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Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive
study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1/rα, using a combination
of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range
interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic
Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-
range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase
boundaries. On the other hand, ferromagnetic (non-frustrated) long-range interactions qualitatively impact the
entire phase diagram. Importantly, for α . 3, long-range interactions destroy the Haldane phase, break the
conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U(1) continuous
symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin
chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally
in the near future.
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The study of quantum phase transitions in low-dimensional
spin systems has been a major theme in condensed matter
physics for many years1. A well-known implication of Mer-
min and Wagner’s famous results2 on finite temperature quan-
tum systems is that, for a large class of one-dimensional quan-
tum spin systems, long-range order is forbidden even at zero
temperature. This absence of classical order promotes quan-
tum fluctuations to a central role, and they often determine the
qualitative properties of the quantum ground state. An impor-
tant example, first conjectured by Haldane3,4, is that a spin-
1 antiferromagnetic Heisenberg chain possesses a disordered
phase with an energy gap to bulk excitations, later identified as
a symmetry protected topological phase5,6. Its spin-1/2 coun-
terpart, despite possessing the same classical limit, has a dis-
ordered ground state with gapless excitations, and is described
by a conformal field theory (CFT)7.

Experimentally, such quantum phase transitions have been
explored in quasi-1D materials, and more recently using artifi-
cial materials designed through the careful control of atomic,
molecular, and optical (AMO) systems8–11. These AMO sys-
tems are usually well-isolated from the environment, offer
considerable tunability of system parameters, and make pos-
sible both measurement and control at the individual lattice-
site level. A distinctive feature of AMO systems is that in-
teractions between particles are often long-ranged, decaying
as a power-law with distance (1/rα). The exponent α varies
widely amongst different AMO systems, ranging from α = 6
for van de Waals interactions in Rydberg atoms, to α = 3 for
polar molecules and magnetic atoms, to α = 0 for atoms cou-
pled to cavities11–19. The effect of long-range interactions can
be tuned by either changing the dimensionality of the system,
e.g. for neutral atoms or molecules in optical lattices, or by
directly (and often continuously) altering the value of α, e.g.
in trapped ions or cold atoms coupled to photonic crystals14.
The availability of tunable long-range interactions creates an

entirely new degree of freedom—absent in typical condensed-
matter systems—for inducing quantum phase transitions, and
can potentially lead to novel quantum phases20–23.

While long-range interacting classical models have been
studied in considerable detail for some time24–28, there is a
relative lack of in-depth studies of quantum phase transitions
in long-range interacting systems, despite the emerging exper-
imental prospects for studying both their equilibrium and non-
equilibrium properties15–18,29–35. One reason is that many an-
alytically solvable lattice models become intractable when in-
teractions are no longer short-ranged, a well-known example
being the spin-1/2 XXZ model. Thus exact analytical studies
are either restricted to non-interacting bosonic and fermionic
systems with long-range hopping and pairing33,35–37, or to
certain contrived long-range interacting spin models which
are difficult to realize in real systems38–41. In addition, to
properly incorporate long-range interactions in low-energy
effective theories, existing field theoretic treatments need
to be modified and usually become more complicated42,43.
While spin-wave theories can be useful in treating long-range
interactions44,45, they are unable to distinguish major differ-
ences in quantum phases between integer and half-integer
spin chains. Exact numerical studies for long-range interact-
ing spin models are restricted to small system sizes and usu-
ally inconclusive46–49, since the correlation length is generally
divergent32,50. Approximate numerical techniques such as the
density matrix renormalization group (DMRG) method have
been adapted to treat long-range interactions51, but determin-
ing complete diagrams with large-system-size calculations re-
mains challenging, and those that exist are primarily for spin-
1/2 chains20,29,52,53.

In this manuscript, we carry out a comprehensive study of a
spin-1 chain with tunable XXZ interactions that decay mono-
tonically as 1/rα, for all α > 0. Our study is largely mo-
tivated by imminent trapped-ion based experiments that can
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simulate this model with widely tunable index α54–56. In the
absence of long-range interactions, the choice of spin-1 over
spin-1/2 allows us to have four distinct quantum phases by
varying the anisotropy of the interactions: a ferromagnetic
(FM) phase and an antiferromagnetic (AFM) Ising phase that
are both gapped and long-range ordered, a disordered gapless
phase (the XY phase), and a gapped and topologically ordered
phase (the Haldane phase). By using a combination DMRG
calculations, spin wave analysis, and field theory, we obtain
the phase diagram for arbitrary anisotropy and all α > 0, with
both ferromagnetic and antiferromagnetic interactions. Our
key observation is that, when interactions in all spatial direc-
tions are antiferromagnetic, long-range interactions are frus-
trated, leading to primarily quantitative changes to the phase
boundaries compared to the short-range interacting chain. In-
terestingly, we find that the topological Haldane phase is ro-
bust under long-range interactions with any α > 048,49,57.
However, when the interactions in the x−y plane become fer-
romagnetic, we find a number of significant modifications to
the phase diagram: (1) The Haldane phase is destroyed at a fi-
nite α due to a closing of the bulk excitation gap; (2) The gap-
less XY phase, described by a CFT with central charge c = 1,
disappears when α . 3 due to a breakdown of conformal
symmetry33,35; (3) The disappearance of the XY phase heralds
the emergence of a new phase at α . 3 (continuous-symmetry
breaking, or CSB) in which the spins order in the xy plane,
spontaneously breaking aU(1) symmetry and possessing gap-
less excitations (Nambu-Goldstone modes); (4) Novel tricrit-
ical points, with no direct analogue in short-range interacting
1D models, appear at the intersection of the Haldane, CSB,
and XY/AFM phases.

The manuscript is organized as follows. In Sec. I, we intro-
duce the model Hamiltonian and present complete phase dia-
grams for the ferromagnetic and antiferromagnetic cases. In
Sec. II, we study the boundary of the FM phase, where a spin-
wave approximation is found to be asymptotically exact in the
large-system limit. In Sec. III, we determine both the XY-
to-Haldane and Haldane-to-AFM transition lines accurately
using DMRG calculations, and use field theory arguments to
explain the effect of long-range interactions on the boundary
of the Haldane phase. In Sec. IV, we introduce the new CSB
phase and explain its emergence using spin-wave theory. The
boundary between the CSB and XY phases is determined by
a numerical calculation of central charge. In Sec. V, we show
that all five phases possess distinct signatures that could be
observed in near-future trapped ion quantum simulations with
chains of 16 spins. Finally, we conclude the work in Sec. VI
and comment on a number of open questions.

