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We challenge the hypothesis that the ground states of a physical system whose degeneracy depends
on topology must necessarily realize topological quantum order and display non-local entanglement.
To this end, we introduce and study a classical rendition of the Toric Code model embedded on
Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy
(and those of all levels) depends on the topology of the embedding surface alone. As the ground
states of this classical system may be distinguished by local measurements, a characteristic of Landau
orders, this example illustrates that topological degeneracy is not a sufficient condition for topological
quantum order. This conclusion is generic and, as shown, it applies to many other models. We also
demonstrate that certain lattice realizations of these models, and other theories, display a ground
state entropy (and those of all levels) that is “holographic”, i.e., extensive in the system boundary.
We find that clock and U(1) gauge theories display topological (in addition to gauge) degeneracies.

PACS numbers: 05.50.+q, 64.60.De, 75.10.Hk

I. INTRODUCTION

The primary purpose of the current paper is to show
that, as a matter of principle, contrary to discerning
lore that is realized in many fascinating systems, e.g.,1–3,
the appearance of a topological ground state degeneracy
does not imply that these degenerate states are “topo-
logically ordered”, in the sense that local perturbations
can be detected without destroying the encoded quan-
tum information4. Towards this end, we introduce vari-
ous models, including a classical version of Kitaev’s Toric
Code3, that exhibit robust genus dependent degenera-
cies but are nonetheless Landau ordered. Those models
do not harbor long-range entangled ground states that
cannot be told apart from one another by local measure-
ments. Rather, they (as well as all other eigenstates) are
trivial classical states. Along the way we will discover
that these two-dimensional classical models (including
rather mundane clock and U(1) gauge like theories with
four spin interactions (specifically, Toric Clock and U(1)
theories that we will define) may not only have genus
dependent symmetries and degeneracies but, for various
lattice types, may also exhibit holographic degeneracies
that scale exponentially in the system perimeter. Similar
degeneracies also appear in classical systems having two
spin interactions. Thus, the classical degeneracies that
we find may be viewed as analogs of those in quantum
models such as the Haah Code model on the simple cubic
lattice5–7, a nontrivial theory with eight spin interactions
that is topologically quantum ordered, and other quan-
tum systems. To put our results in a broader context,
we first succinctly review current basic notions concern-
ing the different possible types of order.

The celebrated symmetry-breaking paradigm8,9 has
seen monumental success across disparate arenas of
physics. Its traditional textbook applications include liq-
uid to solid transitions, magnetism, and superconduc-
tivity to name only a few examples out of a very vast

array. Within this paradigm, distinct thermodynamic
phases are associated with local observables known as
order parameter(s). In the symmetric phase(s), these
order parameters must vanish. However, when symme-
tries are lifted, the order parameter may become non-
zero. Phase transitions occur at these symmetry break-
ing points at which the order parameter becomes non-
zero (either continuously or discontinuously). Landau9

turned these ideas into a potent phenomenological pre-
scription. Indeed, long before the microscopic theory
of superconductivity10, Ginzburg and Landau11 wrote
down a phenomenological free energy form in the hith-
erto unknown complex order parameter with the aid
of which predictions may be made. Albeit its numer-
ous triumphs, the symmetry-breaking paradigm might
not directly account for transitions in which symme-
try breaking cannot occur. Pivotal examples are af-
forded by gauge theories of the fundamental forces
and very insightful abstracted simplified renditions cap-
turing their quintessential character, e.g.,12. Elitzur’s
theorem13 prohibits symmetry breaking in gauge the-
ories. Another notable example where the symmetry
breaking paradigm cannot be directly applied is that of
the Berezinskii-Kosterlitz-Thouless transition14 in two-
dimensional systems with a global U(1) symmetry. By
the Mermin-Wagner-Hohenberg-Coleman theorem and
its extensions15–18, such continuous symmetries cannot
be spontaneously broken in very general two-dimensional
systems.

Augmenting these examples, penetrating work illus-
trated that something intriguing may happen when the
quantum nature of the theory is of a defining nature1.
In particular, strikingly rich behavior was found in
Fractional Quantum Hall (FQH) systems1,19–21, chiral
spin liquids1,21,22, a plethora of exactly solvable models,
e.g.,3,23–25, and other systems. One curious character-
istic highlighted in1 concerns the number of degenerate
ground states in FQH fluids26, chiral spin liquids27,28,
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and other systems. Namely, in these theories, the ground
state (g.s.) degeneracy is set by the topology alone.
For instance, regardless of general perturbations (includ-
ing impurities that may break all the symmetries of the
Hamiltonian), when placed on a manifold of genus num-
ber g (the determining topological characteristic), the
FQH liquid at a Laughlin type filling of ν = 1/q (with
q ≥ 3 an odd integer) universally has

nLaughling.s. = qg (1)

orthogonal ground states26. Equation (1) constitutes
one of the best known realization of topological degen-
eracy. Exact similarity transformations connect the sec-
ond quantized FQH systems of equal filling when these
are placed on different surfaces sharing the same genus29.
Making use of the archetypal topological quantum phe-
nomenon, the Aharonov-Bohm effect30, it was argued
that, when charge is quantized in units of (1/q) (as it
is for Laughlin states), the minimal ground state degen-
eracy is given by the righthand side of Eq. (1)31. This
may appear esoteric since realizing FQH states on Rie-
mann surfaces is seemingly not feasible in the lab. Recent
work32 proposed the use of an annular superconductor-
insulator-superconductor Josephson junction in which
the insulator is (an electron-hole double layer) in a FQH
state (of an identical filling) for which this degeneracy
is not mathematical fiction but might be experimentally
addressed. Associated fractional Josephson effects of this
type in parafermionic systems were advanced in33.

Historically, the robust topological degeneracy of Eq.
(1) for FQH systems and its counterparts in chiral spin
liquids suggested that such a degeneracy may imply the
existence of a novel sort of order — “topological quantum
order” present in Kitaev’s Toric Code model3, Haah’s
code5,6, and numerous other quantum systems26–28,34 —
a quantum order for which no local Landau order pa-
rameter exists. As we will later review and make precise
(see Eq. (3)), in topologically ordered systems, no local
measurement may provide useful information.

As it is of greater pertinence to a model analyzed in the
current work, we note that similar to Eq. (1), on a surface
of genus g the ground state degeneracy of Kitaev’s Toric
Code model3, an example of an Abelian quantum dou-
ble model representing quantum error correcting codes
(solvable both in the ground state sector3 as well as at
all temperatures35–37), is

nToric−Codeg.s. = 4g. (2)

Thus, for instance, on a torus (g = 1), the model exhibits
4 ground states while the system has a unique ground
state on a topologically trivial (g = 0) surface with
boundaries. By virtue of a simple mapping35–37, it may
be readily established that an identical degeneracy ap-
pears for all excited states; that is the degeneracy of each
energy level is an integer multiple of 4g. Thus, the mini-
mal degeneracy amongst all energy levels is given by 4g.
Same ground state degeneracy39 appears in Kitaev’s hon-
eycomb model23,24. As is widely known, an identical situ-

ation occurs in the quantum dimer model35,36,40. Invok-
ing the well-known “n−ality” considerations of SU(n),
leading to a basic spin of 1/2 in SU(2) and a minimal
quark charge of 1/3 in SU(3), it was suggested35,36 that
in many systems, fractional charges (quantized in units
of 1/n) are a trivial consequence of the Zn phase group
center structure of a system endowed with an SU(n) sym-
metry, which is associated with the n states comprising
the ground state manifold. This n-ality type phase fac-
tors and other considerations, prompted Sato41 to sug-
gest the use of topological degeneracy (akin to that of
Eqs. (1) and (2)) as a theoretical diagnosis delineating
the boundary between the confined and the topological
deconfined phases of QCD in the presence of dynamical
quarks. Other notable examples include, e.g., the BF ac-
tion for superconductors (carefully argued to not support
a local order parameter42).

References35,36 examined the links between various
concepts surrounding topological order with a focus on
the absence of local order parameters. In particular,
building on a generalization of Elitzur’s theorem43,44 it
was shown how to construct and classify theories for
which no local order parameter exists both at zero and at
positive temperatures; this extension of Elitzur’s theorem
unifies the treatment of classical systems, such as gauge
and Berezinskii-Kosterlitz-Thouless type theories in ar-
bitrary number of space (or spacetime) dimensions, to
topologically ordered systems. Moreover, it was demon-
strated that a sufficient condition for the existence of
topological quantum order is the explicit presence, or
emergence, of symmetries of dimension d lower than the
system’s dimension D, dubbed d-dimensional gauge-like
symmetries, and which lead to the phenomenon of di-
mensional reduction. The topologically ordered ground
states are connected by these low-dimensional operator
symmetries35,36. All known examples of systems display-
ing topological quantum order host these low dimensional
symmetries, thus providing a unifying framework and or-
ganizing principle for such an order.

As underscored by numerous pioneers, features
such as fractionalization and quasiparticle statis-
tics, e.g.,1,3,20,23,45–55, edge states3,23,54,56,57, nontriv-
ial entanglement35,36,58, and other fascinating properties
seem to relate with the absence of local order parameters
and permeate topological quantum order. While all of
the above features appear and complement the topolog-
ical degeneracies found in, e.g., the FQH (Eq. (1)), the
Toric Code (Eq. (2)), and numerous other systems, it is
not at all obvious that one property (say, a topological
degeneracy such as those of Eqs. (1) and (2)) implies an-
other attribute (for instance, the absence of meaningful
local observables). The current work will indeed precisely
establish the absence of such a rigid connection between
these two concepts (viz., topological degeneracy is not at
odds with the existence of a local order parameter).

We will employ the lack of local order parameters (or,
equivalently, an associated robustness to local pertur-
bations) as the defining feature of topological quantum
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order35–37. This robustness condition implies that local
errors can be detected, and thus corrected, without spoil-
ing the potentially encoded quantum information. To set
the stage, in what follows, we consider a set of ng.s. or-
thonormal ground states{|gα〉}ng.s.

α=1 with a spectral gap to
all other (excited) states. Specifically35,36, a system will
be said to exhibit topological order at zero temperature
if and only if for any quasi-local operator V,

〈gα|V|gβ〉 = v δα,β + c, (3)

where v is a constant, independent of α and β, and c is a
correction that is either zero or vanishes (typically expo-
nentially in the system size) in the thermodynamic limit.
The physical content of Eq. (3) is clear: no possible
quantity V may serve as an order parameter to differen-
tiate between the different ground states in the “algebraic
language”59 where V is local35,36,60. That is, all ground
states look identical locally. Similarly, no local opera-
tor V may link different orthogonal states – the ground
states are immune to all local perturbations. Notice the
importance of the physical, and consequently mathemat-
ical, language to establish topological order: A physical
system may be topologically ordered in a given language
but its dual (that is isospectral) is not35,36,60.

