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We present the optimized design of an anti-reflection coating to efficiently couple an incident 

plane wave into a metamaterial with a complex field profile. We show that such an anti-reflection 

coating must enable spatial engineering of the field profiles at the coating/metamaterial interface 

to achieve high transmission, and therefore it is required to be inhomogeneous. As a 

demonstration we investigate theoretically a waveguide-based negative-index metamaterial, 

which under normal incidence cannot be excited due to the antisymmetric propagating 

eigenmode. Through careful engineering of the field profile, lateral position, and thickness of the 

coating layer we enhance the transmission under normal incidence from 0% to 100%. This principle 

may generally be applied to overcome low coupling efficiency between incident plane waves and 

complex mode profiles in metamaterials. 

Optical metamaterials, structures of which the effective properties are derived from sub-wavelength 

elements, have recently attracted a lot of attention [1, 2]. Metamaterials can be used to achieve 

hyperbolic dispersion [3-7], epsilon-near-zero response [8], or an effective negative index response 

[9-12]. While the effective optical properties of these metamaterials can be very interesting, the 

excitation of such media is often quite poor. This is a direct result of the fact that the propagating 

eigenmodes of such bulk metamaterials can have complex field profiles, which are not excited 

efficiently by simple plane waves. In this paper, for instance, we focus on the interesting optical 

properties that arise from antisymmetric eigenmodes supported by waveguide metamaterials. These 

antisymmetric waveguide modes support a negative refractive index [13], which can e.g. be utilized 



 

 

to realize a flat lens, but cannot be excited from free space under normal incidence due to their 

asymmetry. 

To enhance transmission into bulk media, many optical systems use anti-reflection coatings, 

which lead to reflection cancellation through destructive interference between the reflected light 

from the air-coating and coating-medium interfaces. However, the simple homogeneous anti-

reflection coatings that are used in conventional optical systems cannot solve the spatial field 

mismatch between plane waves and antisymmetric metamaterial eigenmodes: in the homogeneous 

coating the incident field profile is still symmetric. 

Here, we propose structuring the coating layer to achieve very large coupling into complex 

bulk metamaterials. The use of nanoscale structures to enhance transmission into homogeneous 

media has been demonstrated before [14-17]. Aside from impedance matching, we simultaneously 

utilize the more complicated field profiles in such a nanostructured anti-reflection coating to achieve 

significant field overlap with the substrate eigenmodes of interest, enabling perfect transmission 

even for an extreme mismatch between the incident wave and the substrate eigenmodes, as in the 

case of a plane wave coupling to antisymmetric modes.  

The proposed approach is demonstrated in the case of a multilayer stack formed by metal 

and dielectric thin films. There has been a lot of interest in light propagation through such multilayer 

geometries [18-23]. For example, a metal/air grating was first considered to explain the observed 

phenomenon of extraordinary optical transmission [24, 25]. The special dispersive characteristics of 

these multilayer metamaterials are due to coupled surface plasmon polaritons that propagate along 

the metal/dielectric waveguide interfaces. Furthermore, multilayer structures allow the derivation of 

analytical formulas for their eigenmodes, and in several cases for their transmission and reflection 

properties as well. 



 

 Figure 1a shows a sketch of the geometry under consideration. Our metamaterial is formed 

by a periodic array of thin metallic layers (with thickness md  and permittivity mε ) and thin dielectric 

layers (with thickness dd and permittivity dε ), with unit cell size m da d d= + . We take the direction 

of periodicity as the x̂  direction, and 0x = to coincide with the center of the dielectric layer of the 

unit cell. The waveguides are infinitely extended in the ŷ  direction, and interfaces between 

different regions are normal to ẑ .  

 For our demonstration, we investigate a lossless configuration which has a single propagating 

mode with an antisymmetric profile and a negative mode index: (2) 1
1 28.9 mβ μ −= − . Following the 

sketch in Fig. 1a, the parameters of the structure are: 45md =  nm, 3.5mε = − , 20dd =  nm, and 

6.25dε =  for 0 450λ =  nm. All other modes supported by the metamaterial are either evanescent 

or anomalous [22, 26]. Fig. 1b shows the field profile of the negative index mode, confirming the odd 

 

Figure 1 a, Sketch of metal-dielectric metamaterial geometry. b, The negative-index waveguide mode 

fieldprofile ( )yh x ( 45md = nm, 3.5mε = − , 20dd =  nm, 6.25dε = and 0 450λ =  nm). The field 

profile is anti-symmetric across the dielectric core. c, Calculated field profile due to a plane wave (

0 450λ = nm) incident on the metal dielectric waveguide array at normal incidence. The spatial field 

profile shown is composed of 15 repetitions of the unit cell. d, Field profile due to a plane wave at an 

angle of incidence of 70° . Negative refraction is evident in the phase fronts, indicated by iθ  and rθ . 

