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We theoretically predict current generation in Weyl semimetals when circularly polarized light is
applied. The electric field of the light can drive an effective magnetic field on the order of 10 T. For
lower-frequency light, a nonequilibrium spin distribution is formed near the Fermi surface. Spin–
momentum locking induces a giant electric current proportional to the effective magnetic field. In
contrast, higher-frequency light realizes a quasi-static Floquet state with no induced electric current.
We discuss the relevant materials and estimate the order of magnitude of the induced current.

Introduction— Dirac and Weyl semimetals, which
host bulk gapless excitations obeying quasi-relativistic
fermion equations, have attracted much attention re-
cently in condensed matter physics [1–15]. Dirac
semimetals have been theoretically predicted [1–3] and
experimentally demonstrated in (Bi1−xInx)2Se3 [4, 5],
Na3Bi [6, 7], Cd3As2 [8, 9], and TlBiSSe [9, 10]. Sev-
eral experiments also support the realization of Weyl
semimetals in TaAs [11–14]. Moreover, Dirac and Weyl
semimetals have been theoretically predicted in a super-
lattice heterostructure consisting of a topological insula-
tor/normal insulator [3], and a Dirac semimetal has been
realized in the GeTe/Sb2Te3 superlattice [15].

Low-energy bulk excitations in Dirac and Weyl
semimetals come in pairs of left- and right-handed Weyl
fermions, as described by Nielsen and Ninomiya’s no-go
theorem [16]. In the low-energy limit, each charge flow
of left- and right-handed Weyl fermions is preserved clas-
sically, but their difference, the axial current, is not con-
served in quantum theory owing to the chiral anomaly.
In an analogy with relativistic high-energy physics [17–
22], the anomaly-related effects have been discussed in
condensed matter physics [23–32]. The anomaly-induced
currents are dissipationless; thus, they have potential ap-
plications to unique electronics.

Among the anomaly-related effects, one of the most in-
teresting phenomena is the chiral magnetic effect. In the
presence of a time-dependent θ term in the Dirac–Weyl
theory, a current proportional to an applied static mag-
netic field has been predicted theoretically [17–21, 24–27].
The flow due to the static magnetic field, however, might
be problematic in condensed matter physics. First, in
Weyl semimetals, the time-dependent θ term is obtained
in the ground state, in the presence of the energy dif-
ference between left- and right-handed Weyl points [26].
However, the system remains in the ground state under
a static magnetic field, so eventually no actual current
should flow [24]. Moreover, detection can be difficult be-
cause there is no driving force to induce the current in
such an equilibrium state. Hence, instead of a static mag-
netic field, one should consider a nonequilibrium mag-
netic field to obtain the net current of the chiral magnetic

effect.
Recent studies using femtosecond laser pulses have es-

tablished a method of generating nonequilibrium mag-
netic fields using circularly polarized light in ferrimag-
nets [33–35]. The light-induced effective magnetic field
Beff is given by

Beff ∝ iE × E
∗, (1)

where E is the circularly polarized complex electric field
[36, 37]. The effective magnetic field is generated by the
conversion of spin angular momentum from light to elec-
trons via spin–orbit coupling [37–39]. The direction of
Beff depends on the chirality of the circularly polarized
light. Its magnitude is proportional to the laser intensity
and can reach 20 T for a sufficiently strong laser pulse
[33–35].
In this Letter, we theoretically predict a giant current j

induced by the effective magnetic field (Fig. 1). The pho-
tovoltaic current is due to a nonequilibrium spin distri-
bution near the Fermi surface. For lower-frequency light,
the conversion of spin angular momentum between light

FIG. 1: (Color online) Schematic illustration of photovoltaic
chiral magnetic effect: (a) For a lower-frequency light regime,
electrons near the Fermi surface are excited by incident light
through the Raman process illustrated. As a result, a finite
spin distribution is generated near the Fermi surface, and the
spin of Weyl fermions is aligned in the direction of the effec-
tive magnetic field Beff , on average. (b) For the reason given
above, the circularly polarized light aligns the spin of Weyl
fermions. Because of (pseudo)spin–momentum locking, Weyl
fermions with helicity σ = 1 (σ = −1) move in the same (op-
posite) direction as the spin, which results in nonzero current
jσ.
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and electrons occurs only near the Fermi surface. Thus,
the low-energy description using Weyl fermions gives a
good approximation for evaluating the photovoltaic cur-
rent. On the basis of the Keldysh Green function, we
show that a net current is obtained by applying circu-
larly polarized light. The current is proportional to the
effective magnetic field, in the form of the chiral magnetic
effect. On the other hand, unlike other chiral magnetic
effects[17–21, 24–27], it is dissipative and extrinsic. For
Ta compound Weyl semimetals, the current reaches a
huge value of O(106) A/m2.
Model—We consider the following Hamiltonian to de-

scribe Weyl–Dirac semimetals in the presence of circu-
larly polarized light:

