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We revisit the SU(6) Heisenberg model on the honeycomb lattice, which has been predicted to be a chiral spin
liquid by mean-field theory [G. Szirmai et al., Phys. Rev. A84, 011611 (2011)]. Using exact diagonalizations of
finite clusters, infinite projected entangled pair states simulations, and variational Monte Carlo simulations based
on Gutzwiller projected wave functions, we provide strong evidence that the model with one particle per site
and nearest-neighbor exchange actually develops plaquette order. This is further confirmed by the investigation
of the model with a ring exchange term, which shows that there is a transition between the plaquette state and
the chiral state at a finite value of the ring exchange term.

PACS numbers: 67.85.-d, 71.10.Fd, 75.10.Jm, 02.70.-c

With the recent progress towards achieving SU(N ) symme-
try with ultra-cold fermionic atoms,1–10 the investigation of
the effective SU(N ) Heisenberg model on various 1D and 2D
lattices has become a very active field of research. Several re-
markable ground state properties have been reported, includ-
ing long-range color order,11 algebraic correlations,12 transla-
tional symmetry breaking valence-bond solid states in which
groups of N atoms form local singlets on plaquettes,13,14 and
chiral ground states, suggested by Hermele et al.15,16 for Mott
insulators on square lattice with several particles per site. In-
terestingly, a mean-field calculation even predicted a chiral
spin liquid in the SU(6) Heisenberg model on the honeycomb
lattice with only one particle per site.17,18 However, the rather
natural plaquette state in which six SU(6) spins form singlets
on nonadjacent hexagons was found to lie very close in en-
ergy. So this result calls for further investigation with methods
that go beyond mean-field theory.

In this paper, we have addressed this problem with state-of-
the-art numerical methods: variational Monte Carlo (VMC)
simulations based on Gutzwiller projected wave functions,
exact diagonalizations (ED), and infinite projected entangled
pair states simulations (iPEPS). VMC confirmed that the two
phases are very close in energy, with the plaquette state being
just slightly lower in energy. Only after turning to exact diago-
nalizations and iPEPS could we find compelling evidence that
the ground state indeed has plaquette order. The chiral state
is not far in parameter space, however, and it does not take
a large ring-exchange term to stabilize it, as demonstrated by
ED and VMC.

The SU(6) Heisenberg model is defined by the Hamiltonian

H =
∑
〈i,j〉

Pij , (1)

where the operator Pij =
∑
α,β |αiβj〉〈βiαj | exchanges the

N = 6 colors α and β of the atoms on neighboring sites i, j
of a honeycomb lattice.

VMC: Gutzwiller projected wave functions19,20 offer a
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FIG. 1. Energies of Gutzwiller projected wave functions (a) and the
bond energies on td and th bonds after projection for the different
flux configurations as a function of td/th for Ns = 72. (c)-(e)
shows the considered flux configurations, black bonds represent hop-
ping amplitude td, while dark and light purple bonds denote hopping
amplitudes th and −th, respectively. In case of the uniform 2π/3
flux configuration, red arrows represent complex hopping amplitude
∝ ei2π/3, for which tji = t∗ij .

qualitative and potentially quantitative description for both
types of competing scenarios found by mean-field study.17 In
this method we project out the configurations having multiple
occupancy from the Fermi-sea constructed from a mean-field
model. The variational parameters are the hopping amplitudes
and the artificial fluxes given by their total phase around the
elementary hexagons (plaquettes). An importance sampling
Monte Carlo method was used to calculate the energies and
correlations of the projected states.12 Our calculations (shown
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in Fig. 1) reveal that the lowest energy states are similar to
those of Ref. [17]: (i) a configuration with uniform 2π/3-
flux before projection, corresponding to a chiral spin-liquid,21

and (ii) a translation symmetry breaking configuration with 0-
flux in a center plaquette surrounded by π-flux plaquettes with
non-uniform hopping integrals, corresponding to a plaquette
ordered phase. While the mean-field results of Ref. [17] fa-
vored the chiral phase, the plaquette-ordered phase turned out,
after projection, to have a slightly lower energy (see Table I),
the first hint that the system might actually have a plaquette
ground state. However, the energy difference becomes very
small upon increasing the size. So we have deciced to attack
the model with alternative methods.

Ns 24 24 opt 72 72 opt 288 MF17 iPEPS
plaquette -1.039 -1.057 -1.0079 -1.0123 -1.0082 -1.010 -1.031
2π
3

chiral -1.0064 -1.0104 -1.0077 -1.0087 -1.0077 -1.025

TABLE I. VMC energies of Gutzwiller projected wave functions for
the competing 0ππ (plaquette) and the 2π/3 flux configurations for
different system sizes, compared to the mean-field (MF) and iPEPS
(D = 36) results. The statistical error of the calculations is smaller
than O(10−4). The optimized energies are obtained by considering
the overlap between projected states with different boundary condi-
tions before projection.

