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Abstract

Density functional theory (DFT) is the de facto method for the electronic structure of weakly

correlated systems. But for strongly correlated materials, common density functional approxima-

tions break down. Here, we derive a many electron expansion (MEE) in DFT that accounts for

successive one-, two-, three- ... particle interactions within the system. To compute the correction

terms, the density is first decomposed into a sum of localized, nodeless one electron densities (ρi).

These one electron densities are used to construct relevant two- (ρi+ρj), three- (ρi + ρj + ρk) ...

electron densities. Numerically exact results for these few particle densities can then be used to

correct an approximate density functional via any of several of many-body expansions. We show

that the resulting hierarchy gives accurate results for several important model systems - the Hub-

bard and Peierls-Hubbard models in 1D and the pure Hubbard model in 2D. We further show that

the method is numerically convergent for strongly correlated systems - applying successively higher

order corrections leads to systematic improvement of the results. MEE thus provides a hierarchy

of density functional approximations that applies both to weakly and strongly correlated systems.
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The promise of density functional theory (DFT) is tantalizing - there exists a single

universal functional, F [ρ], that predicts the electronic ground state of all molecules and ma-

terials exactly1–3. Unfortunately, while this functional is universal in principle, in practice

one encounters an ever-growing list of specific functionals that have been tailored to partic-

ular physical conditions4–6. The proliferation of functionals is in part due to the difficulty

of accounting for strong correlation (sometimes called static correlation) within DFT. Com-

monly used approximate functionals deal well with weak correlation, but to varying degrees

fail for strong correlation, where a different set of approximations must be employed7–11. In

this Letter, we bridge this gap by deriving a hierarchy of density functional approximations

that systematically correct for strong correlation in a numerically accessible form.

We begin by recognizing that strong correlation is typically short-ranged. This physics

is, for example, at the heart of dynamical mean field theory12. To account for this in DFT,

assume that we can decompose the total spin density (ρ(r, σ)) into a sum of localized one

electron spin densities (ρi(r, σ))

ρ(r, σ) ≡

N
∑

i=1

ρi(r, σ)

∫

ρi(r, σ)dr = 1. (1)

We will further stipulate that each ρi(r, σ) should be ground state v-representable13. Next,

suppose we can compute the energy of the entire system with some approximate density

functional Ea[ρ] while we can obtain the exact energy Ev[ρ] only for a few electrons at

once. For any ρ, define ∆E[ρ] ≡ Ev[ρ] − Ea[ρ] and consider the following hierarchy of

approximations:

E0[ρ] ≡ Ea[ρ]

E1[{ρi}] ≡ E0[ρ] +
N
∑

i

∆E[ρi]

E2[{ρi}] ≡ E1[{ρi}] +

N
∑

i<j

(∆E[ρi + ρj ]−∆E[ρi]−∆E[ρj ])

E3[{ρi}] ≡ E2[{ρi}] +

N
∑

i<j<k

(∆E[ρi + ρj + ρk]−∆E[ρi + ρj ]−∆E[ρj + ρk]−∆E[ρi + ρk]

+ ∆E[ρi] + ∆E[ρj ] + ∆E[ρk])

... (2)

Eq. 2 is the central result of this Letter. Note that E[ρ] means the total energy, but
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one could replace E[ρ] with the universal functional F [ρ] or with the sum of Hartree and

exchange-correlation energies EHxc[ρ], what would fit Eq. 2 into the Kohn-Sham framework.

This many electron expansion (MEE) is closely related to the many body expansion for

intermolecular interactions14,15 and the method of increments16. MEE has the important

property that Ei[ρ] gives the exact energy for i electrons no matter what approximate

functional Ea is chosen. It thus provides a hierarchy of approximations within the context

of DFT analogous to many body theory17 for the Green’s function and the coupled cluster

expansion of the wavefunction18.

For spin compensated systems, it makes sense to decompose the total density rather than

the spin density. In this case, one naturally obtains pair densities

ρ(r) ≡

N/2
∑

i=1

ρi(r)

∫

ρi(r)dr = 2. (3)

We will call the analogous expansion to Eq. 2 using ρi(r) the many pair expansion (MPE).

For MPE, Ei is exact for 2i electrons and only requires calculations on spin compensated

densities, which simplifies the intermediate calculations.

In order to compute the MEE or MPE energies, we need the approximate and exact

ground state energies for various fragment densities ρq - noting that these fragment densities

will typically only involve a few electrons. Assuming the approximate energy derives from

Kohn-Sham DFT (KS-DFT), Ea[ρq] is easily obtained via potential inversion techniques19–21.

One invents a non-interacting reference determinant, Φ, constructed out of orbitals φk(r).