Couched in terms of the simple equations that we dis-
cussed thus far, the goal of this work is to introduce sys-
tems for which the ground state sector has a genus de-
pendent degeneracy (as in Eqs. (1) and (2)) while, nev-
ertheless, certain local observables (or order parameters)
V will be able to distinguish between different ground
states (thus violating Eq. (3)). Moreover, they will be
connected by global symmetry operators as opposed to
low-dimensional ones. Our conclusions are generic and,
as shown, they apply to many classical models. The
paradigmatic counterexample that we will introduce is
a new classical version of Kitaev’s Toric Code model3.

We now turn to the outline of the paper. In Section II,
we generalize the standard (quantum) Toric Code model.
After a brief review and analysis of the ground states of
Kitaev’s Toric Code model (Section III), we exclusively
study our classical systems. In Section IV, we exten-
sively study the ground states of the classical variant of
the model for different square lattices on Riemann sur-
faces of varying genus numbers g ≥ 1. A principal result
will be that this and many other classical systems exhibit
a topological degeneracy. We will demonstrate that an in-
triguing holographic degeneracy may appear on lattices
of a certain type. As will be explained, topological as
well as exponentially large in system linear size (“holo-
graphic”) degeneracies can appear in numerous systems,
not only in this new classical version of Kitaev’s Toric
Code model61. We further study the effect of lattice de-
fects. The partition function of the classical Toric Code
model is revealed in Section V and Appendix A.

In Section VI, we introduce related classical clock mod-
els. Generalizing the considerations of Section IV, we will
demonstrate that these clock models may exhibit topo-
logical or holographic degeneracies. The ensuing analy-

sis is richer by comparison to that of the classical Toric
Code model. Towards this end, we will construct a new
framework for broadly examining degeneracies. We then
derive lower bounds on the degeneracy that are in agree-
ment with our numerical analysis. These bounds are not
confined to the ground state sector. That is, all levels
may exhibit topological degeneracies (as they do in the
classical Toric Code model (Section V)).

In Section VII, we will relate our results to U(1) mod-
els and to U(1) lattice gauge theories in particular. The
fact that simple lattice gauge systems, that constitute a
limiting case of our more general studied models, such as
the conventional classical Clock and U(1) lattice gauge
theories on general Riemann surfaces (and their Toric
Code extensions), exhibit topological (or, in some cases,
holographic) degeneracies seems to have been overlooked
until now. In Section VIII, we will study honeycomb
and triangular lattice systems embedded on surfaces of
different genus. In Section IX, we will discuss yet three
more regular lattice classical systems that exhibit holo-
graphic degeneracies. We summarize our main message
and findings in Section X.

Before embarking on the specifics of these various mod-
els, we briefly highlight the organizing principle behind
the existence of degeneracies in our theories. Irrespec-
tive of the magnitude and precise form of the interactions
in these theories, the number of independent constraints
between the individual interaction terms sets the system
degeneracy. As such, the degeneracies that we find are,
generally, not a consequence of any particular fine-tuning.

II. THE GENERAL TORIC CODE MODEL

We start with a general description of a class of two-
dimensional stabilizer models defined on lattices embed-
ded on closed manifolds with arbitrary genus number g
(the number of handles or, equivalently, the number of
holes). The genus of a closed orientable surface is related
to a topological invariant known as Euler characteristic

χ = 2− 2g, (4)

which, for a general tessellation of that surface, satisfies
the (Euler) relation

χ = V − E + F. (5)

In Eq. (5), V is the number of vertices in the closed
tessellating polyhedron, or graph, E is the number of
edges, and F the number of polygonal faces. Assume
that on each of the E edges of the graph there is a spin
S degree of freedom, defining a local Hilbert space of size
dimH = dQ, and that on each of the V vertices and F
faces we will have a number of conditions to be satisfied
by the ground states of a model that we define next.

We now explicitly define, on a general lattice or graph
Λ, the “General Toric Code model”. Towards this end,
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we consider the Hamiltonian

Hµ,ν = −J
∑
s

Aµs − J ′
∑
p

Bνp , (6)

where J and J ′ are coupling constants (although it is
immaterial, in the remainder of this work we will assume
these to be positive). The interaction terms of edges in
Eq. (6) are so-called “star” (“s”) terms (Aµs ) associated
with the V vertices (labelled by the letter i) and the F
“plaquette” (“p”) terms (Bνp ). In the S = 1/2 case, these

are given by the following products of Pauli operators σµij ,
µ, ν = x, y, z,

Aµs=
∏

i∈ vertex(s)

σµis,

Bνp=
∏

(ij)∈ face(p)

σνij . (7)

The product defining Aµs spans the spins on all edges
(is) that have vertex s as an endpoint, and the plaquette
product Bνp is over all spins lying on the edges (ij) that
form the plaquette p (see Fig. 1 for an illustration). A
key feature of this system (both the well known3 quantum
variant (µ = x 6= ν = z) as well as, even more trivially,
the classical version that we introduce in this paper (µ =
ν = z)) is that each of the bonds Aµs and Bνp can assume
dQ = 2S + 1 = 2 independent values. Apart from global
topological constraints35,36 that we will expand on below,
the bonds {Aµs } and {Bνp} are completely independent of
one another. Not only, trivially, in the classical but also
in the quantum (q) rendition of the model3 all of these
operators commute with one another. That is ∀s, p ∈ Λ,

[Aµs , B
ν
p ] = 0. (8)

In the quantum version of the model, these terms com-
mute as the products defining the star and plaquette op-
erators must share an even number of spins. As the indi-
vidual Pauli operators σx and σz appearing in the prod-
uct of Eq. (7) anticommute, an even number of such
anticommutations trivially gives rise to the commutativ-
ity in Eq. (8). Even more simply, one observes that

[Aµs , A
µ
s′ ] = [Bνp , B

ν
p′ ] = 0. (9)

Lastly, from Eq. (7), it is trivially seen that

(Aµs )2 = (Bνp )2 = 1. (10)

Apart from a number (CΛ
g ) of constraints, Eqs. (8),

(9), and (10) completely specify all the relations amongst
the operators of Eq. (7). As we will illustrate, Hµ,ν is a
minimal model that embodies all of the elements in Eq.
(5) such that its minimum degeneracy will only depend
on the genus number g. As all terms in the Hamilto-
nian Hµ,ν commute with one another, the general Toric
Code model can be related quite trivially to a classi-
cal model. Intriguingly, as may be readily established
by a unitarity transformation (a particular case of the
bond-algebraic dualities67), the quantum version, which

x x x

Aµs

Bνp

~σij

C ′1 C2

C ′2

C1

FIG. 1. General Toric Code lattice model with spins S = 1/2
placed on the edges (bonds). The red cross-shape object cor-
responds to the star operator Aµs . The plaquette operator Bνp
is depicted in the top-left corner in blue color. Dark solid and
dashed lines represent the loops C1, C2 and C′1, C′2, defining
the symmetry operators Z1, Z2, and X1, X2, respectively.

includes Kitaev’s Toric Code model as a particular ex-
ample, on a graph having E edges spanning the surface
of genus g ≥ 1 is identical35–37, i.e. is isomorphic, to
two decoupled classical Ising chains (with one of these
chains having V classical Ising spins and the other chain
composed of F Ising spins) augmented by 2(g−1) decou-
pled single Ising spins. Perusing Eq. (6), it is clear that,
if globally attainable, within the ground state(s), |gα〉,

Aµs |gα〉 = (+1)|gα〉 , Bνs |gα〉 = (+1)|gα〉, (11)

on all vertices s and faces p and, thus, the ground state
energy is E0 = −JV −J ′F . The algebraic relations above
enable the realization of Eq. (11) for all s and p.

We now turn to the constraints that augment Eqs. (8),
(9), and (10). For any lattice Λ on any closed surface of
genus g ≥ 1, there are Cuniversal

g≥1 = 2 universal constraints
given by the equalities∏

s

Aµs =
∏
p

Bνp = 1. (12)

For the quantum variant3 no further constraints appear
beyond those of Eq. (12) (that is, CΛ

g = 2 irrespective
of the lattice Λ). By contrast, for the classical variant
of the theory realized on the relatively uncommon “com-
mensurate” lattices, additional constraints will augment
those of Eq. (12) (i.e., for classical systems, CΛ

g ≥ 2).

Invoking the CΛ
g constraints as well as the trivial alge-

bra of Eqs. (8) and (9), we may transform from the
original variables – the spins on each of the E edges –
{σµij} to new basic degrees of freedom – all Nind. bonds

independent “bonds” {Aµs6=s′}, {Bνp 6=p′} that appear in
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the Hamiltonian and Nredundant = (E − Nind. bonds) re-
maining redundant spins of the original form {σµij} on

which the energy does not depend (and thus relate to
symmetries). If the bonds Aµs and Bνp do not adhere
to any constraint apart from that in Eq. (12) then
Nind. bonds = (V+F−2) of the (V+F ) bonds in the Hamil-
tonian of Eq. (6) will be independent of one another.
Correspondingly, Nredundant = [E − (V + F − 2)] = 2g.
As all bonds must satisfy the constraint of Eq. (12) and
thus Nind. bonds ≤ (V + F − 2), the number of redun-
dant spin degrees of freedom Nredundant ≥ 2g. In the
general case, if there are (CΛ

g − 2) constraints that aug-
ment the two restrictions already present in Eq. (12),
then we may map the original system of E spins to
Nind. bonds = (V + F − CΛ

g ) independent bonds in Eq.

(6) and Nredundant = (E − Nind. bonds) = 2(g − 1) + CΛ
g

spins that have no impact on the energy. Thus, for genus
g ≥ 1 surfaces, the degeneracy of each energy level is an
integer multiple of the minimal degeneracy possible,

min(ng.s.) = 2Nredundant = nmin
g.s. × 2C

Λ
g −2, (13)

with nmin
g.s. = 4g. Equation (13) will lead to a

global redundancy factor in the partition function Z =
Tr exp(−βHµ,ν) with β the inverse temperature.

We now focus on the ground state sector. If there are
no constraints apart from Eq. (12), then to obtain the
ground states it suffices to make certain that Nind. bonds

of the bonds are unity in a given state. Once that oc-
curs, we are guaranteed a ground state in which each
bond in the Hamiltonian of Eq. (6) is maximized (i.e.,
Eqs. (11) are satisfied). A smaller number of bonds fixed
to one will not ensure that only ground states may be
obtained. Thus the values of all Nind. bonds independent
bonds need to be fixed in order to secure a minimal value
of the energy. The lower bound of the degeneracy on each
level (Eq. (13)) is saturated for the ground state sector
where it becomes an equality. That is, very explicitly,
the ground state degeneracy is given by

nGeneral Toric−Codeg.s. = 4g × 2C
Λ
g −2. (14)

The equalities of Eqs. (13) and (14) are basic facts that
will be exploited in the present article. The degeneracy
of Eq. (14) is in accord with the general result

ng≥1g.s. = d
−χ+(CΛ

g −C
Λ
1 )

Q ng=1
g.s. , (15)

and differs from that of Kitaev’s Toric Code model3 (Eq.

