative of the composite vor-
tex Fermi surface with wave vector determined by the
applied external magnetic field would provide a striking
confirmation of the picture presented in this paper. The
frequency of oscillation will monotonically depend on the
deviation of the external field from the value at which the
composite vortices experience zero flux. Precisely this
behavior is observed in the 2DEG about half-filling [28].

3. Tunneling Density of States

Suppression of the bulk electron tunneling density of
states at half-filling in a 2DEG is a direct result of the
composite fermion picture [49, 50]. However, for the
composite vortex metal, a suppression might be expected
simply because of the finite superconducting amplitude.
To probe the composite vortex liquid more directly, one
should consider instead the tunneling between a super-
conducting probe and the composite vortex metal, which
we expect to be exponentially suppressed. Within the
dirty boson framework, there would be un-suppressed
tunneling at the SIT for a superconducting tip.

4. Thermopower and Nernst Effect

Thermopower and the Nernst effect may be utilized
to determine whether self-duality is realized in the thin
film. Self-duality, obtained at the SIT or about unit fill-
ing fraction of the vortices, requires a vanishing ther-
mopower and Nernst signal [51]. Likewise, particle-hole
symmetry within a single Landau level requires the ther-
mopower to vanish [52]. We note that the thermopower
is observed to be non-zero for T > 0 in 2D hole sys-
tems at half-filling in the lowest and first Landau levels
[53, 54]. Taken at face value, this indicates a break-
down of particle-hole symmetry. An obvious guess for
the cause of the breakdown is Landau level mixing which
is not typically small in the 2DEG; a second possibility
is the spontaneous breakdown of particle-hole symmetry
in the limit of vanishingly small Landau level mixing.
Thus, if the relation between the 2DEG and thin film
film is taken seriously, we may abstract an important les-
son: the breakdown of particle-hole symmetry observed
in experimentally-realized 2DEGs may imply and provide
a mechanism for a similar breakdown of particle-vortex
duality in the thin film.

V. DISCUSSION

We have suggested that the 2D metallic phase observed
in the vicinity of the magnetic field-tuned SIT is a com-
posite vortex liquid, analogous to the composite Fermi

liquid found in 2DEGs near half-filling. This hypoth-
esis entails the statistical transmutation of interacting
bosons in a magnetic field into a Fermi sea of composite
vortices and provides a natural explanation for the emer-
gent metal with a variety of experimental consequences.

There have been several previous studies formulating a
theory of the metallic phase[55–59]. The work by Galit-
ski et al. [59] whose theoretical formulation most closely
resembles ours, identified the metal with a gas of neutral
spinons coupled to vortices by an emergent U(1) statis-
tical gauge field [60]. By contrast, our approach and
motivation rely on the observation of self-duality at the
field-tuned SIT, the analogy between the SIT and quan-
tum Hall plateau transitions, and the substantial super-
conducting fluctuations observed within the metal [22].

The superconductor-metal transition has been well
studied in thin MoGe and InO films. It would be of great
interest to better understand the nature of the weak in-
sulator in systems where a metal is observed, similar to
that in Ta films. In disordered films where the metallic
phase has shrunk to a point, the proximate insulator is
a Bose insulator of localized Cooper pairs with non-zero
superconducting correlations. Upon increasing the mag-
netic field, the Cooper pairs are broken and an electron
insulator results. By continuity, we expect the Bose insu-
lator to continue to border the emergent metal for as long
as the Bose insulator persists as the disorder is decreased
as depicted in Fig. 1. A second possible phase diagram is
presented in Fig. 2 of Appendix B. Here, the supercon-
ducting, Bose insulating, electron insulating, and metal-
lic phases meet at a multicritical point that is of higher
degree than occurs in Fig. 1. Distinguishing the two
possibilities merits further study.

Interestingly, there are indications [13] that the Bose
insulator observed in InO films is a Hall insulator with
vanishing conductivity tensor, diverging linear resistivity,
but finite Hall resistivity as T → 0. Hall insulators were,
not surprisingly, first predicted [23, 44] and observed [61–
63] in the 2DEG. Indications of a similar state in the thin
film further unites the two systems and gives us further
hope for a relation between the metals.

Several open theoretical questions remain, in light of
the observations made here. Building upon previous
work [64, 65], further investigation of self-duality in nu-
merical studies of Josephson junction arrays in the pres-
ence of strong disorder and magnetic fields is desired.
Second, the emergence of a metallic phase as the disor-
der strength is reduced would be a clear validation of the
ideas presented here. Furthermore, a deeper understand-
ing of the role of disorder in composite Fermi liquids,
taking into account both the random flux disorder due
to the Chern-Simons field, as well as non-Fermi liquid
effects is needed [66]. Lastly, the application, if any, of
recent developments considering particle-hole symmetry
– the analog of particle-vortex duality – in half-filled Lan-
dau levels [67–70], in the context of the emergent metal
near the SIT, is an intriguing possibility.
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Appendix A: Response Derivation

To relate the composite vortex conductivity to the
electrical conductivity, we formally integrate out the
composite vortices of Lcv, while working in the gauge
Ãt = At = 0:

Lcv =
1

2
ÃjΠ

cv
jkÃk + e∗

iω

2π
εjkÃjAk − e2∗

iω

2π
εjkAjAk,

(A1)

where the composite vortex response Πcv and conductiv-
ity σcv tensors:

Πcv =
iω

2π

(
σcv
xx σcv

xy

−σcv
xy σcv

xx

)
. (A2)

Finally, we integrate out Ã to obtain the effective elec-
tronic response Lagrangian,

Lcv =
iω

2

e2∗
2π
Aj

(
− εjk + (σcv)−1jk

)
Ak, (A3)

from which we may read off the electrical conductivity
and resistivity tensors:

σxx =
e2∗
h

σcv
xx

(σcv
xx)2 + (σcv

xy)2
,

σxy =− e2∗
h

(
1 +

σcv
xy

(σcv
xx)2 + (σcv

xy)2

)
,

ρxx =
h

e2∗

σcv
xx

(σcv
xx)2 + (1 + σcv

xy)2
,

ρxy =
h

e2∗

(
1−

1 + σcv
xy

(σcv
xx)2 + (1 + σcv

xy)2

)
. (A4)

Appendix B: Alternative Phase Diagram

In Fig. 1, the superconducting, Bose insulating, and
metallic phases meet at a point, while in Fig. 2 the same
three phases along with the electron insulator meet at
a point. Fig. 2 displays a transition between the Bose
insulator and electron insulator. If instead, there hap-
pened to be a crossover, the degree of multicriticality at
which the various phases meet would be the same in both
figures.
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