One then searches for the stationary point of the Lagrangian

LKS[φk, vs] ≡ 〈Φ| −
1

2
∇2|Φ〉+

∫

vs(r)(
∑

k

|φk(r)|
2 − ρq(r))dr (4)

Functionally, this optimization is done sequentially. For a given vs each KS orbital satisfies

a one electron Schödinger equation:

−
1

2
∇2φk(r) + vqs(r)φk(r) = ǫkφk(r). (5)

One then solves for vqs that gives the desired density ρq and Ea[ρq] ≡ Ea[{φk}] where any

implicit orbital dependence in the functional is now explicit in terms of the optimized KS

orbitals.

To obtain Ev[ρq], one can perform a similar potential inversion construction for the inter-

acting system22. One invents an interacting state |Ψ〉 and searches for the stationary point
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of

LExact[Ψ, vex] ≡ 〈Ψ|[
1

2

∑

k

p̂2
k +

∑

k<l

1

r̂kl
]|Ψ〉+

∫

vex(r)(〈Ψ|δ(r̂− r)|Ψ〉 − ρq(r))dr (6)

The result is the ground state of the fully interacting system with a potential vqex(r):

[
1

2

∑

k

p̂2
k +

∑

k<l

1

r̂kl
+ vqex(r̂)]|Ψ〉 = E|Ψ〉 (7)

where vqex is chosen such that 〈Ψ|δ(r̂ − r)|Ψ〉 = ρq(r) and the final energy is given by

Ev[ρq] ≡ 〈Ψ|Ĥ|Ψ〉. At this point it becomes clear why the fragment densities must be v-

representable: in order for there to be some interacting system that gives the right fragment

density, the density itself must be the ground state of some potential.

Because the MEEn (MPEn) energy En[ρ] is an approximation to the variational func-

tional Ev[ρ], we can also use En[ρ] to approximate the interacting ground state density. The

variationally optimal density ρ0 is the one that satisfies

δEn[ρ]

δρ
|ρ0 = µ (8)

where µ is the global chemical potential. This results in a one-electron Schödinger equation

for the MEEn- or MPEn-KS orbitals

−
1

2
∇2φk(r) + vn(r)φk(r) = ǫkφk(r). (9)

where the effective potential for each level in the hierarchy includes contributions from the

nth order energy corrections

v1(r) = vs(r) +
∑

i

∫

(
δEv[ρ]

δρi(r′)
−

δEa[ρ]

δρi(r′)
)
δρi(r

′)

δρ(r)
dr′

= vs(r) +
∑

i

∫

(viex(r
′)− vis(r

′))
δρi(r

′)

δρ(r)
dr′ (10)

≡ vs(r) + δv1(r) (11)

v2(r) = v1(r) +
∑

i<j

∫

(vijex(r
′)− vijs (r

′))(
δρi(r

′)

δρ(r)
+

δρj(r
′)

δρ(r)
)dr′ − (N − 1)δv1(r) (12)

...

It is thus clear that MEEn (or MPEn) also provides a convergent hierarchy of approximations

to the true KS potential: beginning with an approximate vs, each vn provides an improved

potential that eventually converges (not necessarily monotonically) to the exact result when
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n is equal to the total number of electrons. Note that, in order to apply MEE (or MPE), one

needs a prescription for obtaining (pair) densities from the total density. One anticipates

that different choices for ρi could be useful in different scenarios. Thus, we consider the above

to be a complete derivation of the MEEn (and MPEn) formalism with the understanding

that a particular ansatz for ρi must be made in practice.

MEEn hierarchy can also be thought of as a generalization of the Perdew-Zunger self-

interaction correction (PZ-SIC)23. For EHxc, MEE1 calculated with orbital densities is

equivalent to PZ-SIC, however, such densities are not admissible in MEE as they are not

v-representable. In both cases, one-electron densities are not defined uniquely. However,

whereas PZ-SIC corrects one electron self-interaction errors24, MEEn is capable of removing

many electron self-interaction to arbitrary order. In many situations self interaction mimics

correlation in DFT, so that removing self interaction without adding correlation can make the

results worse25. In this light, it is important to note that at each order, MPEn compensates

for the excluded many electron self interaction by including a corresponding degree of many

electron correlation. Thus, MPEn is in some sense balanced, even at low orders.

