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We study the role of anisotropy on the transport properties of composite fermions near Landau
level filling factor ν = 1/2 in two-dimensional holes confined to a GaAs quantum well. By applying a
parallel magnetic field, we tune the composite fermion Fermi sea anisotropy and monitor the relative
change of the transport scattering time at ν = 1/2 along the principal directions. Interpreted in a
simple Drude model, our results suggest that the scattering time is longer along the longitudinal
direction of the composite fermion Fermi sea. Furthermore, the measured energy gap for the frac-
tional quantum Hall state at ν = 2/3 decreases when anisotropy becomes significant. The decrease,
however, might partly stem from the charge distribution becoming bilayer-like at very large parallel
magnetic fields.

The rich many-body physics of two-dimensional (2D)
carriers inherent in the fractional quantum Hall effect
(FQHE), even three decades after its discovery, contin-
ues to spur exciting research1–3. There has been a re-
cent surge of interest in studies, both experimental and
theoretical, of anisotropy in interacting electron systems
and in particular the FQHE4–19. FQHE states, associ-
ated with Laughlin’s wave function2, have been histori-
cally considered to be isotropic and rotationally invari-
ant. However, in light of a new revelation by Haldane13,
they are understood to also possess a geometric degree
of freedom intimately linked to the underlying anisotropy
of the 2D system. Of fundamental interest is how such
anisotropy affects properties of the FQHE states and the
composite fermions (CFs), quasi-particles which provide
an elegant description of the FQHE3,20,21.

Here we address this question through transport mea-
surements on a 2D system which is rendered anisotropic
via the application of a large in-plane magnetic field (B||).
In a strictly 2D system with zero thickness, the in-plane
motion of the carriers is unaffected by B||. However, for a
quasi-2D systems with finite width, such as electrons in a
quantum well (QW), B|| can couple to electrons’ out-of-
plane motion, thus also affecting their in-plane motion.
Because of such coupling, the electron Fermi contour be-
comes anisotropic. When subjected to B||, CFs, too,
show qualitatively similar behaviour. In Fig. 1, we fo-
cus on three aspects of this B||-induced anisotropy: (i)
the anisotropy of CFs’ Fermi contour near Landau level
filling ν = 1/2, (ii) the anisotropy of CFs’ resistivity at
ν = 1/2, and (iii) the observation of a significant re-
duction of the energy gap of the nearby ν = 2/3 FQHE
which we discuss in light of anisotropy as well as a pos-
sible B||-induced single-layer to bilayer transition of the
charge distribution. This combination of data sheds light
on the CF and FQHE anisotropy, and provides valuable
input for future work.

We studied CFs of a 2D hole system (2DHS) grown
via molecular beam epitaxy. The 2DHS is confined to
a 17.5-nm-wide, symmetric GaAs (001) QW which is lo-
cated 136 nm below the surface and is flanked on each
side by 95-nm-thick Al0.24Ga0.76As layers and C δ-doped
layers. It has density p ' 1.43 × 1011 cm−2, and low
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FIG. 1. (color online) Summary of our results. On the right,
we show the evolution of CF Fermi sea in the presence of
B||. Because of the finite layer thickness of the system, B||
couples to the out of plane motion of CFs and distorts their
circular Fermi contour into an elliptical shape. The Fermi
contour diameter shrinks along B|| and gets elongated in the
perpendicular direction. Throughout the paper, we denote
the measured quantities along the transverse and longitudinal
directions of the CF Fermi contour with subscripts T and L,
respectively. Note that these directions correspond to parallel
and perpendicular to the direction of B||. (a) The measured
ratios of CFs’ resistivities (ρL/ρT ) and Fermi wave vectors
(kL/kT ) as a function of B||. (b) The ν = 2/3 FQHE energy
gap (∆) vs B||. In the upper horizontal axis, we also mark
the corresponding values of the anisotropy factor α, which we
define as the measured (kL/kT ) for CFs (see text).