(2)) by a factor of 2C
Λ
g −2. As each of the CΛ

g constraints
as well as increase in genus number leads to a degener-
acy of the spectrum, a simple “correspondence maxim”
follows: it must be that we may associate a correspond-
ing independent set of symmetries with any individual
constraint. Similarly, as Eqs. (13, 14) attest, elevating
the genus number g must introduce further symmetries.
Thus, the global degeneracy of Eq. (13) is a consequence
of all of these symmetries.

Given Eq. (6) it is readily seen that the system has
a gap of magnitude ∆ = 4(J + J ′) between the ground
state E0 and the lowest lying excited state E1. All energy
levels E`, defining the spectrum of Hµ,ν , are quantized
in integer multiples of J and J ′.

III. GROUND STATES OF THE QUANTUM
TORIC CODE MODEL

In Kitaev’s Toric Code model3 the symmetries associ-
ated with the constraints of Eq. (12) are rather straight-
forward, and cogently relate to the topology of the surface
on which the lattice is embedded. An illustration for the
square lattice is depicted in Fig. 1. For such a model
on a simple torus (i.e., one with genus g = 1), the four
canonical symmetry operators are

Zq1,2 =
∏

(ij)∈C1,2

σzij , X
q
1,2 =

∏
(ij)∈C′1,2

σxij . (16)

These two sets of non-commuting operators3

{Xq
1 , Z

q
1} = 0 = {Xq

2 , Z
q
2},

[Xq
1 , X

q
2 ] = 0 = [Zq1 , Z

q
2 ] ,

[Xq
1 , Z

q
2 ] = 0 = [Xq

2 , Z
q
1 ] , (17)

realize a Z(2) × Z(2) symmetry and ensure a four-fold
degeneracy (or, more generally a degeneracy that is an
integer multiple of four) of the whole spectrum.

To see this, we may, for instance, seek mutual eigen-
states of the Hamiltonian Hx,z along with the two sym-
metries Zq1 and Zq2 with which it commutes. Noting the
algebraic relations amongst the above operators, a mo-
ment’s reflection reveals that a possible candidate for a
normalized ground state is given by

|g1〉 =
1√
2

∏
s

(
1 +Axs√

2

)
|F〉, (18)

where σzij |F〉 = |F〉, for all E edges, and 〈F|F〉 = 1. This

corresponds to Zq1,2|g1〉 = |g1〉. Now, because Xq
1,2 are

symmetries, by the algebraic relations of Eq. (17), the
three additional orthogonal states

|g2〉 = Xq
1 |g1〉 , |g3〉 = Xq

2 |g1〉 , |g4〉 = Xq
1X

q
2 |g1〉, (19)

are the remaining ground states. That is, the Cg=1 = 2
lattice (Λ) independent constraints of the quantum model
(Eq. (12)) correspond to the 2 sets of symmetry opera-
tors associated with the γ = 1, 2 toric cycles ({Zqγ , Xq

γ})
of Eq. (16). This correspondence is in agreement with
the simple maxim highlighted above. The symmetry op-
erators Xq

1 and Zq1 are independent (and trivially com-
mute) with the symmetry operators Xq

2 and Zq2 . Notice
that in the spin (σµij) language the ground states above
are entangled, and they are connected by d = 1 sym-
metry operators35,36. Moreover, the anyonic statistics of
its excitations is linked to the entanglement properties of
those ground states35,36. As mentioned above, the model
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can be trivially related, by duality, to two decoupled clas-
sical Ising chains so that in the dual language the mapped
ground states are unentangled35,36.

For a Riemann surface of genus g, we may write down
trivial extensions of Eqs. (16) for the (2g) cycles circum-
navigating the g handles of that surface. That is, instead
of the four operators of Eq. (16), we may construct 2g
operators pairs with each of these pairs associated with
a particular handle h (where 1 ≤ h ≤ g), containing the
four operators {Zqγ,h} and {Xq

γ,h} with γ = 1, 2. A gen-

eralization of Eqs. (17) leads to an algebra amongst the
2g independent pairs of symmetry operators. The multi-
plicity of independent symmetries leads to the first factor
in Eq. (14). The number of constraints is, in the quan-
tum case, lattice independent and given by Cg≥1 = 2
(there are no constraints beyond those in Eq. (12)). It is
rather straightforward to establish that when g = 0 (i.e.,
for topologically trivial surfaces), the ground state of the
quantum model is unique. Putting all of these pieces
together, the well known degeneracy of Eq. (2) follows.

IV. GROUND STATES OF THE CLASSICAL
TORIC CODE MODEL

We now finally turn to the examination of the ground
states of the classical rendering of Eq. (6) in which only
a single component µ = ν = z of all spins appears. We
will explain how the degeneracy of Eqs. (13) and (14)
emerges. The upshot of our analysis, already implicitly
alluded to above, consists of two main results:

• In the most frequent lattice realization of this clas-
sical model, its degeneracy will still be given by Eq. (2),
i.e., 4g. That is, in the most common of geometries, the
number of ground states will depend on topology alone
(i.e., the genus number g of the embedding manifold).
For arbitrary square lattice or graph, as our considera-
tions universally mandate, the minimal possible ground
state degeneracy will be given by the topological figure
of merit of Eq. (2).

• In the remaining lattice realizations, the degeneracy
of the system will typically be holographic. That is, in
these slightly rarer lattices, the ground state degeneracy
will scale as O(2L) where L is the length of one of the
sides of the two-dimensional lattice.

As will be seen, for the square lattice, depending on
the parity of the length of the lattice sides, the num-
ber of constraints CΛ

g may exceed its typical value of
two. This will then lead to an enhanced degeneracy
vis a vis the minimal possible value of 4g. In the next
subsection we first broadly sketch the constraints and
symmetries of the classical system. As it will be conve-
nient to formulate our main result via the “correspon-
dence maxim”, we will then proceed to explicitly relate
the constraints and symmetries to one another. The

symmetry ↔ constraint consonance, along with Eqs.
(13) and (14), will then rationalize all of the degeneracies
found for general square lattices embedded on Riemann
surfaces of arbitrary genus number. Exhaustive calcula-
tions for these degeneracies will then be reported in the
subsections that follow.

A. Symmetries and constraints

We next list the general symmetries and constraints
of the classical Toric Code model in square lattices of
varying sizes. Consider first a lattice Λ of size Lx×Ly on
a torus (i.e., having V = LxLy vertices and E = 2LxLy
edges). We will then examine more general lattices of
arbitrary genus g. The square lattice on the torus will
be categorized as being one of two types:

Type I, Lx 6= Ly where at least

one of Lx or Ly is odd

Type II, otherwise.

(20)

Type I lattices, as defined for the g = 1 case above
and their generalizations for higher genus numbers g > 1,
only admit two constraints CΛ

g and thus by the correspon-
dence maxim only two symmetries. For these lattices, we
will show that the ground state degeneracy is 4g. By con-
trast, Type II lattices have a larger wealth of constraints,
CΛ
g > 2, and therefore a larger number of symmetries and

a degeneracy higher than 4g.

x x x

WP

WP ′

~σı+

~σı−

∈ Λ+ ∈ Λ−

FIG. 2. Dotted lines represent the rotated lattice Λ′. The
spin degrees of freedom ~σ reside on the vertices of the rotated
bipartite lattice Λ′, formed out of two sublattices Λ+ and Λ−.

The centers of all nearest neighbor edges on the square
lattice (of lattice constant a) form yet another square

lattice Λ
′

(of lattice constant a/
√

2) at an angle of 45◦

relative to the original lattice (Fig. 2). The spins are
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located at the vertices of the rotated square lattice Λ
′
.

In order to describe the symmetries and constraints of
this system, let us denote the two (standard) sublattices

of the square lattice Λ
′

by Λ±. That is, both Λ+ and Λ−
are, on their own, square lattices with Λ

′
= Λ+∪Λ− and

Λ+ ∩Λ− = ∅. Let us furthermore denote the sites of Λ±
by ı±, respectively.

With these preliminaries, it is trivial to verify that

T x+ =
∏

ı+∈Λ+

σxı+ ,

T x− =
∏

ı−∈Λ−

σxı− , (21)

are, universally, both symmetries of the classical (µ =
ν = z) version of the Hamiltonian of Eq. (6). Most
square lattices (those of Type I in Eq. (20)) will only
exhibit the two symmetries of Eq. (21). The more com-
mensurate Type II lattices admit diagonal contours (con-

necting nearest neighbors of sites ı of Λ
′
) that close on

themselves before threading all of the lattice sites of Λ
′
.

That is, in Type II lattices, it is possible to find diagonal
loops Γm at a constant 45◦ angle (or a more non-trivial
alternating contour) that contain only a subset of all sites

of Λ
′

(or, equivalently, a subset of all edges (ij) of the
original square lattice Λ). Associated with each such in-
dependent contour Γm, there is a symmetry operator,

T xm =
∏
ı∈Γm

σxı , (22)

augmenting the symmetries of Eq. (21).
The form of the symmetries suggests the distinction

between Type I and Type II lattices on general surfaces.
On Type II lattices, it is possible to find, at least, one
diagonal contour Γm that contains a subset of all edges
(ij) of the lattice Λ. Conversely, due to the lack of the
requisite lattice commensurability, on Type I lattices, it
is impossible to find any such contour.

We now turn to the constraints associated with Type
I and II lattices. These are in one-to-one correspondence
with the symmetries of Eqs. (21) and (22). Specifically
for Type I lattices, the only universal constraints present
are those of Eq. (12) which we rewrite again for clarity,

C+ :
∏
s

Azs = 1,

C− :
∏
p

Bzp = 1. (23)

These two constraints match the two symmetries of Eq.
(21). In the case of the more commensurate lattices Λ,
additional constraints appear. In order to underscore
the similarities to the symmetries of Eq. (22), we will
now aim to briefly use the same notation concerning the
lattice Λ

′
. Within the framework highlighted in earlier

sections, the spin products {Azs} and {Bzp} of Eq. (7)
are associated with geometrical objects that look quite
different (i.e., “stars” and “plaquettes”), see Fig. 1. If

we now label the plaquettes of Λ
′

by P then, we may, of
course, trivially express Eq. (6) as a sum of local terms,

H = −J
∑
P
WP − J ′

∑
P′

WP′ , (24)

where WP =
∏
ı∈P σ

z
ı are the products of all Ising spins

at sites ı belonging to plaquette P. This trivial descrip-
tion renders the original star and plaquette terms of Eq.
(6) on a more symmetric footing, see Fig. 2.

Associated with each of the symmetries of Eq. (22)
there is a corresponding constraint,

Cm :
∏
ı∈Γm

Wm = 1. (25)

In accordance with our earlier maxim, insofar as count-
ing is concerned, we have the following correspondence
between the symmetries and the associated constraints,

T x+ ↔ C+,
T x− ↔ C−,
T xm ↔ Cm.