I. MODEL HAMILTONIAN AND PHASE DIAGRAMS

We consider the following spin-1 Hamiltonian with long-
range XXZ interactions in a 1D open-boundary chain:

H =
∑
i>j

1

(i− j)α
[Jxy(Sxi S

x
j + Syi S

y
j ) + JzS

z
i S

z
j ]. (1)

Here Jz ∈ (−∞,∞) and α ∈ (0,∞) are allowed to vary
continuously, and we consider both the Jxy = 1 (anti-
ferromagnetic) and Jxy = −1 (ferromagnetic) cases. We note
that, for 0 < α < 1, Eq. (1) does not have a well-defined
thermodynamic limit when Jxy and/or Jz is ferromagnetic,
since the ground-state energy-density diverges. To make
the ground-state energy extensive, we may impose an en-
ergy renormalization factor Nα−1, first introduced by Kac58,
when taking the thermodynamic or continuum limit (here N
is the chain length). For finite-size numerical calculations,
we do not need to implement the Kac renormalization for
0 < α < 1 since ground-state properties are unaffected by
energy renormalization59.

Figure 1 shows our full phase diagram for both Jxy = 1
and Jxy = −1, with actual phase boundaries plotted us-
ing the results of calculations discussed in the following sec-
tions. The nearest-neighbor interaction limit is achieved at
α → ∞ (1/α = 0). In this limit, the Hamiltonian in Eq. (1)
with Jxy = −1 is equivalent to the one with Jxy = 1, as
can be seen by performing a local unitary transformation that
flips every other spin in the x − y plane while preserving the
spin commutation relations: Sx,yi → (−1)iSx,yi . The differ-
ent ground-state phases of this short-range Hamiltonian have
been well-studied60–62. Notably, Haldane first conjectured3,4

that for λ1 < Jz < λ2, a disordered gapped phase (the
Haldane phase) will emerge. At Jz = λ2, the ground state
undergoes a second-order phase transition from the Haldane
phase to an AFM phase, which belongs to the same univer-
sality class as the 2D Ising model. The value λ2 ≈ 1.186
has been found by various numerical techniques including
Monte-Carlo63, exact diagonalization64, and DMRG65–67. At
Jz = λ1, a Berezinskii-Kosterlitz-Thouless (BKT) transition
intervenes between the Haldane phase and a gapless disor-
dered XY phase at Jz < λ1. The value of λ1 is theoreti-
cally predicted to be exactly zero after mapping Eq. (1) (for
α = ∞) to a field theory model using bosonization68. This
prediction is supported by conformal field theory arguments69

and a level spectroscopy method based on a renormaliza-
tion group analysis and the SU(2)/Z2 symmetry of the BKT
transition61,70–72. Numerically, λ1 ≈ 0 has been verified via
finite-size scaling64,73,74 and DMRG65. Finally, at Jz = λ0 =
−1, a first-order phase transition from the XY phase to a fer-
romagnetic Ising phase takes place61,66,75.

We now introduce our results for the long-range interacting
case (1/α > 0). For Jxy = 1 and Jz > 0, long-range inter-
actions are frustrated and the Haldane-to-AFM phase transi-
tion point λ2(α) increases moderately as α decreases, with-
out changing the universality class of the transition. For suf-
ficiently small Jz < 0 , the ferromagnetic long-range inter-
actions along the z direction eventually favor a ferromagnetic
ground state, inducing a first-order transition at λ0(α). The
magnitude of the critical coupling, |λ0(α)|, decreases mono-
tonically from 1 (at α = ∞) to 0 (for all α ≤ 1) in the
thermodynamic limit. The XY-to-Haldane phase boundary
λ1(α) becomes negative for finite α, eventually terminating in
a tricritical point at the intersection of FM, Haldane, and XY
phases. The entire XY phase (including the XY-to-Haldane
phase boundary) has conformal symmetry with c = 1, and
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the XY-to-Haldane phase boundary remains a BKT transition
until it terminates at the tricritical point. We note that the
phase diagram [Fig. 1(a)] is similar to Fig. 1 in Ref. 76, which
studies the XXZ spin-1 chain with next-nearest-neighbor in-
teractions of tunable strength. This is partially because the
frustrated long-range interactions in the x-y plane effectively
cancel each other at different ranges, so their influences on
the phase boundary are somewhat similar to those from next-
nearest-neighbor interactions. However, we point out that the
full 1/rα long-range interactions, frustrated or not, will re-
sult in power-law decaying correlation functions in the gapped
phases (see Ref. 57 for details); such correlations are absent in
models with next-nearest-neighbor interactions76–79.

For Jxy = −1, where long-range interactions in the x − y
plane are not frustrated, the phase diagram [Fig. 1(b)] shows a
number of important qualitative differences from the nearest-
neighbor phase diagram as α is decreased. First, the XY-to-
Haldane phase boundary bends significantly toward positive
Jz , and we find the Haldane phase to terminate at α ≈ 3
for Jz = 1. Second, we expect the XY phase to disappear
for α . 3 due to the breakdown of conformal symmetry33,35.
Third, for α . 3 a new CSB phase emerges—this is not in
violation of the Mermin-Wagner theorem, as it no longer ap-
plies for this range of interactions2,52,80–83. The CSB-to-AFM
phase transition is expected to be first-order, since at large Jz
and small α, quantum fluctuations play negligible roles for
both the Néel-ordered state and the ordered CSB state. This
behavior is similar to the transition between the AFM phase
and the large-D phase (where a large positive anisotropy term
D
∑
i(S

z
i )2 causes all spins to stay in the |Szi = 0〉 state) re-

ported in Refs. 65,66,75. The Haldane phase has a c = 1 critical
phase boundary with the XY phase, a c = 0.5 phase boundary
with the AFM phase67, and a possibly exotic phase boundary
with the CSB phase, a boundary that is not described by a
1+1D CFT.