To illustrate the performance of MEE, we first consider the one-dimensional Hubbard

model26 described by the Hamiltonian

Ĥ =
∑

iσ

ti

(

â†i,σâi+1,σ + â†i+1,σâi,σ

)

+ U
∑

i

â†i,αâi,αâ
†
i,βâi,β, (13)

where ti ≡ t. The first term describes hopping of electrons between neighboring sites and

the second describes on-site repulsion of opposite spin electrons. The model describes poten-

tially strongly correlated electrons on a lattice and often serves as a benchmark for electronic

structure methods27,28 as the exact solution, based on the Bethe Ansatz, is known29. Dif-

ferent formulations of DFT exist for the Hubbard model, which differ by the choice of the

basic variable in lieu of real-space density30–32. In this work, the density of the system is

understood as the diagonal of the density matrix in the site basis. Since the model has

translational symmetry under periodic boundary conditions (p.b.c.), the ground-state den-

sity is equal at each site and amounts to ρα = 2Nocc

N
, ∀α = 1, . . . , N, where Nocc is the the

number of electron pairs distributed over N sites of the lattice.

As the total ground-state density is known, we can decompose it to a sum of pair densities

(Eq. 3), in principle, by any prescription that assures v-representability. One of the necessary

conditions for a density to be v-representable on a lattice with p.b.c. is that it is positive at
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FIG. 1: Localized pair densities for 1D Hubbard model at (a) non-periodic filling (< n >=0.9), (b)

periodic filling (< n >=1.0). Lattice sites are represented by black circles, while each pair density

is marked by one color. The black dashed line is the total density for each site. Note that the pair

density picture is incomplete in (a) because remainder of the lattice is truncated.

each site33. Here, we relax this restriction, requiring only that ρi be non-negative, which is

feasible if we also allow infinite vi . In practice, we want to partition total density in such

a way that pair densities are compact. Physically, this would allow to interpret them as

localized electron pairs and to capture most of correlation. A viable procedure to achieve

such decomposition is to recall the Boys orbital localization criterion34, which minimizes the

spatial spread of orbitals. Applying this procedure to the Hubbard model results in pair

densities composed of contiguous blocks (Fig. 1). All numerical results presented in this

Letter are based on this prescription.

For a typical filling, the localization results in pair densities that are inhomogeneous:

they equal Nocc/N for the central site(s) but only contain part of the density on the edge

sites (see Fig. 1a). In this case, the MPE1 correction is a sum of many slightly different

energies:

E1[ρ] = E0[ρ] + ∆E[ρ1] + ∆E[ρ2] + ∆E[ρ3] + .... (14)

However, for certain fillings (such as 1/2 or 1/3), the partitioning procedure leads to

pair densities that repeat periodically along the chain (see Fig. 1b), resulting in an energy

E1[ρ] = E0[ρ] + Nocc∆E[ρ1]. Note that this transition happens abruptly - starting from a

periodic filling and adding even one electron pair results in a completely aperiodic filling.

As a result, the MPEn energy is not a smooth function of filling. A way to resolve this is to

average energies over different possible pair density partitions. In practice, we perform the

averaging by adding an additional constraint on ρ1,1 = γ and integrating over γ ∈ (0, < n >]

EAMPE[ρ] =

∫ <n>

0

EMPE(γ)dγ (15)
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FIG. 2: Energy per site and its errors for 1D Hubbard model as a function of site occupancy < n >.

We evaluate this integral by quadrature, which then directly mimics the average that is done

for the aperiodic filling case (Eq. 14).

As the approximate functional in Eq. 2, we use the exact exchange (EXX) and local

density approximation (LDA). The latter is constructed by fitting the exchange-correlation

energy per site to the Bethe Ansatz energies. Exact diagonalization is used to compute

Ev[ρ]. To compute EXX (LDA) and exact energies for the fragment density ρq, we need to

search for the potentials vqs and vqex in Eq. 5 and Eq. 7. Our numerical algorithm for this is

described in Supplemental Material.

In Fig. 2, we plot the averaged MPE (AMPE) energy curve of a 500-site 1D Hubbard

model as a function of the site occupancy < n >. We perform MPE calculations up to the

4th order (Eq. 2), which means we only need to do exact calculations on up to 4 electron pairs

at a time. Thanks to the locality of interactions (A)MPE at any level scales linearly with the

system size as opposed to factorial scaling of exact diagonalization. The exact Bethe Ansatz

(BA) results are presented for comparison. Overall, the AMPE energy curves are in excellent

agreement with the BA curve. Even at 1st order, EXX-AMPE is in good agreement with

the reference, whereas LDA-AMPE deviates more significantly. Considering that, by design,

LDA is exact for the homogeneous Hubbard model, the poor performance of LDA-AMPE1,

teaches us something about LDA: while it is exact for the uniform system, treatment of two-

and many-electron interactions is unbalanced. Adding in the correct interactions for each

pair then makes the results worse because the many-electron errors are exposed and only

summation up to the N-pair contribution makes the resulting errors cancel. Starting from

the 2nd order, curves representing EXX-AMPE and LDA-AMPE energies become visually
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indistinguishable and the latter are suppressed in Fig. 2 for clarity. As can be seen, when we

apply successive higher order corrections, the AMPE energies converge quickly towards the

exact result, which confirms that our method can be systematically improved. For reference,

the MPEn energies are visually indistinguishable from the AMPEn energies, except at the

periodic fillings, where the MPEn results would be discontinuous.