(26)

In Type I systems, wherein only the CΛ
g = 2 universal

constraints appear, the degeneracy of the spectrum is
exactly 4g. In Type II lattices, CΛ

g > 2 (with the dif-

ference of (CΛ
g − 2) equal to the number of additional

independent contours Γm that do not contain all edges
of the original lattice Λ) and, as Eq. (14) dictates, the
ground state degeneracy exceeds the minimal value of 4g

multiplied by two raised to the power of the number of
the additional independent loops.

1 2

3 4 3

5 6
7 8

1 2

7

1

3 45

6 8

2

7

𝐴* 𝐴+ 𝐴*

𝐴* 𝐴+ 𝐴*

𝐴, 𝐴,𝐴-
𝐵*

𝐵, 𝐵-

𝐵*
𝐵+

𝐵+

𝐴* 𝐴+𝐴, 𝐴-

FIG. 3. A square lattice with 8 spins along with its embedding
on a torus. Because of periodic boundary conditions, spins
on boundary edges (dashed-blue) display numbers identical
to those in the bulk. In this figure As = Azs and Bp = Bzp .
In the right panel, each edge has been labeled according to
the left panel, and the solid red squares represent the vertices
labeled by As. Since B3 and B4 are respectively behind B1

and B2, we cannot see them here.

B. Ground state degeneracy on g = 1 surfaces

Thus far, our discussion has been quite general and,
admittedly, somewhat abstract. We now turn to simple
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concrete examples. We first consider the classical Toric
Code model on a simple torus (i.e., a surface with genus
g = 1), and examine small specific square lattices of di-
mension Lx×Ly. We find that for general lattices Λ (with
reference to Eq. (20)), the total number of independent
constraints is

CΛ
g=1 =


2, Λ is a Type I lattice

2 min{Lx, Ly}, Λ is a Type II lattice.

(27)

Thus, from Eq. (14), our two earlier stated main results
follow: while for the more “incommensurate” Type I lat-
tices, the degeneracy will be “topological” (i.e., given
by 4g), for Type II lattices, the degeneracy will be “holo-
graphic” (viz., the degeneracy will be exponential in the
smallest of the edges along the system boundaries). As
discussed in Section IV A, the additional constraints in
Type II lattices are of the form of Eq. (25). Expressed
in terms of the four spin interaction terms Azs and Bzp of
Eq. (6), a constraint of the form of Eq. (25) states that
there is a subset Γm ⊂ Λ for which

∏
s,p∈Γm

AzsB
z
p = 1.

An illustration of a constraint of such a type is provided,
e.g. in Fig. 3. Here, by virtue of the defining relations
of Eq. (7), the product,

Az1B
z
1A

z
4B

z
4 = 1. (28)

Similarly, in panel a) of Fig. 4, colored arrows are drawn
along the diagonals. These colors code the constraints on
the specific Azs and Bzp interaction terms. For example,
along the green arrows,

Az1B
z
1A

z
4B

z
4 = 1 green (dashed), (29)

and the constraints associated with the other diagonals

Az2B
z
2A

z
3B

z
3 = 1 brown (dashed-dotted),

Az2B
z
1A

z
3B

z
4 = 1 red (dashed-doubled-dotted),

Az1B
z
2A

z
4B

z
3 = 1 black (dotted). (30)

We provide another example in panel b) of Fig. 4.
The simplest visually appealing realization of Eq. (25)
is that of the subset Γm being a trivial closed diagonal
loop. Composites (i.e., products) of independent con-
straints of the form of Eq. (25) are, of course, also con-
straints. We aim to find the largest number (CΛ

g − 2)
of such independent constraints. Non-trivial constraints
formed by the product of bonds along real-space diagonal
lines may appear. For example, in Fig. 3, the product
Az1B

z
1A

z
3B

z
2 = 1 is precisely such a constraint. These

constraints are more difficult to determine due to the pe-
riodic boundary conditions. Generally, not all constraints
are independent of each other (e.g., multiplying any two
constraints yield a new constraint). The number of in-
dependent constraints, CΛ

g may be generally found by
calculating the “modular rank” of the linear equations
formed by taking the logarithm of all constraints found.
The qualified “modular” appears here as the Azs and Bzp
eigenvalues may only be (±1) and thus, correspondingly,

a)

b)

𝐴" 𝐴# 𝐴"𝐴" 𝐴# 𝐴"

𝐴" 𝐴# 𝐴" 𝐴" 𝐴# 𝐴"

𝐴$ 𝐴$ 𝐴$ 𝐴$𝐴% 𝐴%

𝐴" 𝐴# 𝐴$ 𝐴"

𝐴" 𝐴# 𝐴$ 𝐴"

𝐴" 𝐴# 𝐴$ 𝐴"

𝐴" 𝐴# 𝐴$ 𝐴"

𝐴% 𝐴%𝐴& 𝐴'

𝐴% 𝐴%𝐴& 𝐴'
𝐵" 𝐵# 𝐵$

𝐵% 𝐵& 𝐵'

𝐵" 𝐵# 𝐵$

𝐵% 𝐵& 𝐵'

𝐵" 𝐵#

𝐵$ 𝐵%

𝐵" 𝐵#

𝐵$ 𝐵%

FIG. 4. a) Lattice of size Lx = 2, Ly = 2, E = 8 and b)
Lx = 2, Ly = 3, E = 12. Diagonal lines with arrows represent
possible paths realizing constraints on As = Azs and Bp = Bzp .

their phase is either 0 or π. Many, yet generally, not all,
of the CΛ

g independent constrains are naturally associ-
ated with products along the 45◦ lattice diagonals (as it
appears on the torus). Table I lists the numerically com-
puted ground state degeneracies for numerous lattices of
genus g = 1. All of these are concomitant with Eq. (27).

C. Construction of ground states

Given the symmetry operators of Eqs. (21) and (22),
we may rather readily write down all ground states of the
system. Denote the ferromagnetic ground state (i.e., one
with all spins up (|↑〉(ij)) on all edges (ij)) by

|F〉 ≡
∏
(ij)

| ↑〉(ij); (31)

then, the four ground states of Type I lattices are

|Gn+,n−〉 = (T x+)n+(T x−)n− |F〉, (32)
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Type Lx Ly E CΛ
g=1 ng.s.

I
3 2 12 2 4
5 2 20 2 4
4 3 24 2 4
5 3 30 2 4

II

2 2 8 4 4× 22

4 2 16 4 4× 22

6 2 24 4 4× 22

3 3 18 6 4× 24

4 4 32 8 4× 26

TABLE I. Computed ground state degeneracy (ng.s.) for the
classical Toric Code for different lattice sizes with genus one.
Type I corresponds to the case Lx 6= Ly where at least one
of them is odd. We put any other possibility under Type II
which in general covers the case Lx 6= Ly where both Lx and
Ly are even plus all cases with Lx = Ly. In this table, CΛ

g=1

denotes the number of independent constraints (see text).

where n± = 0, 1. Clearly, since (T x±)2 = 1, only the par-
ity of the integers n± is important. As (i) [T x±, H] = 0
and (ii) the ferromagnetic state |F〉 minimizes the en-
ergy in Eq. (6), it follows that all four binary strings
(n+, n−) = (0, 0), (0, 1), (1, 0), (1, 1) in Eq. (32) lead to
ng.s. = 22 = 4 ground states. The situation for Type
II lattices is a trivial extension of the above. That is, if
there are (CΛ

g=1 − 2) additional independent symmetries
T xm=1, T

x
m=2, · · · , T xm=(CΛ

g=1−2)
of the form of Eq. (22)

then, with the convention of Eq. (31), the ground states
will be of the form

|Gn+,n−,n1,n2,··· ,nCΛ
g=1−2

〉 = (T x+)n+(T x−)n−(T x1 )n1

×(T x2 )n2 · · · (T xCΛ
g=1−2)

n
CΛ
g=1−2 |F〉, (33)

with 2C
Λ
g=1 binary strings (n+, n−, n1, n2, · · · , nCΛ

g=1−2),

where nm = 0, 1. These strings span all possible ng.s. =

2C
Λ
g=1 orthogonal ground states.
Given the set of all orthonormal ground states
{|gα〉}ng.s.

α=1, it is possible to find quasi-local operators V
composed of σzij “operators” on a small number of edges
such that

〈gα|V|gα〉 = vα (34)

assumes different values vα in, at least, two different
ground states. Equation (34) highlights that the expecta-
tion value of V is not state independent. In other words,
Eq. (3)35–37 is violated. Thus, our classical system is,
rather trivially, not topologically ordered .

D. Ground state degeneracy on g > 1 surfaces

Having understood the case of the simple torus (g = 1),
we will now study lattices on surfaces Σ of genus g ≥ 2.
We first explain how to construct a finite size lattice of
genus g68. Such lattices on genus g (g ≥ 2) surfaces
may be formed by “stitching together” g simple parts

1 2 3 4

5

6

7

8 9

10

11

12

1 2

3 4

5

6

7

10

11

12

𝑎,

𝑎-

𝑏, = 3

8 9

FIG. 5. A genus two (g = 2) lattice. Identical bonds are
labeled by the same number (as a result of periodic boundary
conditions). Thick solid (blue) lines represent the boundary.
The two plaquettes with 8 bonds are shown by dashed (red)
and dashed-dotted (green) lines.

aj , j = 1, · · · , g, each of which largely looks like that
of a simple torus (i.e., each region aj represents a set of
vertices, edges and faces of Type I or II in the notation
of Eq. (20)), via (g − 1) “bridges” {bj}g−1

j=1 . In Figs. 5,
and 6, the integer number bj denotes the number of edges
that regions aj and aj+1 share.

To lucidly illustrate the basic construct, we start first
with a g = 2 lattice. In Fig. 5, identical edges are labeled
by the same number as a consequence of the periodic
boundary conditions. Here, there are E = 96 edges, V =
48 vertices, and F = 46 plaquettes. As in the case of the
simple torus (g = 1), the typical vertices are endpoints
of four edges. Similarly, in Fig. 5, all plaquettes (with
the exception of two) are comprised of four edges as in
the situation of the simple torus. The exceptional cases
are colored green (dashed-dotted) and red (dashed). As
seen in the figure, the lattice may be splintered into two
regions (labeled by a1 and a2) where one end of some of
the bonds belonging to a1 are connected to a2 as shown
and labeled in the picture under b1. Each of the regions
a1 and a2 looks, by itself, like a square lattice on a genus
g = 1 surface. Generally, the regions a1 and a2 may
be composed of a different number of edges. Employing
the taxonomy of Eq. (20), we may classify these regions
{aj}gj=1 to be of either Type I or II. We remark that
the number of edges b1 must be always at least one less
than the minimum of the number of bonds of a1 and a2

along the horizontal (x) axis. This algorithm trivially
generalizes to higher genus number. The cartoon of Fig.
6 represents a lattice with g = 3.
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1 2 3 4
5

6

7

8 9
10

11

5

6

7

10

11

12

𝑎,

𝑎-

𝑏, = 3

1 2

3 4

8
13

13 14

15

16

17

15

16

17

𝑏- = 3

𝑎0

12

9
14

FIG. 6. A genus three (g = 3) lattice. Identical bonds are
labeled by the same number (as a result of periodic boundary
conditions). Thick solid (blue) lines represent the boundary.
The two plaquettes with 12 bonds are shown by dashed (red)
and dashed-dotted (green) lines.