II. FM PHASE AND ITS BOUNDARY

Because the ferromagnetic state with all spins polarized
along ±z (or an arbitrary superposition of these two states)
is an exact eigenstate of the Hamiltonian for any value of α
and Jz , we expect a first-order quantum phase transition at
the boundary of the FM phase. The FM state has an energy
EFM = Jz

∑
i>j(i−j)−α, and the phase transition out of this

state, defining the critical line Jz = λ0(α), occurs when some
other eigenstate with no ferromagnetic order appears with a
lower energy. The dependence of λ0 on α can be estimated
using the following intuitive argument. For a given Jz < 0,
the energy density of the ferromagnetic state in the thermody-
namic limit is given by εFM = Jzζ(α) [ζ(α) ≡

∑∞
r=1 r

−α

is the Riemann zeta function], which diverges as α → 1.
For Jxy = 1, the magnitude of the energy density arising
from the term

∑
i>j(S

x
i S

x
j + Syi S

y
j )/(i− j)α can be at most

η(α) ≡
∑∞
r=1(−1)r−1/rα (the Dirichlet eta function), with

this value obtained for any state that is Néel-ordered along
some direction in the x − y plane. The competition between
the energy of these two classical states gives a critical point
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Figure 1: Proposed phase diagram for (a) Jxy = 1 and (b) Jxy =
−1. Five different phases are identified: a ferromagnetic (FM) Ising
phase, an antiferromagnetic (AFM) Ising phase, a disordered XY
phase, a topological Haldane phase, and a continuous symmetry
breaking (CSB) phase. At α = ∞, the transition points are de-
noted by Jz = λ0,1,2 in (a). The FM-to-XY, FM-to-CSB, and CSB-
to-AFM transitions are first order (green line); the XY-to-Haldane
transition is BKT type with central charge c = 1 (purple line); the
Haldane-to-AFM transition is second order with c = 0.5 (yellow
line); the CSB-to-XY transition (white dotted line) has c = 1, but is
a BKT-like transition corresponding to a universality class different
from the XY-to-Haldane transition83; the CSB-to-Haldane transition
(black dotted lines) appears to be an exotic continuous phase transi-
tion not described by a 1+1D CFT. The location of solid transition
lines are expected to be accurate in the thermodynamic limit, while
the location of dotted transition lines may have a small uncertainty.

Jz ≈ −η(α)/ζ(α), which smoothly varies from Jz = −1 at
α = ∞ to Jz = 0 at α = 1. For Jxy = −1, the situation is
quite different, because the polarized state along any direction
in the x− y plane has an energy density equal to −ζ(α), and
thus we naively expect the phase boundary to be at Jz = −1
for all α > 0.

More formally, the boundary can be calculated via a spin-
wave analysis. We treat the spin state that is polarized along
the +z direction as the vacuum state with no excitations, and
apply the Holstein-Primakoff transformation (for spin 1) to
map spin excitations (spin-waves) into bosons: Szi = 1−a†iai,
S+
i ≡ Sxi + iSyi =

√
2a†i (1−a

†
iai/2)1/2. In the weak excita-

tion limit, 〈a†iai〉 � 1, we can approximate S+
i ≈

√
2a†i , and
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Figure 2: Comparison of the (first-order) transition point λ0(α)
out of the FM phase calculated using infinite-size DMRG and spin-
wave theory for Jxy = 1. The spin-wave theory predicts λ0(α) =
−η(α)/λ(α). The infinite-size DMRG calculations use a bond di-
mension χ = 100, and increasing χ to 200 does not yield results
distinguishable within the resolution of the plot. The transition point
is numerically determined by finding the value of Jz at which the
ground state energy density obtained from infinite-size DMRG cal-
culations is equal to that of the FM state.

our Hamiltonian becomes

Hsw ≈
∑
i>j

−Jz(a†iai + a†jaj) + Jxy(a†iaj + a†jai)

(i− j)α
, (2)

where we have ignored the interaction terms a†iaia
†
jaj since

〈a†iai〉, 〈a
†
jaj〉 � 1 is assumed. Assuming for the moment pe-

riodic boundary conditions, this quadratic Hamiltonian can be
diagonalized by Fourier transformation,Hsw = 2

∑
k ωkc

†
kck,

with the following dispersion relation (q ≡ 2πk/N ) for an in-
finite system

ω(q) = −Jz
∞∑
r=1

r−α + Jxy

∞∑
r=1

cos(qr)/rα. (3)

If ωmin ≡ minω(q) > 0, then the ground state of Hsw is
the vacuum state of all modes k, and 〈a†iai〉 = 0 for all i,
consistent with the approximation 〈a†iai〉 � 1. If ωmin < 0,
then the ground state has an extensive number of spin exci-
tations and the spin-wave approximation should break down,
and we do not expect the polarized state in the z direction
to be the quantum ground state. The ωmin = 0 condi-
tion thus sets the phase boundary for Hsw. For Jxy = 1,
ωmin = ω(q = π) = −Jzζ(α) − η(α), leading to a criti-
cal line of Jz = −η(α)/ζ(α). For Jxy = −1, ωmin = ω(q =
0) = (1−Jz)ζ(α), leading to a critical line at Jz = −1, inde-
pendent of α. These results exactly match with the previous
intuitive arguments.

We first compare the above spin-wave theory prediction
with infinite-size DMRG calculations84,85 for Jxy = 1. As

seen in Fig. 2, the numerical results agree well with the spin-
wave theory at large α, and the spin-wave prediction of λ0(α)
is asymptotically exact as α → ∞. However, a small but
increasing difference in λ0(α) is seen as α decreases. For
α & 1.5, our infinite-size DMRG calculations converge well
(see appendix A for our numerical treatment of long-range in-
teractions), and we conjecture that it is the spin-wave approx-
imation that starts to break down when α decreases. This is
possibly due to stronger effects of interactions between spin-
wave excitations as α becomes smaller, so that the spin-wave
approximation (which ignores interactions) becomes less and
less accurate. While our infinite-size DMRG calculations do
not converge well for α . 1.5, the spin-wave prediction
should be asymptotically exact as α→ 1, since the FM state’s
energy is super-extensive for α ≤ 1 and λ0(α ≤ 1) = 0. As
a result, in Fig. 1(a) we have adopted the spin-wave predic-
tion for the FM phase’s boundary, but made the boundary line
dotted for 1 < α < 2 to represent a small uncertainty in the
transition point [for α > 2 the uncertainty of the transition
point is well below the resolution of Fig. 1(a)].

For Jxy = −1, our infinite-size DMRG calculations pro-
vide exactly the same transition point λ0(α) = −1 as the
spin-wave theory, independent of α [Fig. 1(b)].