H = HWeyl +Hem + Vimp. (2)

The first term is the Hamiltonian of Weyl–Dirac semimet-
als. At low energy, it takes the form

HWeyl =
∑

k

ψ†
kHWeylψk, (3)

HWeyl = ~vFσ
z(k − σzb) · s− µσ0s0 − µ5σ

zs0, (4)

where ψk = t(ψ↑,+ ψ↓,+ ψ↑,− ψ↓,−) is the annihilation op-
erator of an electron with (pseudo)spin (↑, ↓) and helicity
(+,−). Further, sµ and σµ are the Pauli matrices of the
(pseudo)spin and helicity, respectively; vF is the Fermi
velocity, and µ is the chemical potential. The param-
eters 2b and 2µ5 denote the difference in the positions
of left- and right-handed Weyl points in momentum and
energy space, respectively. For Dirac semimetals, b = 0

and µ5 = 0. The second term in Eq. (3) represents
the gauge coupling between Weyl–Dirac semimetals and
light:

Hem = −
∑

k

j ·Aem, (5)

where j denotes the charge current, and Aem is the
vector potential of light. For circularly polarized light,
the electric field Eem = −∂tA

em is given by Eem =
Re

[

EeiΩt
]

,where E is a complex vector, and Ω is the
angular frequency of light. The third term in Eq. (2) ex-
presses the impurity scattering in Weyl–Dirac semimetals
[40, 41]:

Vimp =
∑

k,q

ψ†
k+qσ

0s0uimp(q)ψk. (6)

The impurity scattering potential uimp is assumed to
be short-ranged and triggers a finite relaxation time,
which is given within the Born approximation as τe,σ =
~/(πνe,σncu

2
imp) with a concentration of nonmagnetic im-

purities nc.
Current induced by circularly polarized light—

We calculate the current induced by light using the

Keldysh Green function technique [41]. Below, we as-
sume that ~Ω is much lower than the bandwidth, so
the low-energy effective Hamiltonian (3) gives a good
approximation. For Eq. (3), the current is defined as
〈j〉 ≡ evF〈ψ

†(x, t)σzsψ(x, t)〉, which is decomposed as

〈j〉 ≡ 〈j+〉+ 〈j−〉, (7)

where 〈jσ=±〉 ≡ σevF〈ψ
†
σsψσ〉. Here ψ†

σ = (ψ†
σ,↑, ψ

†
σ,↓)

is the creation operator of Weyl fermions with helicity
σ = ±. There is no mixing term between ψ†

+ and ψ−

in H ; thus, 〈j+〉 and 〈j−〉 can be calculated separately.
First, we consider the b = 0 case.
In terms of the Keldysh Green function, the chiral cur-

rent 〈jσ〉 is represented as 〈jσ〉 = −σi~evFtr[sG
<
σ (x, t :

x, t)], where the 2 × 2 matrix lesser Green function
G<

σ (x, t : x, t) = −i~〈ψ†
σ(x, t)ψσ(x, t)〉. The contribu-

tion from Beff ∝ iE×E
∗ is given by the diagrams in Fig.

2. It is written as

〈jiσ〉 = −i~evF[I
ijk
σ (Ω) + Iijk

σ (−Ω)]EjE∗k, (8)

where Iijk
σ (Ω) =

e2v2

F

4Ω2

∑

I=a,b,c,d C
(I),ijk
σ . Each diagram

in Fig. 2 gives the following C
(I=a,b,c,d),ijk
σ :