temperature mobility ' 106 cm2/Vs. We fabricated two
L-shaped Hall bar samples with the perpendicular arms
oriented along [110] and [110]. One sample (Fig. 2(a))
has a periodic grating of negative electron-beam resist
patterned on its surface to induce a potential modula-
tion for the 2D carriers. The other sample, as shown in
Fig. 2(b), is unpatterned. We recorded, at T = 0.3 K,
the resistivity along the two arms in purely perpendicular
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FIG. 2. (color online) (a) Patterned and (b) unpatterned
(Reference) L-shaped Hall bar samples. (c) Elliptical Fermi
contour of CFs in the presence of B||. (d) Magnetoresistiv-
ity traces of our 2DHS sample subjected to a weak, strain-
induced, unidirectional periodic potential modulation8. The
resistivity minima on the flanks of ν = 1/2 signal the geo-
metric resonance of CFs’ cyclotron orbit with the modulation
period and provide a measure of their Fermi wave vector kF .
The minima from the black trace, taken at B|| = 0, match
the expected positions (marked by dotted vertical lines) of the
primary commensurability minima of CFs if their Fermi con-
tour were circular26,27. The green and red traces, for which
B|| ∼ 25 T at ν = 1/2, probe kF along the longitudinal and
transverse axes of the elliptical Fermi contour, respectively.
Traces are shifted vertically for clarity. (e) The correspond-
ing magnetoresistivity traces from the unpatterned sample.
Unlike in (d), the traces are not shifted.

and also in tilted magnetic fields, with θ denoting the tilt
angle. The samples were rotated around [110] so that B||
was always parallel to [110] (Fig. 2). This configuration
orients the longitudinal and transverse axes of the ellip-
tical Fermi contour along [110] and [110], respectively.

Before presenting the experimental data in detail, we
briefly discuss CFs, exotic quasi-particles composed of
one charged particle (electron or hole) and an even num-
ber of flux quanta. The CF concept has been very suc-
cessful in explaining the many-body physics in 2D at
large perpendicular magnetic fields (B⊥)3,20,21. Thanks
to the flux attachment which cancels the external mag-
netic field at a half-filled Landau level, one of CFs’ re-
markable properties is that, at ν = 1/2, they behave as
if they are at B⊥ = 0. Away from ν = 1/2, CFs feel

the effective magnetic field B∗⊥ = B⊥ − B⊥,1/2, where
B⊥,1/2 is the field at ν = 1/2. In the limit of small B∗⊥,

CFs occupy a well-defined Fermi sea8,9,21–25 with a cir-
cular Fermi contour if the system is isotropic. Moreover,
qualitatively similar to their zero-field counterpart par-
ticles, the application of B|| induces anisotropy in the
Fermi sea of CFs (see Fig. 1) by coupling to their out-of-
plane motion through the finite thickness of the charge
distribution8,9.

Figure 2(d) shows the geometric resonance features of
ν = 1/2 CFs as the 2DHS is subjected to a lateral density
modulation stemming from the periodic surface grating.
On both sides of ν = 1/2, we observe resistance minima
signaling the commensurability of CFs’ cyclotron orbit
diameter with the modulation period. Positions of these
minima measured relative to B⊥,1/2 are directly propor-
tional the CFs’ Fermi wave vector (kF ). The commen-
surability features of the black trace, taken at B|| = 0,
are consistent with the dotted vertical lines based on the
wave vector of a circular Fermi contour (koF ) (see Fig. 1)
and full spin polarization26–31. The green and red traces
probe the elliptical Fermi contour of CFs at B|| ' 25 T
along its longitudinal and transverse directions, respec-
tively. Compared to the black trace, the minima in the
green trace move away from ν = 1/2, while in the red
trace they move closer32. This indicates that the Fermi
contour becomes elongated in the longitudinal direction
but shrinks in the transverse direction under B||, as il-
lustrated in Fig. 1.