As the second example, consider the Hubbard model with a Peierls distortion (t2j−1 6=

t2j , j = 1, . . . , N/2)35. This model reflects the spontaneous symmetry breaking of the

1D periodic lattice resulting, for example, from alternating single and double bonds in a

conjugated polymer like polyacetylene. Such displacement with respect to the symmetric

Hubbard model can be described with a bond shift parameter φ = 1

2
(R2j−1−R2j), where Ri

denotes the bond length between sites i and i+1. The Hamiltonian takes the form of Eq. 13

with t2j−1 = te−φ and t2j = teφ. Keeping the analogy with polyacetylene, we recognize

that the Peierls-Hubbard model only treats the π electrons. To incorporate the additional

energy cost of stretching and squeezing the underlying σ bonds, for a given displacement

φ we add a harmonic term N ω
2
φ2 to the total energy, where ω=2.8t gives approximately

the correct physics for U=8. We restrict our model to 30 sites, in which case numerically

exact results are easily obtained from DMRG36,37. As can be seen in Fig. 3, the exact curve

has a symmetric double well shape characteristic of the expected symmetry breaking. EXX

results reproduce this qualitative feature, but are far too high in energy and the predicted

bond shifts are too large. LDA results in a uniform downward shift with respect to EXX

such that the LDA energy is correct for φ = 0. For φ 6= 0, LDA predicts energies which are

far too low, which is again a manifestation of many-electron self-interaction errors in LDA.

At half filling, the Peierls-Hubbard model presents an interesting challenge for MPE.

Assuming partitioning into non-overlapping pair densities (Fig. 1b), EXX-MPE and LDA-

MPE are equivalent as the LDA correction is exactly canceled out at the 1st order . Averaging

leads only to a uniform shift, therefore, only EXX-(A)MPE is explicitly considered in Fig. 3

and in the following discussion. The pair densities (Fig. 1b) naturally break the symmetry

of the lattice when φ 6= 0 - the pairs either localize on a 2j − 1, 2j bond or on a 2j, 2j + 1

bond. In the former case, for φ < 0 (t2j−1 > t2j), the short double bonds are located between

two sites occupied by the same density pair, MPE therefore will give a better description

than for φ > 0, where the short double bonds are located between different density pairs.

This is clearly demonstrated in Fig. 3, where the 2j − 1, 2j is chosen, leading to a very
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FIG. 3: Energy for 30-site Peierls-Hubbard model as a function of bond shift parameter φ (U=8,

< n >=1, ω = 2.8t).

accurate treatment for negative φ, but strong overcorrelation for positive φ. Particularly at

high orders, MPEn does an impressive job of reproducing the energy dispersion about the

minimum, but the global behavior is unsatisfactory.

To recover the symmetric shape, we again apply the averaging procedure for MPE. By

averaging over different pair density partitions, AMPE results do not rely on particular

pair density positions. Thus, AMPE avoids MPE’s asymmetry problem and finds two local

minima correctly. The AMPEn minima clearly approach the DMRG ones as n increases.

Nevertheless the convergence to the exact result is rather slow. On the other hand, when

φ < 0, MPE is more accurate than AMPE, which suggests that some a priori knowledge of

the electronic structure could perhaps be used to improve the results - an ansatz capable of

picking out the “best” density pattern might be able to capture MPE’s accuracy near the

minimum together with AMPE’s global symmetry.

Finally, we note that MPE is not in any way restricted to 1D systems. For instance,

we apply MPE for the 2D Hubbard model, whose sites form a two-dimensional square

lattice. Due to the macroscopic degeneracy of the model, there are many equivalent density

partitionings making it difficult to arrive at definitive MPEn numbers for the model. Still,

for example at U=4 with an 8×8 lattice the EXX-MPEn error relative to the best estimates38

goes from 23% to 7.8% to 1.5% as n goes from 1 to 3. More details can be found in the

Supplemental Material, but this result clearly demonstrates the applicability of MPE to
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higher dimensional systems.

In this Letter we have shown that MPE is a systematically improvable hierarchy of

density functional approximations to the total energy of a quantum many-body system. The

strength of the method is that even at low levels of expansion it can address the problem of

strongly correlated electrons in DFT. This has been shown on model lattice Hamiltonians,

which capture the essential physics of the problem. As the next step, we are working on

implementation of the method for ab initio Hamiltonians in order to extend calculations

to realistic molecules and solids. Given the elegance of the basic idea, we hope that the

discoveries made here will translate easily to these more sophisticated problems.
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