III. HALDANE PHASE AND ITS BOUNDARY

The existence of the Haldane phase in a spin-1 XXZ chain
makes the phase diagram much richer than that of a spin-
1/2 XXZ chain. We focus first on the XY-to-Haldane phase
boundary λ1(α). The transition out of the Haldane phase
is signaled by a vanishing of the string-order correlation
function Sξij ≡ 〈S

ξ
i S

ξ
j

∏
i<k<j(−1)S

ξ
k〉 (ξ = x, y, z) when

|i− j| → ∞. However, because the phase transition is of the
BKT type, Sξij changes rather smoothly with Jz and α for a fi-
nite |i−j|, and it is very challenging to find the exact transition
point numerically. Finite-size scaling using exact diagonaliza-
tion on small chains must be performed very carefully due to
logarithmic corrections in system size61,86–88, and infinite-size
DMRG yields a phase transition point that depends strongly
on the bond dimension χ (the dimension of the matrix product
states used89), since the ground state bipartite entanglement
entropy S grows logarithmically with system size N accord-
ing to CFT: S = c logN + const90. As seen in Fig. 3, for
χ = 100 and at α = ∞, the string-order correlation func-
tion Szij appears to start vanishing at Jz ≈ 0.3, instead of at
Jz = 0 as predicted by field theory68. However, this is consis-
tent with previous infinite-size DMRG calculation results65,66.
To extract a more accurate phase boundary, we perform a scal-
ing of χ ranging from 50 to 200 near the XY-to-Haldane phase
boundary, following a procedure similar to that in Ref. 65. We
then extract the XY-to-Haldane phase boundary (white line in
Fig. 3) by determining the location where Szij(χ → ∞) van-
ishes, which now correctly yields Jz ≈ 0 at α =∞. However,
we expect a few percent uncertainty in the transition point due
the use of Szij at a finite separation |i− j|, and due to the error
in extrapolating Szij(χ→∞).
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Figure 3: Infinite-size DMRG calculation of Szij ≡
〈Szi Szj

∏
i<k<j(−1)

Szk 〉 for a separation of |i − j| = 500.
Szij = 1 in the FM phase and Szij ≈ 1 deep in the AFM phase for
any i and j. As |i − j| → ∞, Szij is finite for the Haldane phase
and zero for the XY phase, thus we can use it to locate the XY-to-
Haldane phase boundary. (a) Jxy = 1. The FM phase boundary
(green line) is given by the spin-wave prediction Jz = −η(α)/ζ(α).
(b) Jxy = −1. The FM phase boundary (green line) is exactly at
Jz = −1. For both (a) and (b), we vary the bound dimension χ
to accurately determine the XY-to-Haldane phase boundary, deter-
mining the value of Jz at which Szij vanishes (for a large but finite
|i − j|) and then extrapolating to the χ → ∞ limit (white squares
fitted by the white line). The black line is the Haldane-to-AFM
phase boundary, which is determined from 〈Szi Szj 〉 (see Fig. 4).

To explain why long-range interactions bend the XY-to-
Haldane phase boundary in opposite directions for ferromag-
netic and antiferromagnetic Jxy , we use an effective field the-
ory first proposed by Haldane3 and developed by Affleck91.
The proper inclusion of long-range interactions within this
field theoretic approach was discussed in detail in Ref. 57.
Here, we give a brief review of this field-theory treatment.
Consider first the case of Jxy = Jz = 1. In this case, each
spin-1 is mapped to a staggered field n(2i + 1

2 ) = (S2i −
S2i+1)/2 and a uniform field l(2i + 1

2 ) = (S2i + S2i+1)/2.
Importantly, we observe that the classical ground state of H

is always Néel-ordered for any α > 0, with n2(x) = 1 and
l(x) = 0 for any position x. The intuition behind this de-
composition is that, in the quantum ground state, n(x) should
have only long-wave-length variations with n2(x) ≈ 1, while
l(x) ≈ 0 should represent long wave-length perturbations to
the direction of n(x) due to quantum fluctuations. Therefore,
when working with the Fourier-transformed fields n(q) and
l(q), we can expand the Hamiltonian in powers of the mo-
mentum q and keep only the leading order terms.

The effective Hamiltonian in the continuum limit and mo-
mentum space reads (the lattice spacing is set to 1 for simplic-
ity)

Heff ≈
ˆ
dq
[
ω(q)|n(q)|2 + Ω(q)|l(q)|2

]
, (4)

where the cross terms between n and l are ignored because
they involve n(q) near q = π. The dispersion relations Ω(q)
and ω(q) can be expanded at small q as92:

ω(q) ≡ 2

∞∑
r=1

(−1)r
cos(qr)

rα
≈ −2η(α) + η(α− 2)q2 +O(q4),

Ω(q) ≡ 2

∞∑
r=1

cos(qr)

rα
≈ 2ζ(α) + ζ(α− 2)q2 +O(q4)

+ 2Γ(1− α) cos[
π

2
(α− 1)]|q|α−1. (5)

For the n field, we need to keep the q2 term since the
zeroth-order term gives a constant due to the approximation
n2(x) ≈ 1. The zeroth-order term in q for the l field is the
dominant source of quantum fluctuations, and we can ignore
higher-order terms in determining whether Heff is gapped or
not (they do contribute to the long-distance behavior of cor-
relation functions though57). For n(q), the zeroth order term
only adds a constant to the Hamiltonian due to the constraint
n2(x) = 1. Thus the Hamiltonian is approximately given
by Heff ≈

´
dq
[
η(α− 2)q2|n(q)|2 + 2ζ(α)|l(q)|2

]
. In a

coherent-spin-state path-integral representation, , the action
is quadratic in the field l and it can be integrated out1,93. The
remaining path integral over the staggered field n defines a
1+1D O(3) nonlinear sigma model, with Lagrangian density
(nonlinear constraint n2(x) = 1 implied)

L(x) ≈ 1

g

(
|∂n/∂t|2 − v2|∂n/∂x|2

)
. (6)

Here the effective coupling g and spin-wave velocity v
depend both on α and the lattice spacing (their exact val-
ues are not important to us). The coupling strength g flows
towards infinity under renormalization group for the above
Lagrangian1,93 , suggesting a disordered ground state with an
excitation gap. This is corroborated by the SU(n) variant of
the Hamiltonian in the n → ∞ limit, which can be analyt-
ically solved and contains a mass gap91,94. Now we adopt
a phenomenological treatment95,96 of the above Lagrangian
(Eq. 6): The nonlinear constraint n2 = 1 can be approxi-
mately removed by introducing a mass gap ∆α and a renor-
malized spin-wave velocity vα. We thereby arrive at a free
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field theory with the Lagrangian density (written in momen-
tum space)

L(q) ∝ |∂n/∂t|2 − (∆2
α + v2

αq
2)|n(q)|2. (7)

Since ∆α→∞ ≈ 0.4197,98 and ∆α→0 = 1 (where the Hamilto-
nian becomes integrable), we infer that ∆α should increase as
α decreases. This speculation is confirmed by accurate finite-
size DMRG calculations of ∆α in Ref. 57.