The scale bar in c,d is 250 nm. 



 

 

symmetry with respect to the dielectric core. We denote the field by ( )yh x , to differentiate the 

waveguide mode field profile from the total magnetic field ( , )H x z , which is the sum of all incident, 

reflected and transmitted modes. Fig. 1c shows the total magnetic field distribution near the 

interface when the multilayer structure is illuminated with an incident plane wave at normal 

incidence, calculated analytically with the exact modal method as described in the appendix. The 

propagating mode is clearly not excited at all, but evanescent modes with exponentially decaying 

field profiles are visible near the interface. Since the propagating mode is not excited and the system 

is lossless, all power is reflected.  

As mentioned in the introduction, systems supporting only an antisymmetric propagating 

mode cannot be excited by a symmetric mode, such as a plane wave at normal incidence. In order to 

excite an antisymmetric mode, the symmetry of the incident wave has to be broken, which can be 

achieved by exciting the structure from an oblique angle of incidence. Fig. 1d shows the calculated 

field distribution near the interface for a plane wave incident at 70 degrees. Two features are 

evident: due to a low coupling efficiency at the interface the incident plane wave is partially 

reflected, leading to an interference pattern observed in free space. Secondly, for this geometry the 

propagating waveguide mode is excited with a significant amplitude. Since the waveguide mode has 

a negative mode index, the wavefronts refract negatively, as can be clearly seen in the figure. For an 

angle of incidence of 70iθ °= the waveguide mode index is (3)
1 0/ 3.12kβ = −  ( 0 02 /k π λ= ), leading 

to a refraction angle of 17.5rθ °= − . Nevertheless, the high gradients of the mode field profile, as can 

be seen in Fig. 1b, limit the excitation efficiency of this waveguide mode by a plane wave. As 

discussed above, at normal incidence the transmitted power ( ) 2
2 1 12/T tβ β=  equals zero, where 

t12 is the complex transmission coefficient. At around an angle of 70°  transmission is maximum at 

approximately 0.5T = . 



 

 

To improve transmission into the multilayer structure for arbitrary angles of incidence, we use a 

dielectric grating structure between the air half space and the waveguide array as an intermediate 

coupling layer that allows us to tailor the overlap between the incident field and the waveguide 

mode. A general expression for the reflectivity of a two interface system is given by Airy’s formula for 

reflection [27]: 

  

 

Here, ( 2 )
1β  is the propagation constant in region 2 (which now refers to the coating) and the 

subscripts ij  on r refer to the reflection coefficient from medium i  into medium j  (i.e. 12r is the 

reflection coefficient from air to coating, and 23r  is the reflection coefficient from the interface 

between coating and metamaterial). From Eq. 1 it is clear that total destructive interference is 

achieved when 12r  and 23r  are equal in magnitude, and the thickness 2d  is properly chosen so 

that the two terms in the numerator are π  out of phase [17]. For homogeneous planar media, this 

condition is satisfied when the coating has a quarter wavelength thickness and the refractive index 

equals 2 1 3n n n= . In our case, however, an inhomogeneous geometry is required. Figure 2a shows a 

sketch of the proposed coupling layer geometry: a periodic multilayer with high-permittivity 

dielectric blocks with width Hid  and permittivity Hiε , alternated with low-permittivity blocks with 

width Lod  and permittivity Loε in a unit cell with sizea . If we match the unit cell size to the 

metamaterial, a=65 nm, we find that for Hi 20.25ε =  and Lo 1ε =  there is only one propagating 

mode. This mode is symmetric, and as a result it can be efficiently excited from free-space. By varying 

the filling fraction of the high-index dielectric ( Hi Hi /d aρ = ) the reflectivity of the air/coupling layer 

interface can be controlled, which gradually changes from 0R =  when Hi 0ρ =  to 0.4R =  as 

Hi 1ρ →  ( 20.25ε = ), where R is the reflected power (ܴ ൌ  ଵଶ|ଶሻ. We take an air/coupling layerݎ|

(2)
12 23 1 2

total (2)
12 23 1 2

exp(2 ) (1)
1 exp(2 )
r r i dr
r r i d

β
β

=
+
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reflectivity of 0.2R = , which corresponds to a filling fraction Hi 0.87ρ = . The field profile of the 

corresponding eigenmode is shown in Fig. 2b and has a propagation constant of (2) 1
1 43.85 mβ μ −= . 