ED: With the standard exact diagonalization approach that
takes into account all spatial symmetries but only an abelian
subgroup of the SU(N ) symmetry group (color conservation
plus cyclic color permutations), the currently largest accessi-
ble cluster with a number of sites multiple of 6 (a require-
ment for having a singlet ground state) is an 18-site cluster.
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FIG. 2. Spectrum of the 18- (left) and 24-site (right) clusters as
a function of the quadratic Casimir C2. The degeneracies of some
states are indicated, as well as the spatial quantum numbers for the
18-site cluster. For the 24-site cluster, the presence of 3 low-lying
states is a strong indication of a plaquette phase (see text for details).
Inset: broken-symmetry plaquette state reconstructed from ED. It
breaks translations, but the D6 symmetry is preserved. The bond
energy is -0.81 (-0.56) for the thick (thin) lines.

The spectrum is shown in Fig. 2(a). The plaquette state is
expected to be 3-fold degenerate in the thermodynamic limit
(one state at the Γ point and two states at the two K points in
the Brillouin zone), but in the 18 site cluster the plaquettes can
also wrap around the torus,14 artificially enlarging the number
of plaquette coverings to 6. By contrast, the chiral state is
2 × N = 2 × 6 = 12-fold degenerate in the spontaneous
time-reversal symmetry (TRS) breaking scenario. While the
first three levels ΓB2, KA2(2×) (plus the symmetry related
level ΓE1 particular to Ns = 18) are in agreement with the
expectations for a plaquette state,14 these states are very close
to many other excited states (including non singlets). So the
spectrum does not provide enough evidence for either of the
competing states.

To go further, we have used a newly developed method22

that allows one to take advantage of the full SU(N ) symme-
try, hence to work directly in the irreducible representations of
SU(N ). For the singlet and the smallest values of the Casimir
operator, this leads to Hilbert spaces of much smaller dimen-
sion than the standard approach. The spectrum is shown in
Fig. 2(b). Interestingly enough, on 24 sites, the spectrum con-
sists of 3 low-lying states reasonably well separated from the
rest of the spectrum, the first indication that the ground state
might have plaquette order. The spin-spin and dimer-dimer
correlations are shown in Fig. 3. The spin-spin correlations
decay quite fast, consistent with some kind of spin liquid, and
the dimer-dimer correlations are consistent with a plaquette
phase on the honeycomb lattice (see for instance the discus-
sion of the SU(3) case in Ref. [14]).

As an additional test, we have determined the spatial quan-
tum numbers of the first excited doublet by applying one of the
two elementary translations of the lattice. The corresponding
eigenstates belong to the two K points in the Brillouin zone.
The correlations in these states are very similar to those in the
ground state, which suggests that these three states could cor-
respond to the degenerate ground state of the thermodynamic
limit split by finite size effects. To demonstrate that this is the
case, we have constructed the symmetric sum of these states,
which corresponds to the finite-size approximation of a bro-
ken symmetry state (a simple task since the numerical wave
functions are real and not complex). In that state, the strong
bonds correspond to a covering of the lattice with hexagons
(see inset of Fig. 2(b)), with a difference between strong and
weak bond energies of 0.25, in good agreement with the ex-
trapolated iPEPS estimate (see below Fig. 4(c)).

However, one should not forget that we have access to only
one cluster with the appropriate number of low-lying states,
and that the gap to the next levels is comparable to the gap
between the ground state and the first pair of low lying states.
So, in the next section, we turn to the results obtained with
iPEPS.

iPEPS: An iPEPS is a variational tensor network ansatz to
represent a 2D wavefunction in the thermodynamic limit.23–25