C(a),ijk
σ =

∑

k,ω

tr
[

sigk,ω,σs
jgk,ω+Ω,σs

kgk,ω,σ

]<
,

C(b),ijk
σ =

∑

k,ω

tr
[

sigk,ω,σS
j
ω,ω+Ωgk,ω+Ω,σs

kgk,ω,σ

]<

,

C(c),ijk
σ =

∑

k,ω

tr
[

sigk,ω,σs
jgk,ω+Ω,σS

k
ω+Ω,ωgk,ω,σ

]<
,

C(d),ijk
σ =

∑

k,ω

tr
[

Si
ω,ωgk,ω,σs

jgk,ω+Ω,σs
kgk,ω,σ

]<
, (9)

where g<k,ω,σ is given by g<k,ω,σ = fω[g
a
k,ω,σ − grk,ω,σ]

with the Fermi distribution function fω and the ad-
vanced and retarded Green’s functions as gak,ω,σ and

grk,ω,σ = [~ω−σ~vFk ·s+µ+σµ5 + i~/(2τe,σ)]
−1. Si

ω,ω′

is the vertex correction because of the nonmagnetic im-
purity scattering Vimp [42].

Using above equations, one can rewrite C
(I=a,b,c,d),ijk
σ

in terms of the retarded and advanced Green’s functions.
For |µ+ σµ5| ≫ ~/τe, we find that

C(I=a,b,c,d),ijk
σ ∝

∑

ω

(fω+Ω − fω). (10)

This means that only fermions near the Fermi surface
contribute to the light-induced current, which justifies
our Weyl fermion approximation. We also find that

C
(I),ijk
σ contains both the retarded and advanced Green’s

functions, and it is expressed as their product. This in-
dicates a nonequilibrium process [41].
After some calculation [42], we obtain

〈jσ〉 = σ
2νe,σe

3v3Fτ
4
e,σ

3~
Ωi(E × E

∗), (11)
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FIG. 2: Diagrammatic representation of a charge current 〈jiσ〉
via the photovoltaic chiral magnetic effect (a) without and
(b–d) with a vertex correction for nonmagnetic impurity scat-
tering. Wavy lines denote the electric field of the polarized
light.

where νe,σ = (µ+σµ5)
2

2π2~3v3

F

is the density of states of a Weyl

cone with helicity σ. From Eq. (11), the total current
〈j〉 is

〈j〉 =
2(νe,+τ

4
e,+ − νe,−τ

4
e,−)e

3v3F
3~

Ωi(E × E
∗), (12)

which is nonzero when νe,+τ
4
e,+ 6= νe,−τ

4
e,−, namely, when

µ5 6= 0.
The obtained current originates from a nonequilibrium

distribution of spin: When one exposes the system to
circularly polarized light, the conversion of spin angular
momentum between light and electrons occurs because of
spin–orbit interaction. As a result, a nonequilibrium spin
distribution arises near the Fermi surface [Fig. 1(a)]. For
Weyl fermions, because of spin–momentum locking, the
nonequilibrium spin distribution gives rise to the current
flow [Fig. 1(b)]. Indeed, for Eq. (3), the current oper-
ator is essentially the same as the spin operator; thus,
from the same calculation, one can show that the circu-
larly polarized light induces a nonzero spin polarization
of electrons,

〈ψ†
σsψσ〉 =

2νe,σe
2v2Fτ

4
e,σ

3~
Ωi(E × E

∗), (13)

near the Fermi surface.
Because the circularly polarized light induces spin po-

larization of electrons, it effectively acts as a Zeeman
magnetic field near the Fermi surface:

Beff
σ ≡ χσΩiE × E

∗ = σLχσΩ|E|
2q̂, (14)

where χσ ≡ 2
3

e2v2

F
τ4

e,σ

gµB~
. Here q̂ is the unit vector in the di-

rection of light propagation, σL = ±1 specifies the chiral-
ity (clockwise or counterclockwise polarization) of light,
g is the Landé factor, and µB is the Bohr magneton.
Note that the light-induced current resembles the chi-

ral magnetic effect. In both cases, the current flows in
the direction of an applied magnetic or effective mag-
netic field, and its magnitude is proportional to the dif-
ference in chemical potential between left- and right-
handed fermions. Indeed, as in our case, spin polariza-
tion and spin–momentum locking are essential to obtain-
ing the current in the chiral magnetic effect [18]. Un-
der a static magnetic field, electrons form the Landau

levels. For Weyl fermions, the zeroth Landau level is
fully spin-polarized in the direction of the applied mag-
netic field; thus, the ground state of the system is also
spin-polarized. As a result, the current flows because of
spin–momentum locking [18]. We dub our light-induced
current effect the photovoltaic chiral magnetic effect.