Next, we consider the case of Jxy = 1 but Jz < 1. We can
then write

H =
∑
i>j

1

(i− j)α
Si ·Sj− (1−Jz)

∑
i>j

1

(i− j)α
Szi S

z
j . (8)

Following Refs. 76,91, the anisotropy term above can be treated
as a negative mass term (1 − Jz)fαn2

z(q) to the Lagrangian
density L(q) in Eq. (7). The precise value of the renormal-
ization factor fα is not important to us, but we expect it to
continuously decrease as α becomes smaller, since the stag-
gered field dominates in the Haldane phase and long-range
interactions [

∑
i>j

1
(i−j)αS

z
i S

z
j in Eq. (8)] are increasingly

frustrated as α decreases. The mass gap for the field nz
is now smaller than for nx and ny , and reads ∆α(Jz) =√

∆2
α − (1− Jz)fα. Combined with the above discussion

that ∆α should increase with decreasing α, we require pro-
gressively more negative Jz to close the gap and transition
into the XY phase as α decreases, thus explaining the shape
of the XY-to-Haldane phase boundary in Fig. 3(a).

For Jxy = −1 and Jz < 1, the classical ground state is no
longer Néel ordered and the field theory employed above is
not valid. However, by rotating every other spin by π about
the z-axis, we generate a transformed Hamiltonian

H ′ =
∑
i>j

(−1)i−j−1

(i− j)α
Si · Sj +

∑
i>j

Jz − (−1)i−j−1

(i− j)α
Szi S

z
j .

(9)
Now the classical ground state is Néel ordered (along any di-
rection for Jz = 1). The first term above is isotropic, and gets
mapped to∑
i>j

(−1)i−j−1

(i− j)α
Si ·Sj ≈

ˆ
dq
[
Ω(q)|n(q)|2 + ω(q)|l(q)|2

]
,

(10)
where the roles of ω(q) and Ω(q) are swapped as compared
to Eq. (4). For α < 3, Ω(q) in Eq. (5) is now dominated
by the non-analytic term |q|α−1 at small q, and we can no
longer obtain the simple free Lagrangian in Eq. (7). In Ref. 57,
it is shown that the |q|α−1 term in the dispersion of n(q) in
Eq. (10) leads to a renormalization group flow towards a gap-
less ordered phase spontaneously breaking an SU(2) sym-
metry for α < αc . 3. For our complete Hamiltonian H ′

in Eq. (9), the anisotropy leads instead to a U(1) continuous
symmetry breaking phase for α < α′c (see the next section for
further discussions, where α′c is estimated to be 2.9 at Jz = 1).
Our infinite-size DMRG calculations in Fig. 3(b) suggest that
the Haldane phase terminates at a critical α around 3.1 for
Jz = 1, and the XY phase is expected to exist in between the
CSB phase and the Haldane phase at Jz = 1.

For α > 3, Ω(q) is dominated by q2 and we can once
again reduce H ′ to the free field Lagrangian Eq. (7), but with
a different mass gap ∆′α and spin-wave velocity v′α. The
anisotropy term in Eq. (9) changes the gap to ∆′α(Jz) =√

∆′2α − (gα − Jzhα). Here gα is a renormalization factor

due to non-frustrating long-range interactions (−1)i−j−1

(i−j)α Szi S
z
j

in Eq. (9), and should thus increase as α decreases, while hα
is a renormalization factor due to frustrating long-range inter-
action 1

(i−j)αS
z
i S

z
j in Eq. (9), and should decrease as α de-

creases. Together with the expectation that the gap ∆′α should
decrease with α47,57 due to the appearance of gapless continu-
ous symmetry breaking phase at α . 3, we conclude that the
gap closes at a point with Jz strictly larger than zero in the
presence of long-range interactions, again consistent with our
numerical results.

We point out that a different field theoretic approach based
on non-Abelian bosonization57,68 can also be employed to
predict the qualitative changes to the XY-to-Haldane phase
boundary. This technique has been used to predict the XY-
to-Haldane phase boundary of a spin-1 XXZ chain with next-
nearest-neighbor interactions76, which is a reasonable approx-
imation to our model when α is large enough that next-
nearest-neighbor interactions dominate over the next-longer-
range interactions.

We end this section with a brief discussion of the bound-
ary between the Haldane and AFM phases. Both the Hal-
dane and AFM phases are gapped and have finite entangle-
ment entropy in the infinite-system-size limit99. Thus we see
well-converged results for bond dimensions of χ ≥ 100 in our
infinite-size DMRG calculations. We extract the Haldane-to-
AFM phase boundaries using the spin-spin correlation func-
tions Czij ≡ 〈Szi Szj 〉 (see Fig. 4), and plot them as black lines
in Figs. 3(a,b). Good agreement with existing literature63–66

is found for the Haldane-to-AFM transition point at α = ∞
(1.15 < Jz < 1.2). The bending of the Haldane-to-AFM
phase boundary toward larger Jz for both Jxy = 1 and
Jxy = −1 in the presence of long-range interactions can be
understood via simple energetic considerations. In the AFM
phase, the spins are (nearly) anti-aligned in the z direction;
long-range interactions are strongly frustrated, and the energy
E =

∑
i>j〈Szi Szj 〉/(i − j)α at α → 0 is only half of the

α =∞ case for a perfectly Néel ordered state. In the Haldane
phase, the AFM order of spin correlations 〈Si · Sj〉 decays
exponentially (followed by a small power-law tail57), and thus
the ground state energy E =

∑
i>j〈Si ·Sj〉/(i− j)α is much

less frustrated by the long-range interactions. As a result, we
expect the disordered ground state in the Haldane phase to
have progressively lower energy than an AFM ordered state
as α decreases at a given Jz , and hence a larger (but always fi-
nite even for α→ 0) Jz is needed to make the transition from
the Haldane phase into the AFM phase.

IV. CSB PHASE AND ITS BOUNDARY

The celebrated Mermin-Wagner theorem rigorously rules
out continuous symmetry breaking in 1D and 2D quantum and
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Figure 4: 〈Sz1Sz501〉 as a function of Jz calculated using infinite-
size DMRG for a few different sets of α and Jxy . The Haldane-to-
AFM phase transition is clearly observed and we locate the transition
point by finding the critical Jz (restricted to Jz > 0) above which
〈Sz1Sz501〉 > 0.1. The curves shown look identical when we increase
the bond dimension used from 100 to 200.

classical spin systems at finite temperature, as long as the in-
teractions satisfy the convergence condition

∑
i>j Jijr

2
ij <

∞ in the thermodynamic limit (rij and Jij are respectively
the distance and coupling strength between sites i and j)2.
The long-distance properties of 1D spin systems at zero tem-
perature can often be related to those of a 2D classical model
at finite temperature; however, in the process of this mapping,
the long-range interactions are only inherited by one of the
two spatial directions in the classical model, and the Mermin-
Wagner convergence condition will be satisfied for interac-
tions decaying faster than 1/r3. Thus we expect no contin-
uous symmetry breaking in the ground state of our Hamil-
tonian Eq. (1) for α > 3. Indeed, we have found exclu-
sively disordered or discrete (Z2) symmetry breaking phases
for α > 3 in our phase diagrams (Fig. 1). Continuous symme-
try breaking can (and does) appear when α < 3 . To gain a
better understanding of the robustness of symmetry breaking
states to quantum fluctuations, below we carry out a spin-wave
analysis100. Similar analysis can be also found in Ref. 44,45 for
Heisenberg chains with long-range interactions.