A synopsis of our numerical results for the ground state
degeneracy for surfaces of genus 2 ≤ g ≤ 5 appears in
Table II. The ground state degeneracy depends on the
type of each aj and the number of bonds of each bj . When
all fragments {aj} are of Type I and are inter-connected
by only single common edges, the degeneracy attains will
its minimal possible value (Eq. (14)) of 4g .

If, in Eq. (6), we set J to zero, we will obtain the
Hamiltonian of the Ising gauge model. As this theory
does not have a star term, this Hamiltonian involves more
symmetries and, therefore, one expects the ground state
subspace to have a larger degeneracy. We numerically
verified it to be ngaugeg.s. = 4g × 2Nsite−1-fold degenerate

(Nsite = E/2)38.

E. Lattice Defects

When dislocations and/or any other lattice defects are
present in the classical Toric Code model, the degeneracy
is, of course, still bounded by the geometry independent
result of 4g. On Type I lattice (and their composites),

g E ng.s. Type a1 b1 a2 b2 a3 b3 a4 b4 a5

2

8 4g 2 I 2×1 1 2×1
10 4g 2 I 3×1 1 2×1
12 4g 2 I 3×1 1 3×1
16 4g 2 I 3×2 1 2×1
18 4g 2 I 3×2 1 3×1
24 4g 2 I 3×2 1 3×2
24 4g 2 I 5×2 1 2×1
12 4g × 2 2 I 3×1 2 3×1
12 4g × 2 II+I 2×2 1 2×1
14 4g × 2 II+I 2×2 1 3×1
20 4g × 2 I+II 3×2 1 2×2
20 4g × 2 II+I 4×2 1 2×1
22 4g × 2 II+I 4×2 1 3×1
24 4g × 2 2 I 3×2 2 3×2
24 4g × 2 II+I 3×3 2 3×1
16 4g × 23 2 II 2×2 1 2×2
24 4g × 23 II+I 3×3 1 3×1
24 4g × 23 2 II 4×2 1 2×2

3

12 4g 3 I 2×1 1 2×1 1 2×1
14 4g 3 I 3×1 1 2×1 1 2×1
16 4g 3 I 3×1 1 3×1 1 2×1
16 4g 3 I 3×1 2 3×1 1 2×1
18 4g 3 I 3×1 1 3×1 1 3×1
18 4g 3 I 3×1 2 3×1 1 3×1
18 4g 3 I 3×1 1 3×1 2 3×1
18 4g 3 I 3×1 2 3×1 2 3×1
20 4g 3 I 3×2 1 2×1 1 2×1
24 4g 3 I 3×2 1 3×1 1 3×1
24 4g 3 I 3×2 2 3×1 2 3×1
16 4g × 2 2 I+II 2×1 1 2×1 1 2×2
18 4g × 2 2 I+II 3×1 1 2×1 1 2×2
20 4g × 2 2 I+II 3×1 1 3×1 1 2×2
20 4g × 22 2 II+I 2×2 1 2×2 1 2×1
22 4g × 22 2 II+I 2×2 1 2×2 1 3×1
24 4g × 24 3 II 2×2 1 2×2 1 2×2

4

16 4g 4 I 2×1 1 2×1 1 2×1 1 2×1
18 4g 4 I 2×1 1 2×1 1 2×1 1 3×1
24 4g 4 I 3×2 1 2×1 1 2×1 1 2×1
20 4g × 2 II+3 I 2×2 1 2×1 1 2×1 1 2×1

5
20 4g 5 I 2×1 1 2×1 1 2×1 1 2×1 1 2×1
24 4g × 2 II + 4 I 2×2 1 2×1 1 2×1 1 2×1 1 2×1

TABLE II. Computed ground state degeneracy (ng.s.) for
square lattices with g > 1. The g denotes “genus” (see text).

the degeneracy is typically equal to this bound yet it
may go up upon the introduction of defects. Similarly,
in most cases introducing such lattice defects lowers the
degeneracy of the more commensurate Type II lattices
(and their composites).

Table III provides the numerical results for such de-
fective lattices. For example, in Fig. 7 we see the orig-
inal lattice, panel a), along with two types of defects as
in panel b) and c). These are obtained by replacing 3
squares by 2 adjacent or separated pentagons as in panel
b) and c), respectively. To avoid confusion, we will use
“?” sign for the first case and “??” for the second case.
By putting a “?” (“??”) sign beside a 3 × 2 lattice, we
mean it exhibits a defect of type one (two). That is,
represented as “3× 2 ?” (“3× 2 ? ?”).
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g E ng.s. Type a1 b1 a2 b2 a3 b3 a4

1

11 4g I 3×2 ?
15 4g II 4×2 ?
19 4g I 5×2 ?
23 4g I 6×2 ?
23 4g I 4×3 ?
16 4g × 2 II 3×3 2?
17 4g × 2 II 3×3 ?
19 4g × 2 I 5×2 ??
22 4g × 2 I 6×2 2?

2

15 4g 2 I 3×2 ? 1 2×1
17 4g 2 I 3×2 ? 1 3×1
21 4g 2 I 4×2 ? 1 3×1
22 4g 2 I 3×2 ? 1 3×2 ?
23 4g 2 I 3×2 ? 1 3×2
23 4g 2 II 4×2 ? 1 2×2
23 4g II+I 3×3 ? 2 3×1
23 4g 2 I 5×2 ? 1 2×1
23 4g × 2 II+I 3×3 ? 1 3×1

3
19 4g 3 I 3×2 ? 1 2×1 1 2×1
23 4g 3 I 3×2 ? 1 3×1 1 3×1
23 4g 3 I 3×2 ? 2 3×1 2 3×1

4 23 4g 4 I 3×2 ? 1 2×1 1 2×1 1 2×1

TABLE III. Computed ground state degeneracy (ng.s.) of de-
fective square lattices. The g denotes “genus”. By “2?” we
mean there are 2 defects of type “?” (see text).

V. THERMODYNAMICS OF THE CLASSICAL
TORIC CODE MODEL

Previous sections largely focused on the ground states
of the classical Toric Code model. As our earlier con-
siderations make clear, however, a minimal topology
(and general constraint) dependent degeneracy Nglobal ≡
min(ng.s.) appears for all levels (see, e.g., Eq. (13)). This
“global” degeneracy must manifest itself as a prefactor in
the computation of the partition function. That is, if the
whole spectrum has a global degeneracy Nglobal then the

a) b)

c)

FIG. 7. Sketch of a part of a square lattice a) with two types
of defects b) and c). The defective lattices in b) and c) have
one bond less than in a).

canonical partition function may be expressed as

Z = Nglobal

∑
`=0

n`e
−βE` , (35)

where Nglobal n` ≥ Nglobal is the number of states having
total energy E`. In “incommensurate” lattices, when no
constraints {Cm} augment those of Eq. (12), we find
that, similar to the partition function of the quantum
Toric Code model35–37, the partition of the classical Toric
Code model is given by

Zinc. =4g−1[(2 coshβJ)V + (2 sinhβJ)V ]

×[(2 coshβJ ′)F + (2 sinhβJ ′)F ]. (36)

The prefactor of 4g−1 embodies the increase in degen-
eracy by a factor of four as g is elevated in increments
g → (g + 1) beyond a value of g = 1. On the simple
torus (i.e., when g = 1), this partition function (simi-
lar to the partition function of the quantum Toric Code
model35–37) is that of two decoupled Ising chains with
one of these chains having V spins and the other com-
posed of F spins. As each such Ising chain has a two-fold
degeneracy, it thus follows that the degeneracy of the
(more “incommensurate”) Type I g = 1 system is four-
fold and that the degeneracy of the classical Toric Code
model on incommensurate lattices on Riemann surfaces
of genus g is 4g for all g ≥ 1. The latter value saturates
the lower bound on the degeneracy of Eq. (13). In Ap-
pendix A, we list the partition function for several other
more commensurate finite size lattice realizations.

VI. CLASSICAL TORIC CLOCK MODELS AND
THEIR CLOCK GAUGE THEORY LIMITS

In this section, we introduce and study a clock model
(ZdQ) extension of the classical Toric Code model. To
that end, we consider what occurs when each spin S may
assume dQ > 2 values. Specifically, on every oriented
(i→ j) edge (that we will hereafter label as (ij)), we set

σij = exp
[
i

2π

dQ
αij

]
, (αij = 0, 1, · · · , dQ − 1), (37)

σji = σ∗ij . (38)

The last equality reflects that a change in the orientation
(i.e., a link in the direction from j → i as opposed to
i → j) is associated with complex conjugation. At each
vertex “s”, we define As as

As =
1

2
(σsiσsjσskσsl + H.c.)

= cos
( 2π

dQ
(αsi + αsj + αsk + αsl)

)
, (39)

and for each plaquette p

Bp = cos
( 2π

dQ
(αij + αjl + αlk + αki)

)
, (40)
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composed of edges (ij), (jl), (lk), (ki), such that the loop
i → j → k → l is oriented counter-clockwise around
about the plaquette center. Table IV provides our nu-
merical results for ground state degeneracy (D0

dQ
) for

different size lattices of varying genus numbers g. The
dQ = 2 case is that investigated in the earlier sections
(i.e., that of the classical Toric Code model with Ising
variables σij = ±1).

It is readily observed that the minimal ground state
degeneracy is set by the genus number,

nmin
g.s. = min{D0

dQ} =


d2g−1
Q , odd dQ,

2d2g−1
Q , even dQ.

(41)

We next introduce a simple framework that rationalizes
Eq. (41) and enables us to furthermore derive the results
of the previous sections (i.e., the Ising case of dQ = 2)
in a unified way. Furthermore, this approach will allow
us to better understand not only the degeneracies in the
ground sector but also those of all higher energy states.
In the up and coming, we will study the Hamiltonian

HdQ = −
∑
s

As −
∑
p

Bp (42)

= −
∑
s

cos
( 2πms,dQ

dQ

)
−
∑
p

cos
(2πmp,dQ

dQ

)
.

Here, {
ms,dQ = αsi + αsj + αsk + αsl,

mp,dQ = αij + αjl + αlk + αki,
(43)

constitute a system of linear equations. A pair of fixed
integers m`

s,dQ
and m`

p,dQ
defines an energy E`. There

are n`dQ such pairs.