Since the external density modulation in a patterned
sample introduces additional scattering for the CFs, we
use traces from the unpatterned sample to determine ac-
curate values of resistivity (ρ) for the ν = 1/2 CFs. Fig-
ure 2(e) shows such traces. Compared to the B|| = 0
case, the resistivity at ν = 1/2 in the longitudinal direc-
tion (ρL) increases, while it decreases in the transverse
direction (ρT ). In Fig. 3, we plot the independently mea-
sured quantities ρL, ρT , kL and kT for CFs as a function
of B||; these are all normalized to their respective B|| = 0

values33. We find that while both ρL and kL increase
with increasing B||, ρT and kT decrease.

In the absence of any theoretical model for CFs’ trans-
port, we analyze the data of Fig. 3 using the Drude
model expression, ρ = m/pe2τ , where m is the CFs’ ef-
fective mass and τ is their transport scattering time. We
emphasize that the applicability of the Drude model to
CFs is not known. In this model, mass anisotropy di-
rectly translates into anisotropy of ρ if τ is isotropic:
ρL/ρT = mL/mT . Moreover, if the Fermi contour is
elliptical, the ratio of the effective masses along the prin-
cipal directions should be proportional to the ratio of the
respective wavevectors squared, i.e., mL/mT = k2

L/k
2
T =

α2 (we denote the Fermi contour anisotropy, kL/kT , by
α). In the case of CFs subjected to B||, the geometric
mean of kL and kT normalized to koF indeed stays very
close to unity, suggesting that their Fermi contour is ellip-
tical up to large B||

8. This implies ρL/ρT = k2
L/k

2
T = α2

for CFs, a behavior which is clearly not observed in Figs.
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FIG. 3. (color online) (a) CF resistivity at ν = 1/2 (ρL and
ρT ) and Fermi wave vector (kL and kT ) as a function of B||,
normalized to their respective B|| = 0 values. (b) Resistivity
anisotropy (ρL/ρT ) vs α (= kL/kT ). The dashed line with
unit slope shows that ρL/ρT is sub-linear in α. Note that the
Drude model with an isotropic τ would predict ρL/ρT ∼ α2.
(c) Scattering time anisotropy (τL/τT ) as function of α. For
comparison with another anisotropic (elliptical) system, in (b)
and (c) we show the corresponding points (blue triangles) for
2D electrons in AlAs.

1(a) and 3(b), suggesting that CFs’ τ is anisotropic when
their Fermi contour becomes anisotropic. To illustrate
the anisotropy of τ , in Fig. 3(c) we plot τL/τT as a func-
tion of α. Clearly τL > τT when kL > kT , meaning that
CFs scatter less along the longitudinal direction where
their momentum ~kF is greater. To comment on this,
we consider large-angle scattering (e.g. back-scattering)
of CFs which contributes the most to resistance. In the
event of back-scattering, the initial and final states on the
Fermi contour are separated by π. For an elliptical Fermi
contour, the required change in the wave vector (∆kF )
to back-scatter would be larger along the longitudinal di-
rection than the transverse direction. According to the
Born approximation, the scattering rate is proportional
to the squared amplitude of the Fourier transform of the
scattering potential34. For large ∆kF , the Fourier trans-
form of the scattering potential decays rapidly34. As a
result, the scattering probability along the longitudinal
direction is expected to be smaller compared to the trans-
verse direction; this is consistent with our observation.