We start by considering the Jxy = −1 case, and take the
state with all spins polarized along the +x direction as the vac-
uum state. With this choice of vacuum, and assuming that the
density of spin waves is small (〈a†iai〉 � 1 in the following
expressions), the Holstein-Primakoff mapping is now Sxi =

1 − a†iai, S
y
i ≈ (a†i + ai)/

√
2, Szi ≈ (a†i − ai)/i

√
2. Under

this mapping, and dropping terms that are quartic in bosonic
operators (again based on the assumption that 〈a†iai〉 � 1),

H becomes

Hswx =

N/2∑
k=−N/2

(
a†k a−k

)(ωk µk
µk ωk

)(
ak
a†−k

)
; (11)

ωk =

N/2∑
r=1

1

rα
+
Jz − 1

2

N/2∑
r=1

1

rα
cos(

2πk

N
r), (12)

µk = −Jz + 1

2

N/2∑
r=1

1

rα
cos(

2πk

N
r), (13)

where ak = 1√
N

∑
j e
i2πjk/Naj . Hswx can be diagonalized

with a Bogoliubov transformation, yielding non-interacting
Bogoliubov quasi-particles with a spectrum νk. Importantly,
when |ωk| > |µk|, νk > 0 and the vacuum is dynamically
stable. When |ωk| < |µk|, νk is imaginary and the sys-
tem is dynamically unstable indicating that we have made
the wrong choice of a classical ground state. Using the ex-
pressions for ωk and µk in Eqs. (12) and (13), we find that
|ωk| > |µk| is satisfied for all k 6= 0 modes if and only if
−1 ≤ Jz < ζ(α)/η(α). This is because when Jz < −1,
the classical ground state is ferromagnetic in z direction, and
when Jz > ζ(α)/η(α) the classical ground state is Néel or-
dered along the z direction.

Because the Bogoliubov quasiparticles consist of both par-
ticles and holes, the ground state of Hswx can have a finite or
divergent density of spin excitations, measured by

〈a†iai〉 =
1

N

∑
k 6=0

1

2
([1− µ2

k/ω
2
k]−1/2 − 1)

N→∞−−−−→ =
1

4π

ˆ π

−π
dq
(

[1− µ2(q)/ω2(q)]−1/2 − 1
)
. (14)

Expanding the integrand [1 − µ2(q)/ω2(q)]−1/2 above
around q = 0 to the lowest order in 1/q, we find that

[1− µ2(q)/ω2(q)]−1/2

≈

√
(1 + Jz)ζ(α)

2ζ(α− 2)q2 − 4Γ(1− α) cos[π2 (α− 1)]|q|α−1
, (15)

where Γ(x) is the Gamma function. For α > 3, since
[1 − µ2(q)/ω2(q)]−1/2 ∝ 1/|q| to leading order in 1/q,
the spin-wave density 〈a†iai〉 ∼ ln(N) diverges as N →
∞ according to Eq. (14). This means the long-range ferro-
magnetic order along the x direction is destroyed by quan-
tum fluctuations in the thermodynamic limit; we expect that
lim|i−j|→∞〈S+

i S
−
j 〉 = 0, and the system will be disor-

dered (either Haldane or XY). For α < 3, instead we
have [1 − µ2(q)/ω2(q)]−1/2 ∝ 1/|q|(α−1)/2 to leading or-
der in q, and the excitation density 〈a†iai〉 converges to a fi-
nite constant. As a self-consistency condition, we also re-
quire 〈a†iai〉 < 1 to prevent the breakdown of the spin-wave
approximation44,52. We expect a CSB phase in the parameter
region of 〈a†iai〉 < 1 , with non-vanishing spin order in the x-y
plane (i.e. lim|i−j|→∞〈S+

i S
−
j 〉 6= 0), and a disordered phase
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Figure 5: Spin-wave excitation density 〈a†iai〉 calculated using
Eq. (14) for an infinite-size chain. For Jz > ζ(α)/η(α) (region
to the right of the white line), imaginary frequencies appear in the
Bogoliubov spectrum, indicating a classical instability toward the
AFM phase. The region above the dotted and solid white lines has
〈a†iai〉 ≤ 1, and is associated with the CSB phase. The remaining
region in the plot has 〈a†iai〉 > 1, and is expected to be disordered.
The disordered phase can be either the XY or the Haldane phase, but
the spin-wave theory cannot distinguish one from the other. For bet-
ter visibility, we have set 〈a†iai〉 = 1 for regions without CSB in the
plot.

when 〈a†iai〉 > 1. By numerically evaluating Eq. (14), which
gives 〈a†iai〉 in the infinite-size limit101, we have obtained a
phase diagram for Jxy = −1 under spin-wave approximation
[Fig. 5].

For Jxy = 1 and |Jz| < 1, classically the spins prefer to
anti-align in the x− y plane. Expanding around this classical
state, the spin-wave approximation leads to the same Hamil-
tonian in Eq. (11) except that we have

ωk =

N/2∑
r=1

(−1)r−1

rα
+
Jz − 1

2

N/2∑
r=1

(−1)r−1

rα
cos(

2πk

N
r),

(16)

µk = −Jz + 1

2

N/2∑
r=1

(−1)r−1

rα
cos(

2πk

N
r). (17)

As a result, now both µ(q) and ω(q) become fully analytic
(in the N → ∞ limit) due to the alternating sign (−1)r in
Eqs. (16) and (17). Expanding around q = 0, we have

[1− µ2(q)/ω2(q)]−1/2 ≈

√
(1 + Jz)η(α)

2η(α− 2)q2
. (18)

As a result, 〈a†iai〉 will be divergent for any α > 0 due to the
1/|q| singularity in the integrand of Eq. (14). Thus continuous
symmetry breaking is forbidden for all α > 0 for Jxy = 1.