The ansatz on the honeycomb lattice consists of a unit cell
of rank-4 tensors which is periodically repeated on the infi-
nite lattice, for each tensor one physical index carries the lo-
cal Hilbert space of lattice site, and three auxiliary indices
connect to the nearest-neighbor tensors. The accuracy of the
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FIG. 3. 〈P0i〉 − 1/6 spin-spin (a) and 〈P12Pkl〉 − 〈P12〉 〈Pkl〉 dimer-dimer correlations (b) in the exact ground-state of the 24-site cluster. As
a reference we present the dimer-dimer correlations of the translational invariant linear combination of variational 0ππ-flux projected states
with |td/th| = 0.8 (c), and of the variational 2π/3-flux projected state (d). The pattern of the dimer-dimer correlations of the ED (b) and the
0ππ variational states (c) is an indication of long-range plaquette ordering.
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FIG. 4. iPEPS results for the SU(6) Heisenberg model on the hon-
eycomb lattice. (a) Comparison of the ground state energy obtained
with iPEPS, VMC, and ED, as a function of inverse bond dimension
D and inverse system size. The bold symbols mark improved VMC
results for Ns = 24 and 72 (see Table I and main text). For large
bond dimension with iPEPS the plaquette state has the lowest vari-
ational energy, in agreement with VMC. (b) Color order parameter
as a function of inverse D. It is finite for the color-ordered state and
vanishes for the plaquette state. (c) Difference in energy between
the strongest bond and the weakest bond in the unit cell, which is
strongly suppressed in the color-order state, and finite in the plaque-
tte state, consistent with plaquette long-range order. The dotted lines
are a guide to the eye.

ansatz can be systematically controlled by the bond dimen-
sion D of the auxiliary indices. For the experts we note that
the contraction of the tensor network is performed using a
variant26,27 of the corner-transfer matrix method,28,29 and the
optimization is done by an imaginary time evolution using a
combined simple and (fast-) full update.30,31 To increase the

efficiency of the simulations we make use of abelian symme-
tries.32,33 A similar approach has been used in previous calcu-
lations of SU(N ) Heisenberg models, see e.g. Refs. [12 and
14]. For an introduction to iPEPS we refer to Refs. [30 and
31].

We have used a 6-site unit cell which is compatible with
both plaquette and uniform (possibly chiral) states. As ini-
tial states we started either from completely random tensors
or from a plaquette state made of SU(6) singlets on hexagons.
In the former case, using bond dimensions up to D = 24,
a new competing state appears, in which each site in the unit
cell exhibits a different dominant color. ForD ≤ 24 this color
ordered state has a lower variational energy than the plaque-
tte state, as shown in Fig. 4(a). However, the slope in 1/D is
larger for the plaquette state. So we have pushed the calcula-
tion to very large values of D, up to D = 36. Around D = 30
the energies of the two ordered states indeed cross such that
the plaquette state clearly becomes energetically favored. We
have not found a competing uniform chiral state with iPEPS
which is an indication that at least for the bond dimensions
studied here the plaquette state is the lowest energy state.

In Fig. 4(b) we present the results for the color-order param-
eter of the two competing states, given by the local moment

m =

√√√√6

5

∑
α,β

(
〈Sβα〉 −

δαβ
6

)2

, (2)

averaged over all sites in the unit cell, where Sβα = |α〉〈β|
are the SU(6) spin operators and α, β run over all local basis
states. For the color-ordered state m is large for low D. It
decreases with increasing D but tends to a finite value in the
infinite D limit. The local moment of the plaquette state is
much more strongly suppressed with increasing D, and van-
ishes in the large D limit, consistent with a singlet without
color order.

Figure 4(c) shows the difference between the highest and
lowest bond energy in the unit cell which measures the mag-
nitude of the plaquette order. For the color ordered state it
is strongly suppressed with increasing D and vanishes for
large D, in contrast to the plaquette state which exhibits a
large difference in bond energy, where the strong bonds form
hexagonal plaquettes.
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FIG. 5. Comparison of the ED spectrum (black points) of the model
of Eq. (3) with the variational energies (continuous lines) based on
Gutzwiller projected wave-functions for the 0ππ plaquette phase and
the 2π/3 chiral phase. The inset shows the (ordered) eigenvalues λj
of the overlap matrices of the projected states with different twisted
boundary conditions before projection as a function of j.

Ring exchange term: Since the energy difference between
the plaquette and chiral phases found by VMC is very small,
it is tempting to speculate that the chiral phase might be stabi-
lized by a ring exchange term around the hexagons. We have
thus considered

H = cos θ
∑
〈i,j〉

Pij + sin θ
∑

plaquettes

i
(
P7 − P−17

)
(3)

where the sum in the second term runs over all hexagonal pla-
quettes, and the operators P7 and P−17 permute the configu-
ration on a hexagon clockwise and anticlockwise (also called
ring exchange terms). The new term directly couples to the
scalar chirality on the hexagons, breaks time-reversal invari-
ance, and is a bona-fide SU(6) generalization of an SU(2)
Hamiltonian on the kagome lattice which has been shown to
give rise to an extended SU(2) chiral spin liquid phase.34,35 Al-
ternatively it can be viewed as a drastically truncated version
of a parent Hamiltonian for a SU(N ) chiral spin liquid.36

In the following, we will discuss the properties of that
model as a function of θ, noting that θ = 0 corresponds to
the pure Heisenberg model (1).