Do other anisotropic systems also show similar scat-
tering time anisotropy in light of the Drude model? To
address this question, we first look at the zero-field coun-
terparts of our hole-flux CFs, i.e., 2D holes. While holes’
Fermi contours also become anisotropic when subjected
to B||, there are important differences. For example,
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FIG. 4. (color online) Arrhenius plots of ν = 2/3 FQHE resis-
tivity minima along the transverse and longitudinal directions
at three B|| values. Each set of Arrhenius plots is shifted ver-
tically for clarity. On the right side, the Fermi contours of
ν = 1/2 CFs are shown at the corresponding B|| values.

unlike CFs, ρ for 2D holes increases in both longitudi-
nal and transverse directions35. The gradual spin polar-
ization of holes by B|| causes a reduction of screening
which enhances scattering and increases ρ. Moreover,
the 2D holes’ Fermi contour rapidly distorts into non-
elliptical shapes with increasing B||

36, making an esti-
mation of transport mass and the applicability of the
Drude model problematic. Qualitatively similar phenom-
ena are also observed for 2D electron systems (2DESs)
in GaAs37. Because of these complications, we consider
the 2DES confined to an AlAs QW whose Fermi con-
tour is already elliptical without any B||

4. For such a
2DES, mL/mT ' 5.1 or, equivalently, α ' 2.25, and
ρL/ρT ' 34. According to the Drude model, this implies
that τL > τT , similar to what we observe for anisotropic
CFs. For a quantitative comparison, we show ρL/ρT and
τL/τT for AlAs in Figs. 3(b) and (c). Interestingly,
for comparable scattering time anisotropy, CFs require
a much smaller α than 2D electrons in AlAs.

We next address the question whether the Fermi sea
anisotropy of CFs affects the energy gap of the neighbor-
ing FQHE states. Figure 4 exhibits the Arrhenius plots of
the ν = 2/3 FQHE resistivity minimum for the longitudi-
nal and transverse directions, taken at three different B||
values. On its right side we also show the experimentally
measured Fermi contours of ν = 1/2 CFs8. From the
Arrhenius plots, it is clear that, similar to ν = 1/2 CFs,
the ν = 2/3 resistivity becomes increasingly anisotropic
as B|| gets larger, with ρL > ρT . We also find that the
ν = 2/3 FQHE energy gap (∆), deduced from the ex-
pression ρ(T ) ∼ e−∆/2kBT , remains fairly unchanged up
to B|| = 15 T but decreases by about 40% for B|| = 25 T
when α (' 1.5) becomes significantly large (for a plot of
∆ vs B||, see Fig. 1(b)). Although the gap decreases, its
values are essentially the same for the longitudinal and
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transverse directions, as expected38.

It is tempting to hypothesize that the reduction of ∆
might be related to the significant B||-induced anisotropy
in our 2DHS. Theoretical studies qualitatively corrobo-
rate our hypothesis. Laughlin’s explanation of the odd-
denominator FQHE states as incompressible liquids of
interacting particles2 and most subsequent studies as-
sume isotropy in the Coulomb interaction. However,
the application of B|| can induce interaction anisotropy
which is closely linked to the Fermi sea anisotropy
of the ν = 1/2 CFs18. In such an anisotropic sys-

tem, Coulomb interaction is ∝ 1/
√
x2α+ y2/α), where

x and y are position coordinates along the principal
axes of the Fermi contour4,11,16,18,19. With increasing
α, the Coulomb interaction becomes increasingly one-
dimensional. As a consequence, the isotropic 2D char-
acter of a FQHE state diminishes and its energy gap is
therefore expected to decrease. Indeed, calculations in-
dicate that while the FQHE states of the lowest Landau
level are robust against moderate interaction anisotropy,
their energy gaps decrease when anisotropy becomes
substantial15–17,19. Although we find qualitative agree-
ment between our data and the calculations, the pre-
dicted reduction of ∆ is smaller. For example, according
to Ref.19, α ∼ 1.5 reduces ∆ by a small amount (< 5%).

While we do not understand the reason for this discrep-
ancy, we consider several other possibilities which could
contribute to the reduction of ∆:

(i) Spin transition -- It is well understood that
B||-induced FQHE spin-polarization transition in low-

density 2DESs29,30,39,40 can reduce ∆. However, we can
rule it out since at the high density of our 2DHS, spin
transitions are neither observed nor expected28.