Now we confirm the spin-wave prediction of the CSB
phase’s boundary using DMRG calculations. Naively,

one should calculate the CSB phase’s order parameter
lim|i−j|→∞〈S+

i S
−
j 〉. However, we find that in the XY phase

〈S+
i S
−
j 〉 ∼ 1/|i − j|η decays with a rather slow power law

(e.g. η = 0.25 at Jz = 0 and α = ∞). At the maximum
separation that we can calculate accurately using either finite
or infinite-size DMRG, 〈S+

i S
−
j 〉 only shows a crossover from

the XY phase to the CSB phase. To faithfully determine the
boundary of the CSB phase, we instead calculate the effective
central charge ceff as a function of α and Jz . We obtain ceff
by calculating the half-chain entanglement entropy S for two
chains with different total lengths N1 and N2 using a finite-
size DMRG algorithm102. Explicitly, for large N1 and N2, we
have

ceff ≈ 6
S(N1)− S(N2)

ln(N1)− ln(N2)
. (19)

In the XY phase (including its boundaries) and at the
boundary between the Haldane and AFM phases, we ex-
pect 1+1D conformal symmetry in the underlying field theory
model67,69, with ceff being the actual central charge represent-
ing the conformal anomaly90. In the Haldane, FM, and AFM
phases, no 1+1D conformal symmetry exists due to the pres-
ence of a gap. Although the CSB phase is gapless, we expect
a breakdown of 1+1D conformal symmetry due to the 1/rα

long-range interactions that become relevant in the RG sense
for α . 333,35,83. We emphasize that in phases with no confor-
mal symmetry, ceff does not have the meaning of the central
charge and is used only as a diagnostic here to numerically
find phase boundaries.

We identify the XY-to-CSB phase boundary in Fig. 6 as the
place where ceff starts to become appreciably (5-10%) larger
than 1. Here we find good agreement with the XY-to-CSB
phase boundary predicted by spin-wave theory in Fig. (5) for
−1 < Jz . 1. Together with perturbative field theory calcu-
lations presented in Ref. 83, we expect the phase boundary in
Fig. 6 to be accurate within a few percent. The accuracy of the
calculated ceff can be further improved by finite-size scaling,
which is however beyond the scope of the current study. The
location of the CSB-XY-Haldane tricritical point is estimated
to be at α ≈ 2.75 and Jz ≈ 1.35.

From Ref. 83, it follows that the XY-to-CSB transition is a
BKT-like transition that belongs to a universality class differ-
ent from the XY-to-Haldane BKT transition. The Haldane-
to-CSB transition is somewhat exotic, because the Haldane
phase maps to a high-temperature disordered phase in a 2D
classical model93, and in the absence of long-range interac-
tions, the CSB phase exists in 2D only at zero temperature2

and is unlikely to undergo a phase transition directly to a
high-temperature disordered phase. We also argue that the
CSB-to-Haldane transition is not described by a 1+1D CFT,
as supported by our numerical calculations shown in Fig. 6(b),
where ceff changes smoothly (at least for finite chains) from a
value larger than 1 to 0 during the CSB-to-Haldane transition.

The CSB-to-AFM phase transition is very likely to be first-
order, similar to the transition between the large-D and AFM
phases studied in Refs. 66,75, despite the existence of quantum
fluctuations in both phases. As shown in Fig. 6, we observe
a sharp peak in ceff at small αs when Jz is varied, indicating
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a first order transition67, with further evidence that includes
jumps in sub-lattice magnetization and spin-spin correlation
across the CSB-to-AFM transition (not shown).

0 1 2 3

Jz

0.1

0.2

0.3

0.4

0.5

1
/
α

XY

Haldane AFM

CSB

(a)

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

Jz

0

0.5

1

1.5

2

c e
f
f

(b)
α = 3.5

α = 2.67

α = 2.21

Figure 6: Calculation of the effective central charge ceff as a func-
tion of Jz and α for Jxy = −1, extracted from finite-size DMRG
calculations with N1 = 100, N2 = 110, and a maximum bond di-
mension of 500. (a) The black squares (fitted by the black line) show
where ceff starts to deviate from 1 when going from the XY to the
CSB phase. The purple line and white line are from Fig. 3, and show
the boundaries of the Haldane phase. (The calculation of ceff is in-
accurate in predicting the location of the XY-to-Haldane transition
due to strong finite-size effects61,86–88.) For better contrast, locations
with c > 2 are shown with the color corresponding to c = 2. (b)
For our finite-size chains, the XY-to-Haldane BKT phase transition
is signaled by a continuous drop of ceff from 1 to 0 (α = 3.5). The
Haldane-to-AFM phase transition is identified by a peak with value
around 0.5 in ceff (α = 3.5 and α = 2.67). The CSB-to-Haldane
transition is expected to be continuous and not associated with a cen-
tral charge (α = 2.67). The CSB-to-AFM transition has a sharp peak
in ceff (α = 2.21), an indication of a first-order transition67.

V. EXPERIMENTAL DETECTION

It was theoretically proposed in Refs. 54,55 that the Hamil-
tonian we consider can be simulated (for widely tunable Jz

and 0 < α < 3) by using microwave field gradients or opti-
cal dipole forces to induce spin-spin interactions in a chain
of trapped ions. The simulation of Eq. (1) with Jxy = 1
and Jz = 0 was experimentally demonstrated for a few ions
with α tuned around 156, where the ground state was adia-
batically prepared by slowly ramping down an extra single-
ion anisotropy term D(t)

∑
i(S

z
i )2, with D(t) > 0. As the

system size increases, the energy gap separating the ground
state from the rest of the spectrum will become progressively
smaller near the point where a phase transition between the
“large-D” phase and the XY/Haldane/FM/AFM phase occurs
in the thermodynamic limit75. To avoid a slow ground state
preparation process, we can adiabatically ramp down a stag-
gered magnetic field in the z direction, h(t)

∑N
i=1(−1)iSzi ,

with h(t) > 054,55. By preparing an initial state that is
the highest excited state of the staggered field Hamiltonian,
the same adiabatically ramping process will lead us to the
ground state of the Hamiltonian Eq. (1) with the opposite
sign of both Jxy and Jz . As discussed in Ref. 55, the spin
correlation functions 〈Szi Szj 〉 and the string-order correlation
Szij ≡ 〈Szi Szj

∏
i<k<j(−1)S

z
k 〉 can be measured for any i and

j, since one can obtain the complete statistics of all spins’
magnetization using spatially resolved measurements. To-
gether with arbitrary single-spin rotations performed with mi-
crowave or optical Raman transitions, we can measure these
correlations along any direction. Near-future experiments will
most likely be limited to a few tens of spins. Although this
limitation makes it difficult to probe continuous phase tran-
sitions, one can nevertheless observe important signatures of
all five phases discussed in the manuscript by tuning Jz/Jxy
and α deep into each phase. These signatures are summarized
below and shown in Fig. 7.

FM phase [Fig. 7(a)]: Within the FM phase, 〈Szi Szj 〉 =
1 and 〈Sxi Sxj 〉 = 0 for any i and j, thus confirming perfect
alignment of spins along the z direction.