The reflectivity of the coupling layer/metal-dielectric waveguide array interface may be controlled by 

displacing the coupling layer with respect to the metal-dielectric waveguide array. Such a 

displacement is necessary, considering that the propagating mode in the coupling layer is still 

symmetric, and as a result it cannot excite the antisymmetric mode if the unit cells of the two regions 

are symmetrically aligned. However, if we displace the coupling layer with respect to the substrate, 

this symmetry is broken, and the negative index waveguide mode can be excited. This displacement 

Δ  is defined as the shift between the center of the low index layer of the dielectric grating and the 

center of the dielectric slab in the metal-dielectric array (see Fig. 2a). The reflectivity of the coupling 

layer/metal-dielectric waveguide array interface is determined through numerical finite-difference 

time domain simulations (Lumerical FDTD 8.7.3), because the exact modal method does not 

converge well for this problem (see appendix for discussion). The results are shown in Fig. 3a, where 

the reflectivity 2
23| |r  is plotted as a function of the displacement Δ . A small imaginary part of the 

dielectric constant of the metal ( 3.5 0.01m iε = − + ) was required for the stability of the simulations. 

This small amount of loss in the metal does not significantly affect the coupling process compared to 

the lossless system.  

 

Figure 2 a Sketch of the air/coupling layer/metal-dielectric metamaterial geometry. b, Magnetic field
profile of the propagating mode in the coupling layer with Hi 20.25ε = , Lo 1ε = , Hi 0.87ρ = , and a 65

nm unit cell size. The propagation constant of the eigenmode is (2) 1
1 43.85 mβ μ −= . 

 



 

It is clear from Fig. 3a that the reflectivity is strongly modulated by the displacement, with reflections 

in the range of 2
23| | 0.1 1r = − . We observe particularly strong variations in reflection for a 

displacement between 5 and 7 nm, where the interface between the high and low index region of 

the dielectric grating crosses the metal/dielectric interface in the substrate. For 0Δ =  nm and 

32.5Δ =  nm, the coupling layer is symmetrically oriented to the substrate, indeed preventing 

excitation of the antisymmetric mode. 

For a displacement 7.8Δ =  nm the reflectivity 2
23| | 0.2r = , which matches the reflectivity of 

the air/coupling layer interface. Then, in order to achieve full transmission of the incident wave to 

the metamaterial array, the thickness of the coating layer has to be tuned, such that the roundtrip 

 

Figure 3 a, Simulated reflectivity (at 0 450λ =  nm) of the coupling layer/waveguide array interface as 

a function of displacement Δ . The coupling layer is defined by Hi 20.25ε = , Lo 1ε = , Hi 0.87ρ = , and 

the unit cell size is 65a =  nm. The waveguide array is the same as in the above. b, Simulated 
reflectivity of the combined coupling layer and waveguide array for 7.8Δ =  nm with changing 
coupling layer thickness L . Clear oscillations are visible, corresponding to a standing wave in the
coupling layer. The two local maxima in reflection are not equal in amplitude due to the influence of
evanescent waves in the coupling layer. 



 

 

phase pick-up isπ . Contrary to simple lossless homogeneous media, the phase shift upon reflection 

at the interfaces of the system under study generally will be different than 0 orπ , because energy is 

temporarily stored in evanescent fields close to the interfaces. Figure 3b shows the simulated 

reflectivity 2| |totalr  as a function of the coupling layer thickness. As expected, a clear periodic 

modulation of reflectivity is observed. Based on the propagation constant of the waveguide mode in 

the coating ( 1(2)
1 43.85 mβ μ −= ), we expect a modulation period of (2)

1/ ( ) 72π β = nm, which agrees 

well with Fig. 3b. Because of the very small thickness of the coupling layer, the evanescent fields do 

not completely decay between the two interfaces, resulting in a different peak reflectivity for the 

two local maxima. For a coating layer thickness of 86L =  nm, a normally-incident plane wave is 

completely transmitted to the antisymmetric mode of the metal-dielectric waveguide array. In 

contrast, without coupling layer this waveguide mode cannot be excited at all at normal incidence. 

 The complete transmission into the metal-dielectric waveguide array is clearly visible in Fig. 