Here we would like to mention that there is an im-
portant difference between our photovoltaic chiral mag-
netic effect and the original one. In the original case,
the chiral magnetic effect is caused by a static magnetic
field; thus, the resultant current is in equilibrium (and
dissipationless). In condensed matter physics, however,
an analogous current of Weyl fermions, even if exists, is
completely cancelled by other currents in the conduction
band [24]. On the other hand, the photovoltaic chiral
magnetic effect is due to the time-dependent electric field,
so the current is nonequilibrium and dissipative. The
current comes only from Weyl fermions near the Fermi
surface, so no cancellation occurs.

The effective magnetic field also generates the ax-
ial current, which is the difference between charge cur-
rents with different helicity: 〈jaxial〉 ≡ 〈j+〉 − 〈j−〉 =

evF[〈ψ
†
+sψ+〉+〈ψ†

−sψ−〉]. As mentioned above, for lower
Ω, the system is well described by Weyl fermions; thus,
the axial current can also be well-defined. The ax-
ial current is nonzero even for Dirac semimetals with
b = µ5 = 0. The axial current can be detected as the
total spin polarization by using pump–probe techniques
[33].

We can easily generalize the above result for 〈j〉 with
b 6= 0. Because b behaves like a static Zeeman field
in HWeyl, it shifts 〈ψ

†
σsψσ〉 by the Pauli paramagnetism.

However, b cannot drive a net current because it is static.
Moreover, the circularly polarized light affects only elec-
trons near the Fermi surface, the structure of which does
not depend on b. Therefore, we have the same current
〈j〉 in Eq. (12) even when b 6= 0.

To have a nonzero 〈j〉, both the inversion and mir-
ror reflection symmetries should be broken: These sym-
metries flip the chirality of Weyl fermions, so if exist,
the current is cancelled between those of left- and right-
handed Weyl fermions. Ta compounds [11–14] realize
such Weyl semimetals, with an external field or a strain
breaking the mirror reflection symmetry. Trigonal Te
under pressure is also a candidate material [43]. We
estimate the magnitude of Beff

σ and 〈j〉 using the ma-
terial parameters for TaAs [44], vF = 3 × 105 m/s,
τe = 4.5×10−11 s, and µ = 11.5 meV. With a few percent
distortion, µ5 in TaAs[12] is estimated as µ5 ≃ 1 meV.

We find that |Beff
σ=±| = (4.3∓2.6)×10−16( Ω

[s−1])(
|E|2

[V2/m2] )

T. For contentious-wave laser with |E| = 4 kV/m and
Ω = 2.2 × 109 s−1, |Beff

σ=±| is 15 ∓ 9 T. As a re-
sult, the induced charge current reaches a huge value
of |〈j〉| ≃ 2 × 106 A/m2, which is much larger than the
anomalous Hall current density due to the chiral anomaly
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[45]. This giant current density is caused by the giant
magnetic field Beff

σ .
Note that 〈j〉 is distinguished from the longitudinal

[40] and transverse charge currents [27–29, 45], as 〈j〉 is
parallel to the light propagation direction, and it flows
in the opposite direction when the chirality of the light
is reversed. Our photovoltaic effect is also different from
conventional photogalvanic effects [46, 47]. Whereas the
conventional one is caused by high-frequency light, our
obtained effect is realized in a lower-frequency regime.
Furthermore, the direction of the conventional photogal-
vanic current is anisotropic, reflecting the Rashba spin-
orbit interaction[46–48]. On the other hand, the current
direction of our effect is universally along the light prop-
agation direction.
Floquet state— So far, we have assumed that the

frequency Ω of light is much lower than the scale of the
bandwidth. Now, we consider the opposite case. In con-
trast to the lower-Ω case, in which only electrons near
the Fermi surface are influenced by light, the higher-
frequency light can affect all of the electrons in valence
bands.
To consider this situation, we adopt the Floquet

method: Because H in Eq. (2) is periodic in t,
i.e., H(t) = H(t + 2π/Ω), the wave function of the
Schrödinger equation i~∂tψ(t) = H(t)ψ(t) has the form
of ψ(t) =

∑

m φme
−i(ε+m~Ω)t/~, where the summa-

tion is taken for all integers m. Substituting this
form into the Schrödinger equation, we have the Flo-
quet equation,