AFM phase [Fig. 7(b)]: For sufficiently large Jz > 0,
we have 〈Szi Szj 〉 ≈ (−1)i−j , showing a near perfect anti-
alignment of spins along the z direction. In contrast, 〈Sxi Sxj 〉
vanishes over a separation of just a few sites.

Haldane phase [Fig. 7(c)]: Szij converges quickly to a
nonzero constant as |i− j| increases. In contrast, 〈Szi Szj 〉 and
〈Sxi Sxj 〉 vanish over a separation of just a few sites.

XY phase [Fig. 7(d)]: We consider the XY phase for
Jxy = 1 since the XY phase hardly exist for α < 3 and
Jxy = −1. Szij and 〈Szi Szj 〉 both decay quickly to zero as
|i − j| increases. 〈Sxi Sxj 〉 oscillates and its amplitude decays
very slowly (the slow decay reflects a relatively small value of
the critical exponent associated with the correlation function
decay).

CSB phase [Fig. 7(f)]: As in the XY phase, both Szij and
〈Szi Szj 〉 decay quickly to zero. However, 〈Sxi Sxj 〉 converges
quickly to approximately 0.5 at large |i − j|, showing a near
perfect ordering of spins in the x− y plane. Note that we are
not explicitly breaking U(1) symmetry here, so 〈Sxi Sxj 〉 =

〈Syi S
y
j 〉 = 1

2 〈S
+
i S
−
j 〉. This is done because it is desirable for

the experiment to operate within the
∑N
i=1 S

z
i = 0 subspace,

where magnetic field noise and unwanted phonon couplings
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(b) AFM phase

〈Sz
1S

z
1+r〉 〈Sx

1S
x
1+r〉

2 4 6 8
-1

-0.5

0

0.5

1
Jxy = 1 Jz = 1 α = 1.25

r

(c) Haldane phase

〈Sz
1S

z
1+r〉 〈Sx

1S
x
1+r〉 Sz

1,1+r

2 4 6 8
-1

-0.5

0

0.5

1
Jxy = 1 Jz = −0.5 α = 1.67

r
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Figure 7: Signatures of all five phases for a N = 16 spin chain.
Except for (e), we tune Jxy , Jz and α to set the ground state deep
into each phase. Each phase is distinguished from the other phases
by different behaviors in various spin-spin correlation functions.

are suppressed55,56.
Finally, we point out that, even in the experimental setup

already demonstrated in Ref.56, for which Jz = 0, one can
still explore the two most interesting phases studied in this
manuscript: the Haldane phase and the CSB phase. Note that,
for Jxy = 1, Jz = 0 lies close to the Haldane-to-XY phase
boundary, and thus one observes signatures of both phases, as
in Fig. 7(e). Here the Haldane phase is identified via bulk cor-
relations, but one can alternatively confirm the existence the
Haldane phase by preparing edge excited states and measure
edge excitation amplitudes57.

VI. CONCLUSION AND OUTLOOK

By tuning the anisotropy Jz/|Jxy| and the power-law
exponent α, we have explored a rich variety of quantum
phases—and the transitions between them—in a long-range
interacting spin-1 XXZ chain. For Jxy = −1, long-range in-
teractions give rise to a rather unusual phase diagram due to
the emergence of a continuous symmetry breaking phase in
one spatial dimension. Because the CSB phase cannot happen
in short-range interacting 1D spin-system, the nature of the
phase transitions into and out of it is rather interesting; an in-

depth study of the universality class of the CSB-to-XY transi-
tion was carried out in a separate work83, where a similar tran-
sition in the long-range interacting spin-1/2 XXZ chain is an-
alyzed. On the other hand, the CSB-to-Haldane transition, ab-
sent in spin-1/2 chains, requires further study to be understood
thoroughly. The CSB-Haldane-AFM tricritical point is remi-
niscent of the tricritical point at the intersection of the large-
D, Haldane and AFM phases, which has been related to the
integrable Takhtajan-Babujian model described by an SU(2)2

Wess-Zumino-Witten (WZW) model with central charge c =
3/267,103–106. Additional numerical calculations are needed to
accurately determine the central charge at the CSB-Haldane-
AFM tricritical point. Generalizations of our model to in-
clude single-ion anisotropy and a magnetic field are read-
ily achievable in current trapped-ion experiments55,56. Un-
derstanding these exotic quantum phase transitions—induced
by long-range interactions that are highly tunable in current
experiments—requires the confrontation of numerous theo-
retical and numerical challenges, and motivates experimental
quantum simulation of the model using AMO systems.
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Appendix A: Numerical treatment of long-range interactions

In our infinite-size and finite-size DMRG code85, the 1/rα

long-range interactions are represented as a matrix product
operator by fitting the power law to a sum of exponentials51.
Specifically, we fit fr = 1/rα to f ′r =

∑K
k=1 cke

−r/ξk for
r = 1, 2, · · ·L. For a given L, we numerically find the
minimum number of exponentials K that satisfy

∑L
r=1(fr −

f ′r)
2 ≤ εf , with εf denoting the residual tolerance. The maxi-

mal range L is set to the chain length in our finite-size DMRG
calculations, and to 5000 in our infinite-size DMRG calcu-
lations (much larger than the 500 site separation of correla-
tions calculated in Fig. 3). εf is set to 10−12 in our finite-size
DMRG calculations, and 10−10 in our infinite-size DMRG
calculations. For all the calculations shown in the main text,
we find no distinguishable differences within the resolution of
our plots if we further increase L or decrease εf .

As an example, we show in Fig. 8 relative differences of
Sz1,501 (for Jxy = 1, α = 2) and 〈S+

1 S
−
501〉 (for Jxy = −1,

α = 2) caused by increasing L from 5000 to 104 and by de-
creasing εf from 10−10 to 10−11. In all cases, the relative
differences in the calculated observables are below 10−3.

We have avoided the use of DMRG results if α < 1.5 and
interactions are unfrustrated in one or more directions (Jxy =
−1 or Jz < 0 or both), because of the slow convergence of∑L
r=1 1/rα with L as α→ 1. Nevertheless, we do not expect
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new phase transitions in these situations based on Fig. (1), and
we can instead infer the phases of the system there from the
presented calculations.
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Figure 8: Relative differences of Sz1,501 (blue) calculated for Jxy =

1, α = 2 and 〈S+
1 S
−
501〉 (red) calculated for Jxy = −1, α = 2

caused by (a) increasing L from 5000 to 104 (with K increasing
from 9 to 10) and (b) decreasing εf from 10−10 to 10−11 (with K
increasing from 9 to 10).
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