For each fixed pair r, r = 1, · · · , n`dQ , we may express

these linear equations as

WXr = Y r, (44)

where W is a rectangular ((V + F ) × E) matrix. The
matrix elements of W are either 0 or ±1. Generally, the
form of the matrix W depends on both the size and type
of lattice. The dimension of the vector Xr is equal to
the number (E) of edges; Y r is a (V + F )−component
vector. Specifically, following Eq. (43), these two vectors
are defined as: Xr = ~α, with components αij , and Y r =
m`
s,dQ

, for its first V components and Y r = m`
p,dQ

, for

the remaining F components.

The number of linearly independent equations (rdQ)
is equal to the rank of the matrix W . Typically, the
rank rdQ is less than the number of unknown αij . There-
fore, we cannot determine all αij from Eq. (44). We
should note that the rank of the matrix W is computed
modularly, “mod dQ”. This latter modular rank is of
pertinence as the edge variables αij may only take on
particular modular values (αij = 0, 1, · · · , dQ − 1).

g E Type a1 b1 a2 b2 a3 b3 a4 N0
3 N0

4 N0
5 N0

6 N0
7 N0

8 N0
9 N0

10 N0
11 N0

12 N0
13 N0

14 N0
15 N0

16

1

4 I 2×1 1 2 1 1 1 2 1 1 1 2 1 1 1 2
6 I 3×1 3 1 1 3 1 1 3 1 1 3 1 1 3 1
8 I 4×1 1 2 1 1 1 4 1 1 1 2 1 1
8 II 2×2 32 42 52 62 72 82 92 102 112 122 132 142

12 I 3×2 3 2 1
16 II 4×2 32 2× 42

18 II 3×3 34

2

8 2 I 2×1 1 2×1 1 2 1 1 1 2 1 1 1 2 1 1
12 2 I 3×1 1 3×1 3 1 1
12 2 I 3×1 2 3×1 3 2 1
12 II+I 2×2 1 2×1 1 4 1
16 2 II 2×2 1 2×2 32 2× 42

18 2 I 3×2 1 3×1 3

3
12 3 I 2×1 1 2×1 1 2×1 1 2 1
16 3 I 3×1 1 3×1 1 2×1 1 1
16 2 I+II 2×1 1 2×1 1 2×2 1 4
18 2 I+II 3×1 1 2×1 1 2×2 1

4
16 4 I 2×1 1 2×1 1 2×1 1 2×1 1 2
18 4 I 2×1 1 2×1 1 2×1 1 3×1 1

TABLE IV. Computed departure from the minimal ground state degeneracy, N0
M = D0

M/n
min
g.s., where D0

M denotes the ground

state degeneracy for dQ = M, and nmin
g.s. is equal to d2g−1

Q (2d2g−1
Q ) for odd (even) dQ.

Our objective is to calculate the degeneracy D`
dQ

of each energy level ` (or sector of states that share the
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same energy of Eq. (42)). Equation (44) imposes rdQ
constraints on the dQ possible values of αij . Thus, for
each set of integers m`

s,dQ
and m`

p,dQ
, the degeneracy is

equal to d
E−rdQ
Q . As there are n`dQ such sets of integers

(see Eq. (44)), the degeneracy of each level ` is

D`
dQ = n`dQd

E−rdQ
Q . (45)

We may recast Eq. (45) to highlight the effect of topology
and invoke the Euler relation (Eqs. (4) and (5)) to write
the degeneracy as

D`
dQ = n`dQd

2(g−1)+CΛ
g

Q , (46)

where we define

CΛ
g ≡ V + F − rdQ . (47)

The modular rank of the matrix W lies in the interval
1 ≤ rdQ < V + F . It thus follows that

1 ≤ CΛ
g ≤ V + F − 1. (48)

From Eqs. (46) and (48), it is readily seen that

D`
dQ ≥ d2g−1

Q . (49)

The degeneracy of Eq. (49) (stemming from the spectral
redundancy of each level ` seen in Eq. (46)) is consistent
with an effective composite symmetry

G = ZdQ ⊗ ZdQ ⊗ · · · ⊗ ZdQ , (50)

i.e., the product of (2g − 1) symmetries of the ZdQ type.
That is, if each element of such a ZdQ symmetry gave rise
to a dQ-fold degeneracy then the result of Eq. (46) will
naturally follow.

The non-local symmetry of Eq. (50) compound the
standard local symmetries that appear in the gauge the-
ory limit of Eq. (42) in which the As terms are absent,
i.e., HdQ = −∑pBp. The latter gauge theory enjoys the
local symmetries

θij → θij + φi − φj , (51)

with, at any lattice vertex (site) i, the angle φi being
an arbitrary integer multiple of 2π/dQ. In this case, we

find that the ground state degeneracy (Dgauge,0
dQ

) is purely

topological (i.e., not holographic),

Dgauge,0
dQ

= ngauge,0dQ
d

2(g−1)+ E
2

Q , (52)

where, 
1 ≤ ngauge,0dQ

≤ dQ, odd dQ,

2 ≤ ngauge,0dQ
≤ dQ, even dQ.

(53)

These equations extend the degeneracy ngaugeg.s. found in
Subsection IV D for the Ising (dQ = 2) lattice gauge
theory38.

VII. U(1) CLASSICAL TORIC CODE MODEL
AND ITS GAUGE THEORY LIMIT

We next turn to a simple U(1) theory

H = −J
∑
s

cos(Φs)− J ′
∑
p

cos(Φp), (54)

where the “fluxes”

Φs =
∑
i

θsi, Φp =
∑
ij∈p

θij , (55)

are, respectively, the sums of the angles on all edges em-
anating from site s and the sum of all angles θij on
edges that belong to a plaquette p. In the continuum
limit (in which the lattice constant a tends to zero), the
cos Φp term may be Taylor expanded as the flux is small,
cos Φp ≈ (1− 1

2Φ2
p+· · · ) in the usual way. Then, omitting

an irrelevant constant additive term, the Hamiltonian be-
comes in the standard manner

H =
1

2

∫
Φ2
p(x)d2x ≈ a2

∫
B2

3d
2x, (56)

where B3 = ∂1A2 − ∂2A1 (with ~A a vector potential)
is the conventional magnetic field along the direction
transverse to the plane where the lattice resides. In the
dQ → ∞ limit, the U(1) Hamiltonian of Eq. (54) fol-
lows from Eqs. (37), (39), and (40) where σij = eiθij ,
and θij = 2παij/dQ with αij = 0, 1, · · · , dQ − 1. In the
dQ → ∞ limit, the discrete clock symmetry becomes a
continuous rotational symmetry, ZdQ → U(1). Rather
trivially, yet notably, in this limit, the system becomes
gapless. Repeating mutatis mutandis the considerations
of Eqs. (46) and (49), in the continuous large dQ limit, a
genus dependent symmetry is naturally associated with
the system degeneracy. Peculiarly, in this limit, similar
to Eq. (50), a genus dependent

G = U(1)⊗ U(1) · · · ⊗ U(1) (57)

symmetry may appear for the Toric U(1) theory of Eq.
(54). In the limiting case in which the star term does not
appear in Eq. (54), i.e., that of J = 0, a symmetry of
the type of Eq. (57) compounds the known local U(1)
symmetry,

θij → θij + φi − φj , (58)

similar to Eq. (51) but with an arbitrary real phase φi
at each lattice vertex (site) i. These local symmetries are
lifted once the cos Φs term is introduced, as in Eq. (54).
Thus, similar to the Clock gauge theory (whose degener-
acy was given by Eqs. (52), and (53)), this U(1) lattice
gauge theory exhibits a genus dependent degeneracy.
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b)
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FIG. 8. a) Hexagonal lattice and b) Triangular lattice. In
panel a) the star terms Azs and plaquette terms Bzp involve
three and six spins S (circles) interactions, respectively, while
the opposite happens in panel b).

VIII. HONEYCOMB AND TRIANGULAR
LATTICES

Thus far, we focused on square lattice realizations of
the Ising, clock, and U(1) theories. For completeness, we
now examine other lattice geometries. Specifically, we
study the honeycomb lattice (H) and triangular lattice
(T) incarnations of our classical theory and determine
their ground state degeneracies. In Fig. 8, Azs and Bzp
are defined for each lattice. The Hamiltonians are given
by

HH = −Jh
∑
s

Azs − J ′h
∑
p

Bzp ,

HT = −Jt
∑
s′

Azs′ − J ′t
∑
p′

Bzp′ . (59)

Our numerical results are summarized in Table V. These
results are consistent with Eqs. (46) and (49).

As is well known, the H and T lattices are dual lattices
(Fig. 9). This duality implies that the classical Toric
Code models of Eq. (59) yield the same results. From
Figs. 8 and 9, as a consequence of duality, what is defined
as Azs (Bzp) in H corresponds to some Bzp′ (Azs′) in T, and

1

FIG. 9. By connecting the centers of hexagons in an hexag-
onal lattice (thick solid lines), we obtain the corresponding
dual lattice which is a triangular lattice (solid lines).

g E D0
2 D0

3 D0
4 D0

5 D0
6 D0

7 D0
8 D0

9

1

6 8 27 64 125 216 343 512 729
12 16 27
18 8
24 128

2
24 128
30 64

TABLE V. Computed ground state degeneracy D0
M for dQ =

M, for a hexagonal lattice (= triangular lattice).

vice versa. This indicates that

Azs
Duality←→ Bzp′ ,

Azs′
Duality←→ Bzp . (60)

After this transformation we can rewrite Eqs. (59) as,

HH = −Jh
∑
p′

Bzp′ − J ′h
∑
s′

Azs′ ,

HT = −Jt
∑
p

Bzp − J ′t
∑
s

Azs , (61)

and assuming Jh = J ′t, J
′
h = Jt, it is seen that HH = HT.

This simple analysis does not take into account potential
boundary terms that may appear in finite lattices, as a
result of the duality transformation.