The ED spectrum on 24 sites (Fig. 5) shows a clear change
of behavior between the small θ range, with a twofold excited
state well separated from the rest of the spectrum, and the
range above θ ' 0.2, where a manifold of 6 singlet states
becomes almost degenerate and very well separated from the
rest of the spectrum. Two of these states are at the Γ point, and
the remaining four are at the K points, in agreement with the
momenta of the six chiral VMC states (discussed below). So,
the ED results are clearly consistent with a phase transition
between a plaquette phase and a chiral phase upon increasing
the ring exchange term. Note that the degeneracy of the chiral
state is only equal to 6 and not 12 because the Hamiltonian of
Eq. (3) explicitly breaks the time reversal symmetry.

This interpretation is further supported by the comparison
with VMC on 24 sites. To access the low energy spectrum and

not just the ground state, we have constructed a large family
of Gutzwiller projected states by changing the boundary con-
ditions (BC) of the fermionic wave-functions,37 considering
up to 30 different BCs for the 2π/3 flux states, and up to 90
for the 0ππ-flux states (30 for each translation breaking state),
and we have diagonalized the overlap matrix and the Hamilto-
nian in this variational subspace.38,39 The results are summa-
rized in Fig. 5. For the chiral state, this parton construction
leads to 6 (and only 6) significant eigenvalues of the overlap
matrix, which themselves lead to 6 low-lying states very close
in energy.40 There is not such a clear cutoff for the plaque-
tte states, the three low-lying states are not so well split from
the other states. Although the variational plaquette and chiral
states are higher in energy, their overall behavior is qualita-
tively consistent with ED. In particular, the energy of the pla-
quette state is minimal at θ = 0, while that of the chiral states
is minimal around θ = 0.36, and their energies cross around
θ = 0.16.

Similar overlap calculations were carried out for Ns = 72
sites, with 30 different BCs for the 2π/3 flux case, and 12
for each translation breaking state (36 in total) for the 0ππ-
flux case. The energy corrections for the 0ππ case turn out to
be larger (see Table I), again promoting the plaquette ordered
phase over the chiral liquid phase at the Heisenberg point.41

Interestingly Gutzwiller projected wave functions turn out
to be much better for the chiral phase than for the plaquette
phase on 24 sites. In fact, the energy minimum for the 0ππ-
flux states, shown in Fig. 1, occurs for td/th ≈ −0.85. Now,
for td ≤ −th/2, which includes the optimal energy value,
the fermionic wave function is gapless at the Fermi-energy:
the lowest band (the only filled one) touches the empty band
above it at the Γ point (the Fermi surface is confined to a
point).14 So, by contrast to the plaquette phase of the SU(3)
Heisenberg on the honeycomb lattice, which is described by
a gapped fermionic wave function,14 the plaquette phase dis-
cussed here for SU(6) corresponds to a gapless spectrum be-
fore projection, hence possibly also to a gapless spectrum af-
ter projection. Since this gapless point is not protected (the
spectrum is gapped for td > −th/2), we suspect that this is
an artefact, and that adding additional terms in the fermionic
Hamiltonian might open a gap and further lower the varia-
tional energy of that state. This is supported by the fact that
the variational energy of the plaquette phase obtained with
VMC is much higher than that obtained by iPEPS for the same
phase.

Discussion: Altogether, we believe that the numerical re-
sults reported in this paper provide compelling evidence in
favor of a plaquette ground state for the SU(6) Heisenberg
model on the honeycomb lattice. We have also shown that
there is however a chiral phase close by in parameter space.
In particular, let us emphasize that the variational energy ob-
tained by iPEPS for the plaquette state is much lower than
that of the chiral state obtained by VMC, which, as shown
when introducing a ring exchange term, is very good at de-
scribing the chiral phase. This situation is reminiscent of the
SU(2) honeycomb model for intermediate values of the next-
nearest neighbor exchange interaction (J2/J1 ≈ 0.3): Sev-
eral numerical methods42–46 found a plaquette ordered phase,
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while mean-field,47 variational Monte Carlo,48 and entangled-
plaquette variational ansatz49 approaches could not reproduce
these results but reported instead gapped spin liquid/columnar
valence bond solid phases in that parameter range.

Even if it led to the wrong conclusion, the mean-field ap-
proach should be given credit for identifying the right candi-
dates with very similar energies.17 This lends further support
to the mean-field prediction by Hermele et al.15,16 of a chiral
phase for several particles per site since there does not seem
to be competing VBS states too close in energy in that case.

Numerical work along the lines of the present paper to test
this prediction is in progress.
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