∑

nHm,nφn = (ε + m~Ω)φm, where

Hm,n = (Ω/2π)
∫ 2π/Ω

0
dtH(t)ei(m−n)Ωt +m~Ωδm,n. For

the Hamiltonian in Eq. (2), the diagonal term of the
Floquet Hamiltonian is given by Hm,m = HWeyl+Vimp+

m~Ω, and the off-diagonal ones areHm,m+1 = H†
m+1,m =

(Ω/2π)
∫ 2π/Ω

0 dtHeme
−iΩt = − ievF|E|

2Ω σz(sx−iσLs
y) when

light travels along the z axis. The other off-diagonal
terms are identically zero. Each solution of the Floquet
equation gives a periodic steady state.
For large Ω, the diagonal terms are dominant, so one

can treat the off-diagonal ones as a perturbation. In
the zeroth order, our system is described by H0,0 =
HWeyl + Vimp; then the first nonzero correction in the
perturbation theory appears in the second order as
1
~Ω [H0,−1, H0,1] . Thus, we obtain the following effective
Hamiltonian:

Heff = HWeyl + Vimp − iσ0 e
2v2F
~Ω3

(E × E
∗) · s, (15)

which describes a periodic steady state of our system.
From Eq. (15), it is found that higher-frequency light

induces a different effective Zeeman magnetic field,

Beff
Floquet ≡

e2v2F
gµB~Ω3

iσ0(E × E
∗). (16)

Here we note that the physical origin is completely dif-
ferent from that in the lower-frequency case. Beff

σ in Eq.

(14) originates from a dissipative process, so it depends
on τe,σ; in contrast, Beff

Floquet in Eq. (16) is independent
of the impurity scattering. Furthermore, the former mag-
netic field affects only electrons near the Fermi surface,
but the latter acts on the entire band. Consequently, the
resultant phenomena can be different.
We find that no net current 〈j〉 is produced by

Beff
Floquet: According to Eq. (15), Beff

Floquet provides only
a uniform Zeeman splitting (or shift) in the entire spec-
trum of the band of the Weyl semimetal, like a static
Zeeman field. Therefore, in a steady state, electrons fill
the band up to the Fermi energy. In this situation, one
can use the same argument in Ref. [24] and prove that
〈j〉 = 0. Whereas Weyl fermions may have a nonzero
spin 〈ψ†

σsψσ〉 due to the Pauli magnetism of Beff
Floquet,

the current due to spin–momentum locking is totally can-
celled by the current from the rest of the band. In other
words, no photovoltaic chiral magnetic effect occurs for
higher-frequency light.
It is helpful to regard the frequency Ω as an energy

cutoff for the chiral magnetic effect. For lower Ω, the
light can excite only Weyl fermions near the Fermi sur-
face; thus, quasi-relativistic phenomena such as the chiral
magnetic effect may occur. As Ω increases, electrons at a
lower position in the band can participate in the current;
then, eventually, when Ω is large enough to affect the
entire spectrum of the band, the chiral magnetic effect is
completely cancelled.
Instead, for higher Ω, one can expect the light-induced

anomalous Hall effect. Substituting Eq. (3) for HWeyl

in Eq. (15), one finds that Beff
Floquet shifts b by δb =

−(gµB/2~vF)B
eff
Floquet. The change in b induces a change

in the θ term in Weyl semimetals [26], which results in
〈δρ〉 = 2αcǫ0

π δb · B and 〈δj〉 = − 2αcǫ0
π δb × E in the

presence of external magnetic and electric fields B and
E. Here α is the fine structure constant, c is the speed
of light, and ǫ0 is the vacuum permittivity. The light-
induced charge pump 〈δρ〉 and anomalous Hall current
〈δj〉 were discussed recently in Refs. [49–51].
Conclusion— We theoretically predict the photo-

voltaic chiral magnetic effect, which is induced by the
effective magnetic field due to circularly polarized light.
In the low-light-frequency regime, the effective magnetic
field affects only fermions near the Fermi surface. As
a result, the effective magnetic field triggers a finite spin
polarization of Weyl fermions and drives the finite charge
current in Eq. (12). On the other hand, in the high-
frequency regime, the Floquet quasi-steady state is real-
ized. The circularly polarized light induces the effective
magnetic field in Eq. (16), which is completely different
from that in the lower-frequency regime. The magnetic
field in the high-frequency regime behaves like the Zee-
man field and shifts the entire band structure. The cur-
rent of Weyl fermions is completely cancelled by other
band contributions. Our photovoltaic chiral magnetic
effect, which depends strongly on the light frequency,
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realizes the chiral magnetic effect in condensed matter
physics.
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