4a, showing a normally-incident plane wave coupling to the optimized geometry. The dashed lines 

indicate the locations of the interfaces. The incident field is visible above the coupling layer. The 

magnetic field distribution in the coupling layer shows a periodic modulation with maxima in the 

high-index dielectric, but it is clearly symmetric. In contrast, the field distribution in the metamaterial 

substrate is clearly antisymmetric. Due to the displacement of the symmetric field distribution in the 

coating with respect to the antisymmetric fields in the substrate, the symmetry constraint is relaxed 

and efficient excitation of the antisymmetric mode is possible. By tuning the coating layer thickness a 

condition can be found where destructive interference prevents any reflection, leading to perfect 

transmission. Just as with a regular anti-reflection coating, transmission remains large up to very high 

angles: Fig. 4b shows the magnetic field distribution for an angle of incidence of 70° , in which case 

85% of the incident power is transmitted into the substrate. In fact, Fig. 4c shows that the reflectivity 

remains low for a large range of angles: 2| | 0.15totalr < for 70iθ °< . In contrast, reflection off the 

bare waveguide array does not go below 50% and is minimum at 70°  (Fig. 1d). Interestingly, the 



 

reason for the low reflectivity over a broad angular range in the presence of the coupling layer is that 

the field overlap between the dielectric grating and the multilayer substrate is affected very little by 

changing the angle of incidence, due to the subwavelength periodicity: the field profile in all layers 

experiences the same lateral phase gradient exp( )xik x . On the other hand, the increase in 

reflectivity at oblique angles is because the condition for destructive interference is no longer 

fulfilled due to: 1) the angle dependence of the mode index, which changes the optical path length

(2)
1 Lβ , and 2) the reflection coefficient of the first interface increases. These reasons also cause 

higher reflectivity at oblique angles in regular anti-reflection coatings.  

 While the proposed structure behaves very similar to a regular anti-reflection coating in 

terms of the angle response, the frequency response will most likely be different. For homogeneous 

media anti-reflection coatings typically operate over a broadband frequency range, given that 

material dispersion is limited (as is the case in e.g. glass and silicon above 500 nm). Here, however, 

the reflectivity of in particular the coating-metamaterial interface may be expected to vary more 

strongly with frequency due to mode dispersion, thereby possibly limiting the operation bandwidth 

of the anti-reflection coating. 

Figure 4 a, Simulated field profile at normal incidence. As is clear, the incident plane wave now very
effectively couples to the antisymmetric waveguide mode. b, Field profiles for a plane wave at an 

angle of incidence of 70° . The scale bar in a,b is 250 nm.  c, Reflectivity from the total system as a 
function of angle of incidence (red). As a reference, the reflectivity of the bare multilayer substrate is
also shown (blue). 



 

 

 We have demonstrated that it is possible to achieve perfect transmission into the bulk 

metamaterial, as long as a coating layer can be found that satisfies 12 23r r=  . However, even in the 

case that this condition is not satisfied, significant transmission enhancements can be achieved. This 

becomes evident if we look at the equation for minimum reflectivity R of such a multilayer system 

[27]: 

 

 

For example, it is possible that the coating/metamaterial interface remains very reflective (

23 0.99r = ) due to extremely high field gradients that cannot be efficiently matched by the low field 

gradients in a dielectric coating layer. Even if the reflectivity of the air/coating interface is very low (

12 0.20r = , like glass), a total transmission of min1 0.56R− =  is still achieved. Hence, even if perfect 

transmission is not attainable, significant transmission enhancements can still be achieved. 

 Finally, it is interesting to note that the two functions of the metamaterial anti-reflection 

coating (spatial engineering of the fields at the interface and tuning the propagation length to 

achieve destructive interference) does not necessarily require that the entire coating is 

inhomogeneous. For instance, one can also engineer the fields at the interface through e.g. a 

plasmonic metasurface [28], which allows for strong field gradients, and use a homogeneous coating 

on top of the metasurface to achieve destructive interference. Such an approach may also be more 

straightforward to realize experimentally.   