IX. OTHER CLASSICAL MODELS WITH
HOLOGRAPHIC DEGENERACY

In this section, we dwell on a few more Ising type spin
systems, similar to Type II commensurate lattice real-
izations of the classical Toric Code model (Eq. (27)), in
which the degeneracy is holographic, i.e., exponential in
the system’s boundary.
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A. Potts Compass Model

We now discuss a discretized version of the compass
model71, the “4-state Potts compass model” on an Lx ×
Ly square lattice with periodic boundary conditions. The
Hamiltonian is given by,

HPC = −
∑
i,σ,τ

(
niσni+x̂,σσiσi+x̂ + niτni+ŷ,ττiτi+ŷ

)
,

(62)

where at each site (vertex) i there are two Ising type
spins σi = ±1, τi = ±1, while the occupation num-
bers niσ = 0, 1 and niτ = 1 − niσ. Then, at each site,
there is either a σ or a τ degree of freedom. The Carte-
sian unit vectors x̂ and ŷ link neighboring sites of the
square lattice. Spins of the σ type interact along the
x-direction (horizontally) while those of the τ variety in-
teract along the y-direction (vertically). Minimizing the
energy is equivalent to maximizing the number of prod-
ucts in the summand of Eq. (62) that are equal to +1.
In a configuration in which at all sites there is a σ (and
no τ) spin, the system effectively reduces to that of Ly
independent Ising chains parallel to the x direction. For
each such chain, there are two ground states: σi = +1 or
σi = −1 for all lattice sites. As these chains are indepen-
dent, there are 2Ly ground states. Replacing some sites
with τ spins some bonds turn into 0 and energy increases
as a result. Repeating the same procedure where all sites
are occupied by τ spins, we find out that there are Lx
independent vertical Ising chains and so 2Lx states giving
the same minimum energy. The ground state degeneracy
of Eq. (62) is 2Lx + 2Ly . For a more general case with
genus g (composed of regions {aj} connected by bridges
{bj} (shared by regions aj and aj+1)), the degeneracy
again depends on the number of independent horizontal
(Ly) and vertical (Lx) Ising chains. If each region aj is
of size Ljx × Ljy (j = 1, · · · , g) and bj (j = 1, · · · , g − 1)
is the number of edges connecting aj and aj+1, then, the
ground state degeneracy will be

nPotts−compass
g.s = 2Lx + 2Ly , (63)

where

Lx =

g∑
j=1

Ljx −
g−1∑
j=1

bj , Ly =

g∑
j=1

Ljy. (64)

This degeneracy depends on both the geometry and the
topology of the lattice. We briefly highlight the effects of
topology in the degeneracy of Eqs. (63) and (64). Panel
a) of Fig. 10 depicts a genus one lattice for which Lx =
5, Ly = 12 and N = V = 60. By redefining the way spins
are connected and boundary conditions, as we explained
before, we may transform it into, e.g., g = 2, 3 lattices
as in Fig. 10 (panels b) and c), respectively). Here, one
may readily verify that although Ly = 12 and the total
number of spins do not change, Lx varies (increases) as
a result of increasing the genus number.

a) b) c)

FIG. 10. Three lattices with different genus numbers and their
corresponding tori below. All have the same total number of
spins, N = 60. Thick solid (blue) lines represent the boundary
and spins are located at the vertices. We have, a) g = 1 and
Lx = 5, Ly = 12. b) g = 2 and Lx = 7, Ly = 12. c) g = 3 and
Lx = 9, Ly = 12.

B. Classical Xu-Moore Model

As discussed earlier, our classical Toric Code model of
Eq. (6) is identical to the spin (defined on vertices) pla-
quette model of Eq. (24). This latter Hamiltonian is,
as it turns out, a particular limiting case of the so-called
“Xu-Moore model”69,70, one in which its transverse field
is set to zero and the model becomes classical. In its orig-
inal rendition, this classical limit of the Xu-Moore model
has a degeneracy exponential in the system’s boundary.
This degeneracy appears regardless of the parity of the
system sides. We now discuss how to relate the degen-
eracy in our system to that of the classical Xu-Moore
model. To achieve this, instead of applying periodic
boundary conditions along the Cartesian directions as in
the classical Toric Code model (i.e. along the solid lines
of Fig. 2), we endow the system with different boundary
conditions. Specifically, we examine instances in which
periodic boundary conditions are associated with the di-
agonal x′ and y′ axis (45◦ angle rotation of the original
square lattice) of Fig. 2. A simple calculation then il-
lustrates that the ground state sector as well as all other
energies have a global degeneracy factor,

Nglobal = 2Lx′+Ly′ . (65)

where Lx′ and Ly′ are defined as in Eq. (64) but along
the diagonal directions (dotted lines in Fig. 2). A similar
(global) degeneracy appears in the classical 90◦ orbital
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compass model24 (having only nearest neighbor two-spin
interactions) to which the Xu-Moore model is dual.

C. Second and Third nearest neighbor Ising models

We conclude our discussion of holographic degeneracy
in spin models with a brief review of an Ising system even
simpler than the ones discussed above. Specifically, we
may consider an Ising spin system on a square lattice with
its lattice constant a set to unity when it is embedded on
a torus (g = 1) with periodic boundary conditions along
the x′ and y′ diagonals with the Hamiltonian

H =
∑
i,j

(2δ|i−j|,
√

2 + δ|i−j|,2)σiσj . (66)

Here interactions are anti-ferromagnetic between next-
nearest neighbors (|i − j| =

√
2) and next-next-nearest

neighbors (|i − j| = 2). It is straightforward to demon-
strate that this system has a ground state degeneracy
scales as 2Lx′ + 2Ly′ where Lx′,y′ are the lattice sizes
along the x′ and y′ directions18.

X. CONCLUSIONS

In this work, we demonstrated that a topological
ground state degeneracy (one depending on the genus
number of the Riemann surface on which the lattice is
embedded) does not imply concurrent topological order
(i.e., Eq. (3) is violated and distinct ground states may
be told apart by local measurements). We illustrated
this by introducing the classical Toric Code model (Eq.
(6) with µ = ν = z). As we showed in some detail,
under rather mild conditions (those pertaining to “Type
I” lattices in the classification of Eq. (27)), the ground
state degeneracy solely depends on topology. In these
classical systems, however, the ground states (given by,
e.g., Eqs. (32) and (33) on the torus) are distinguishable
by measuring the pattern of σzij on a finite number of
nearest neighbor edges; thus, the ground states do not
satisfy Eq. (3) and are, rather trivially, not topologically
ordered. They are Landau ordered instead and, most
importantly, illustrate that the ground states are related
by d = 2 (global) Gauge-like symmetries contrary to the
d = 1 symmetries of Kitaev’s Toric Code model35–37.

In the more commensurate Type II lattice realiza-
tions of the classical Toric Code model as well as in a
host of other systems, the ground state degeneracy is
“holographic”- i.e., exponential in the linear size of the
lattice18,44. This classical holographic effect is different
from more subtle deeper quantum relations, for entan-
glement entropies, e.g.,72–74. In all lattices and topolo-
gies, the minimal ground state degeneracy (and that of
all levels in the system) of the classical model is robust
and bounded from below by 4g with g the genus number.
We find similar genus dependent minimal degeneracies

in clock and U(1) theories (including lattice gauge theo-
ries). For completeness, we remark that a degeneracy of
the form 2η(L) with η a quantity bounded from above by
the linear system size (viz., a holographic entropy) also
appears in bona fide topologically ordered systems such
as the “Haah code”5–7.

Beyond demonstrating that such degeneracies may
arise in classical theories, we illustrated that these be-
haviors may arise in rather canonical clock and U(1) type
theories. We provided a simple framework for studying
and understanding the origin of these ubiquitous topo-
logical and holographic degeneracies.

We conclude with one last remark. Our results for
classical systems enable the construction of simple quan-
tum models with ground states that may be told apart
locally (i.e., violating Eq. (3) for topological quantum or-
der) yet, nevertheless, exhibit a topological ground state
degeneracy). We present one, out of a large number
of possible, routes to write such models exactly. Con-
sider any one of the different theories studied in our
work. Let us denote the classical Hamiltonian associated
with any of these theories by HClassical and correspond-
ing local observables that may differentiate ground states
apart by V. One may then apply any product U of lo-
cal unitary transformations to both the Hamiltonian and
the corresponding “order parameter” local observable V.
That is, we may consider the “quantum” Hamiltonian
HQuantum ≡ U†HClassicalU and the corresponding local op-
erator VQuantum ≡ U†VU . By virtue of the unitary trans-
formation, both in the ground state sector (as well as at
any finite temperature), the expectation value of the lo-
cal observable V in the classical system given by HClassical

is identical to the expectation value of the VQuantum in the
quantum system governed by HQuantum. To be concrete,
one may consider, e.g., the Classical Toric Code (CTC)
model. That is, e.g., one may set HClassical = HCTC that
contains only classical Ising (σxj ) spins. Next, consider
the unitary operator U =

∏
j∈Λ+

exp[iπ4σ
z
j ] that effects a

π/2 rotation of all spins at sites j that belong to the sub-
lattice Λ+ about the internal σz axis. (That is, indeed,
1√
2
(1 − iσzj )σxj

1√
2
(1 + iσzj ) = σyj .) Thus, trivially, the

resulting Hamiltonian HQuantum contains non-commuting
σx and σy and is “quantum” (just as the Kitaev Toric
Code model of Section III3 that may be mapped to two
decoupled classical Ising spin chains35–37) contains ex-
actly these two quantum spin components and is “quan-
tum”). By virtue of the local product nature of the map-
ping operator U , the classical local observables V that we
discussed in our paper become now new local observables
VQuantum in the quantum model. Thus, putting all of the
pieces together, we may indeed generate quantum models
with a topological degeneracy in which the ground state
may be told apart by local measurements.
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Appendix A: Canonical Partition function of the
Classical Toric Code Model

In Type I lattices (and their simplest composites), the
canonical partition function of the classical Toric Code
model is given by Eq. (36). The situation is somewhat
richer for other lattices. Below, we briefly write the par-
tition functions for several such finite size lattices. For
simplicity we set J = J ′ = 1 and dQ = 2 in the classical
rendition of Eq. (6) and perform a high temperature (H-
T) and low temperature (L-T) series expansion which is
everywhere convergent for these finite size systems. One
can follow a similar procedure and find the partition func-
tions for dQ > 2. We start with H-T series expansion,

ZH−T =
∑
{σ}

e−βH
z,z

=
∑
{σ}

eβ
∑

s A
z
s+β

∑
p B

z
p (A1)

=
∑
{σ}

∏
s

eβA
z
s

∏
p

eβB
z
p

= (coshβ)V+F
∑
{σ}

∏
s

(1 + T Azs)
∏
p

(1 + T Bzp),

where T = tanhβ and β = 1/(kBT ).

In Eq. (A1) after expanding the products, and sum-
ming over all configurations, the only surviving terms
are those for which the product of a subset of Azs ’s and
Bzp ’s is equal to 1 and this corresponds to one constraint
or a product of two or more of them sharing no star or
plaquette operators. Thus,

ZH−T = 2E(coshβ)V+F (A2)

×
(

1 + terms from constraints on Azs ’s and Bzp ’s
)
,

where F is the number of faces and V is the num-
ber of vertices. The factor of 2E (with E = N the
number of spins or lattice edges) originates from the
summation

∑
{σ} 1 (each σzij has two values (±1), with

(ij) = 1, · · · , E). The sole non-vanishing traces in Eq.
(A1) originate from the constraints of Eqs. (23) and
(25) and their higher genus counterparts. While this
procedure trivially gives rise to the partition function of
Eq. (36) for simple lattices, the additional constraints in
other lattices spawn new terms in the partition functions.