(ii) Single-layer to bilayer transition -- Such a B||-
induced transition in the charge distribution, as ob-
served in 2DESs confined to very wide QWs37,41,42, can
also reduce ∆. As discussed earlier, in a quasi-2D car-
rier system, B|| couples to the out-of-plane motion of
the carriers. When the magnetic length correspond-
ing to B||, (lB||) becomes smaller than the QW width,
the charge distribution transforms from a single-layer to
bilayer37,41,42. This transformation is reflected in the
Fermi contour, too. The circular Fermi contour, at B|| =
0, becomes distorted in the presence of B||. The shape of
the Fermi contour gradually evolves into a peanut with
increasing B||, and eventually splits into two tear-drops

when the system becomes bilayer37. We expect a quali-
tatively similar evolution for our 2DHS. At B|| ' 25 T,
the magnetic length lB|| ' 5 nm is much smaller than the

QW width (17.5 nm), and simulations43,44 indeed indi-
cate that the Fermi contour attains a peanut shape and is
on its way to split at very large B||. However, this obser-
vation is for 2D holes at B⊥ ∼ 0 and does not necessarily
reflect their charge distribution under large B⊥ at filling
factors such as ν = 2/3 or 1/2. Commensurability mea-
surements of CFs (Fig. 2(d)) in fact confirm that, near
ν = 1/2, our 2DHS stays single-layer like up to B|| ' 25

T8. One might conclude that, for the nearby ν = 2/3
FQHE, the charge distribution is also single-layer like
under comparable B||. However, there is the possibility
that at ν = 2/3 the interacting 2DHS would prefer to
form a bilayer charge distribution and host FQHE states
at 1/3 fillings in each layer41. Such a transition would
result in a minimum in ∆ vs B||

41, and could explain
the large reduction in ∆ we observe at large B||. Unfor-
tunately, we could not measure ∆ at higher B|| because
of the maximum magnetic field available in our experi-
ments.

(iii) Disorder -- Another possible scenario is that dis-
order plays a larger role at high B|| and contributes to a
reduction of ∆. The observation of a significant increase
in ∆ at high B|| in hetero-structure 2DESs45, however,
argues against this possibility. It is worth noting that,
for a 2DES confined to a GaAs/AlGaAs hetero-structure,
we do not expect any single-layer to bilayer transition at
large B|| because of its very narrow wave function thick-
ness. For similar reason, we also expect negligible CF
Fermi contour anisotropy9. The fact that ∆ does not de-
crease in hetero-structure samples is consistent with our
above discussion. The increase in ∆, however, can be
partly attributed to the narrowing of the wave function
with increasing B|| which enhances the electron-electron

interaction45,46.

We also measured the energy gap of the ν = 2/3 FQHE
for a 2DES confined to a 40-nm-wide GaAs QW with
density ' 1.75 × 1011 cm−2. The experiments revealed
that ∆ decreases from ' 2.3 K at B|| = 0 to ' 1.2 K

at B|| = 19.5 T when α ' 1.5 for the ν = 1/2 CFs9.
The relative change in ∆ is close to that of the 2DHS
sample. In this case, too, there is a possibility that the
reduction in ∆ is partly caused by the tendency of the
2DES to become bilayer at ν = 2/3 at very large B|| even
though the CF commensurability data indicate that near
ν = 1/2 the system has a single-layer character9.

Data presented here demonstrate how the anisotropy of
CFs’ Fermi contour, tuned by a parallel magnetic field,
affects their fundamental properties. Treating CFs us-
ing the Drude model reveals how the CF Fermi contour
anisotropy affects their scattering time. The results also
suggest that the energy gap for the ν = 2/3 FQHE de-
creases in the presence of large anisotropy, although we
cannot rule out that the decrease is partly caused by
a tendency of the 2DHS charge distribution towards a
bilayer system at very large parallel fields. Our results
should stimulate future theoretical studies to explore the
transport properties of anisotropic CFs and FQHE.
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