To conclude, we have proposed a method to enhance transmission from a plane wave into a 

planar complex metamaterial with a complex field profile. We achieve this by using an appropriately 

structured anti-reflection coating, which allows for efficient excitation of complex field profiles 

through spatial engineering of the field profile at the interface. In an example we show that by 

optimizing the relative displacement between a coupling layer and a waveguide array, and by 

2

12 23
min

12 23

(2)
1
r rR
r r
−=

+



 

 

changing the coupling layer thickness, even perfect transmission into the antisymmetric mode of the 

waveguide array can be achieved at normal incidence. High transmission is also observed for a broad 

range of angles: 100% at normal incidence and as high as 85% at 70° angle of incidence. Our results 

show that a thin metamaterial layer can be used as an efficient anti-reflection coating, enabling 

efficient transmission into structures with a complex field profile. In this work we have shown how 

this may be applied to facilitate coupling to a waveguide array, but this approach may generally apply 

to any structure with a non-uniform field profiles, such as plasmonic waveguides, metamaterials with 

hyperbolic dispersion, epsilon-near-zero response, materials with an effective negative index 

response, and optical interconnects.  
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Appendix: the modal method and convergence 

Here we describe the modal method used to numerically calculate the transmission and reflection 

from an interface between a homogeneous and a stratified medium, or between two stratified 

media [29].  To calculate the reflection and transmission coefficients for inhomogeneous media, we 

need to expand the field in each region into its eigenmodes, ( )| j
nψ 〉  as: 

 
( )( ) ( )

0
0

| (3)( , )
j

ni zj j
n n

n
x z H a e β ψ

∞

=
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In Eq. 3, the superscript refers to the region j , ( )j
nβ is the propagation constant of the nth 

eigenmode and na  the corresponding complex amplitude. Using Ampere's law we find forE : 
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These eigenmodes in each region j  are defined such that they are orthonormal under the pseudo-

inner product [30, 31]: 
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where ( )j xε  is the dielectric constant as a function of position and the asterisk denotes complex 

conjugation. Note that the pseudo-inner product differs from the normal inner product because it 

includes 1/ jε  as a weighting function. In free space the eigenmodes are simply plane wave 

harmonics for normal incidence: ( ) 2| exp( ) /j
n in x a

a
πψ =〉 , where a is the periodicity. In the 

stratified medium, the expansion is performed using the waveguide modes of the geometry, which 

are found by solving the interface boundary conditions in a periodic unit cell [23, 32]. Note that this 

orthonormality condition holds only for lossless systems, but that systems with significant losses can 

also be treated analytically by applying the modal expansion method through an adjoint definition of 

the pseudo-inner product [33]. 

The transmission and reflection amplitudes of a wave impinging on an interface at 0z =  can 

then be calculated by making use of the continuity of tangential fields [34]: 

 
(1) (2)

(1) (2)

ˆ ˆ( 0) ( 0) (6 )
ˆ ˆ( 0) ( 0) (6 )

z z a
z z b

= × = = ×
= × = = ×

E n E n
H n H n

 



 

 

Where n̂  is the normal vector to the interface and the superscripts refer to the two half spaces. We 

find by substituting Eqs. (3) and (4) into the continuity Eqs. 6 the following equations: 
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Here na  and nb  are the mode amplitudes in medium 1 and 2 respectively, and the upper sign 

identifies forward and backward propagating amplitudes. Making use of the orthonormality 

condition in Eq. 5 we can transform Eq. (7) into coupled equations for the amplitudes ma : 
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To solve this system numerically we truncate the infinite series at a certain integer l, typically around 

50. This leads to the matrix equation: 
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where ×l lI  is the identity vector and the elements of the B  matrices are given by: 
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The elements of +a  are known, as this is the incident field, given by a single plane wave. Such a 

linear system is easily solved numerically. We can relate these mode amplitudes to the reflection and 



 

 

transmission coefficients through 12 /r a a− +=  and 12 /t b a+ += . In the case of the interface 

between free space and a stratified medium, these equations simplify to: 

 

(1) (1) (2)
,

(2)
(2) (1) (2)
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where ( )m
zk  is the component of the free space wave vector along the z -direction for the mth 

diffracted order. The free space eigenmodes are given by: 

 (1) 2exp( ( ) ) (12| )m xi k m x
a
πψ = +〉  

In this case the summation runs over negative indices as well, such that one sums from / 2m l= −  to 

/ 2m l=  (for even l). 

When solving for an interface between two stratified media, this formalism often shows very 

poor convergence. The reason is that due to the discontinuities in the permittivity strong Gibbs 

oscillations arise in the finite expansions. When expanding two discontinuous bases on each other, as 

is essentially done in Eq. 9, this leads to artificially large amplitudes for high harmonics. The rigorous 

coupled wave analysis formalism (RCWA) (or the Fourier modal method (FMM)), which is intricately 

related to the exact eigenmode expansion [35], encountered similar convergence problems for TM 

polarization [36]. Convergence can be improved significantly by using a basis that is not affected by 

the discontinuities in ε , such as Gegenbauer polynomials [37]. 
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