In the following we develop the L-T series expansion

for dQ = 2. From Eq. (36),

ZL−T = Nglobal

∑
`=0

n`e
−βE`

= Nglobale
−βE0

(
1 +

∑
`=1

n`e
−β(E`−E0)

)
, (A3)

where E0 is the ground state energy and Nglobal is the
ground state degeneracy. Numerical results illustrate
that the integers n` are larger than 1. One can gener-
alize this form for dQ > 2

ZL−T =
∑
`=0

D`
dQe
−βE` , (A4)

where E` and D`
dQ

indicate energy and degeneracy of

energy level ` for a given dQ, respectively.

Below is a sample of our numerical results for ZH−T
and ZL−T of lattices with different sizes, dQ’s and genus
numbers (g = 1, 2, 3). From ZL−T, we can easily see that
exited states have a degeneracy “higher than or equal to”
the ground state degeneracy (J = J ′ and βJ = K).

(I) g = 1:

(a) 3× 1,E = 6:

(i) dQ = 2:

ZH−T = (2 coshβ)6
(

1 + T 6 + 2T 3
)
,

ZL−T = 4(e6K)
(

1 + 9e−8K + 6e−4K
)
.

(ii) dQ = 3:

ZH−T = (3 coshβ)6
(

1 +
T 6

32
+

3T 4

8

)
,

ZL−T = 9(e6K)
(

1 + 10e−9K + 12e−
15K

2 + 36e−6K

+ 16e−
9K
2 + 6e−3K

)
.

(iii) dQ = 4:

ZH−T = (4 coshβ)6
(

1 +
T 6

16

)
,

ZL−T = 8(e6K)
(

1 + e−12K + 12e−10K + 135e−8K

+ 216e−6K + 135e−4K + 12e−2K
)
.



18

(iv) dQ = 5:

ZH−T = (5 coshβ)6
(

1 +
T 6

32

)
,

ZL−T = 5(e6K)
(

1 + 90e(−
√

5−5)K + 90e(
√

5−5)K

+ 240e(
1
4 (−
√

5−1)+
√

5−6)K + 30e(
1
2 (−
√

5−1)−2)K

+ 210e(
1
2 (−
√

5−1)+
√

5−7)K + 12e(
5
4 (−
√

5−1)−5)K

+ 20e(
3
2 (−
√

5−1)−6)K + 240e(
1
4 (
√

5−1)−
√

5−6)K

+ 120e(
1
2 (−
√

5−1)+ 1
4 (
√

5−1)−3)K

+ 120e(
3
4 (−
√

5−1)+ 1
4 (
√

5−1)−4)K

+ 60e(
5
4 (−
√

5−1)+ 1
4 (
√

5−1)−6)K

+ 30e(
1
2 (
√

5−1)−2)K

+ 210e(
1
2 (
√

5−1)−
√

5−7)K

+ 120e(
1
4 (−
√

5−1)+ 1
2 (
√

5−1)−3)K

+ 360e(
1
2 (−
√

5−1)+ 1
2 (
√

5−1)−4)K

+ 360e(
3
4 (−
√

5−1)+ 1
2 (
√

5−1)−5)K

+ 120e(
1
4 (−
√

5−1)+ 3
4 (
√

5−1)−4)K

+ 360e(
1
2 (−
√

5−1)+ 3
4 (
√

5−1)−5)K

+ 240e(
3
4 (−
√

5−1)+ 3
4 (
√

5−1)−6)K

+ 12e(
5
4 (
√

5−1)−5)K

+ 60e(
1
4 (−
√

5−1)+ 5
4 (
√

5−1)−6)K

+ 20e(
3
2 (
√

5−1)−6)K
)
.

(v) dQ = 6:

ZH−T = (6 coshβ)6
(

1 +
T 6

32

)
,

ZL−T = 36(e6K)
(

1 + 6e−11K + 12e−10K + 24e−
19K

2

+ 10e−9K + 48e−
17K

2 + 165e−8K + 12e−
15K

2

+ 192e−7K + 168e−
13K

2 + 36e−6K + 96e−
11K

2

+ 282e−5K + 16e−
9K
2 + 114e−4K + 60e−

7K
2

+ 6e−3K + 24e−
5K
2 + 24e−2K

)
.

(b) 2× 2,E = 8:

(i) dQ = 2:

ZH−T = (2 coshβ)8
(

1 + 14T 4 + T 8
)
,

ZL−T = 16(e8K)
(

1 + e−16K + 14e−8K
)
.

(ii) dQ = 3:

ZH−T = (3 coshβ)8
(

1 +
3T 8

128
+
T 6

8
+

3T 4

4

)
,

ZL−T = 27(e8K)
(

1 + 18e−12K + 16e−21K/2

+ 80e−9K + 64e−15K/2 + 56e−6K + 8e−3K
)
.

(iii) dQ = 4:

ZH−T = (4 coshβ)8
(

1 +
T 8

16
+

3T 4

4

)
,

ZL−T = 128(e8K)
(

1 + e−16K + 44e−12K + 64e−10K

+ 294e−8K + 64e−6K + 44e−4K
)
.

(c) 4× 1,E = 8:

(i) dQ = 2:

ZH−T = (2 coshβ)8
(

1 + 2T 4 + T 8
)
,

ZL−T = 4(e8K)
(

1 + e−16K + 12e−12K + 38e−8K

+ 12e−4K
)
.

(ii) dQ = 3:

ZH−T = (3 coshβ)8
(

1 +
T 8

128

)
,

ZL−T = 3(e8K)
(

1 + 86e−12K + 336e−
21K

2

+ 616e−9K + 560e−
15K

2 420e−6K + 112e−
9K
2

+ 56e−3K
)
.

(iii) dQ = 4:

ZH−T = (4 coshβ)8
(

1 +
T 8

64

)
,

ZL−T = 16(e8K)
(

1 + e−16K + 8e−14K + 252e−12K

+ 952e−10K + 1670e−8K + 952e−6K

+ 252e−4K + 8e−2K
)
.

(d) 3× 2,E = 12:

(i) dQ = 2:

ZH−T = (2 coshβ)12
(

1 + 2T 6 + T 12
)
,

ZL−T = 4(e12K)
(

1 + e−24K + 30e−20K

+ 255e−16K + 452e−12K + 255e−8K + 30e−4K
)
.

(ii) dQ = 3:

ZH−T = (3 coshβ)12
(

1 +
T 12

2048
+

3T 8

128

)
,

ZL−T = 9(e12K)
(

1 + 466e−18K + 2664e−
33K

2

+ 7668e−15K + 12344e−
27K

2 + 14148e−12K

+ 11232e−
21K

2 + 6720e−9K + 2592e−
15K

2

+ 1026e−6K + 152e−
9K
2 + 36e−3K

)
.

(e) 4× 2,E = 16:

(i) dQ = 2:
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ZH−T = (2 coshβ)16
(

1 + T 16 + 14T 8
)
,

ZL−T = 16(e16K)
(

1 + e−32K + 8e−28K + 252e−24K

+ 952e−20K + 1670e−16K + 952e−12K

+ 252e−8K + 8e−4K
)
.

(f) 3× 3,E = 18:

(i) dQ = 2:

ZH−T = (2 coshβ)18
(

1 + T 18 + 6T 12 + 9T 10

+ 32T 9 + 9T 8 + 6T 6
)
,

ZL−T = 64(e18K)
(

1 + 9e−32K + 72e−28K + 636e−24K

+ 1296e−20K + 1422e−16K + 552e−12K

+ 108e−8K
)
.

(II) g = 2

(a) 2× 1 + 2× 1,E = 8:

(i) dQ = 2:

ZH−T = 28(coshβ)6
(

1 + T 6 + T 4 + T 2
)
,

ZL−T = 16(e6K)
(

1 + e−12K + 7e−8K + 7e−4K
)
.

(ii) dQ = 3:

ZH−T = 38(coshβ)6
(

1 +
T 6

32

)
,

ZL−T = 27(e6K)
(

1 + 22e−9K + 60e−
15K

2

+ 90e−6K + 40e−
9K
2 + 30e−3K

)
.

(iii) dQ = 4:

ZH−T = 48(coshβ)6
(

1 +
T 6

16

)
,

ZL−T = 256(e6K)
(

1 + e−12K + 4e−10K + 71e−8K

+ 104e−6K + 71e−4K + 4e−2K
)
.

(b) 3× 1 + 3× 1(b1 = 1),E = 12:

(i) dQ = 2:

ZH−T = 212(coshβ)10
(

1 + T 10 + T 6 + T 4
)
,

ZL−T = 16(e10K)
(

1 + e−20K + 21e−16K

+ 106e−12K + 106e−8K + 21e−4K
)
.

(ii) dQ = 3:

ZH−T = 312(coshβ)10
(

1 +
T 10

512
+
T 7

32
+
T 6

32

)
,

ZL−T = 81(e10K)
(

1 + 114e−15K + 572e−
27K

2 + 1266e−12K

+ 1716e−
21K

2 + 1530e−9K + 816e−
15K

2

+ 438e−6K + 84e−
9K
2 + 24e−3K

)
.

(c) 3× 1 + 3× 1(b1 = 2),E = 12:

(i) dQ = 2:

ZH−T = 212(coshβ)10
(

1 + T 10 + T 6 + 4T 5 + T 4
)
,

ZL−T = 32(e10K)
(

1 + 13e−16K + 48e−12K + 58e−8K

+ 8e−4K
)
.

(ii) dQ = 3:

ZH−T = 312(coshβ)10
(

1 +
T 10

512
+
T 7

32
+
T 6

32

)
,

ZL−T = 81(e10K)
(

1 + 114e−15K + 572e−
27K

2 + 1266e−12K

+ 1716e−
21K

2 + 1530e−9K + 816e−
15K

2 + 438e−6K

+ 84e−
9K
2 + 24e−3K

)
.

(d) 2× 2 + 2× 1,E = 12:

(i) dQ = 2:

ZH−T = 212(coshβ)10
(

1 + T 10 + 3T 6 + 3T 4
)
,

ZL−T = 32(e10K)
(

1 + e−20K + 9e−16K + 54e−12K

+ 54e−8K + 9e−4K
)
.

(ii) dQ = 3:

ZH−T = 312(coshβ)10
(

1 +
T 10

512

)
,

ZL−T = 27(e10K)
(

1 + 342e−15K + 1700e−
27K

2

+ 3870e−12K + 5040e−
21K

2 + 4620e−9K

+ 2520e−
15K

2 + 1260e−6K + 240e−
9K
2 + 90e−3K

)
.

(III) g = 3:

(a) 2× 1 + 2× 1 + 2× 1,E = 12:

(i) dQ = 2:

ZH−T = 212(coshβ)8
(

1 + T 8 + T 6 + T 2
)
,

ZL−T = 64(e8K)
(

1 + e−16K + 16e−12K

+ 30e−8K + 16e−4K
)
.
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(ii) dQ = 3:

ZH−T = 312(coshβ)8
(

1 +
T 8

128

)
,

ZL−T = 243(e8K)
(

1 + 86e−12K + 336e−
21K

2 + 616e−9K

+ 560e−
15K

2 + 420e−6K + 112e−
9K
2 + 56e−3K

)
.
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