

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures

Toon Coenen, David T. Schoen, Benjamin J. M. Brenny, Albert Polman, and Mark L.

Brongersma

Phys. Rev. B **93**, 195429 — Published 20 May 2016 DOI: 10.1103/PhysRevB.93.195429

1	Combined electron energy-loss and cathodoluminescence
2	spectroscopy on individual and composite plasmonic
3	nanostructures
4	Toon Coenen, ¹ David T. Schoen, ² Benjamin J. M.
5	Brenny, ¹ Albert Polman, ¹ and Mark L. Brongersma ²
6	¹ Center for Nanophotonics, FOM Institute AMOLF,
7	Science Park 104, 1098 XG Amsterdam, The Netherlands *
8	² Geballe Laboratory for Advanced Materials,
9	Stanford University, Stanford, California 94305, United States

Abstract

We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron-energy loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and inter-particle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus non-radiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy loss response for higher energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.

10 INTRODUCTION

In the field of nanophotonics, metallic and high-index dielectric building blocks are used 11 $_{12}$ to confine, modulate, and steer light at the nanoscale [1-5]. To resolve and understand these ¹³ optical processes there is a need for high-resolution optical spectroscopy techniques. Elec-¹⁴ tron beam spectroscopy techniques [6], such as cathodoluminescence (CL) spectroscopy [7– ¹⁵ 11] and electron-energy loss spectroscopy (EELS) [12–19] have gained significant interest ¹⁶ recently because they combine the ultrahigh spatial resolution from electron microscopes ¹⁷ with broadband optical sensitivity. In CL spectroscopy one collects the light that is emitted ¹⁸ after electron beam excitation whereas in EELS the energy loss of the electrons is probed in ¹⁹ an electron spectrometer. Scanning-transmission electron microscopy (STEM) EELS is per- $_{20}$ formed in a transmission electron microscope (TEM) and hence requires electron-transparent ²¹ samples in which inelastic electron scattering is minimized. In EELS one can benefit from ²² the very fine electron probe which allows precise characterization of the sample geometry [20] ²³ and composition down to the atomic level [21]. CL spectroscopy is typically performed in a ²⁴ scanning electron microscope (SEM) although CL collection systems have also been success-²⁵ fully implemented in TEMs [8, 22]. SEMs are easier to operate and allow experiments to be performed on thick samples but the electron probe is larger in size. While both experimen-26 27 tal techniques have their advantages and disadvantages they have proven to be very useful ²⁸ for studying optical processes at the nanoscale. In fact, because the techniques measure ²⁹ different quantities, they are complementary. The EELS response includes radiative and ³⁰ non-radiative processes whereas CL spectroscopy solely probes radiative processes [6, 23]. ³¹ Combining these two techniques can thus provide additional information on optical modes 32 in nanostructures, e.q. whether modes are "dark" or "bright" in nature.

Here, we combine these electron beam techniques to elucidate the nanoscale optical properties of the plasmonic dolmen structure and its constituent components; a horizontally oriented single bar and a vertically oriented dimer structure [24–31]. We study the properties of these individual components in detail. Subsequently, we examine the complete dolmen geometry, specifically the effect of element size and their separation on the total response. We interpret the experimental results by comparing them to full-wave finite-difference timedomain (FDTD) simulations [32]. These experiments provide detailed insight into the radomain versus non-radiative character of nanoscale optical modes and show the strength of ⁴¹ combining CL and EELS spectroscopy in such experiments.

42 EXPERIMENTAL METHODS

We fabricated plasmonic dolmens of three different sizes (see Table I for exact dimen-44 sions) and corresponding reference structures on electron-transparent 15 nm thick Si_3N_4 45 membranes using a combination of electron beam lithography, thermal evaporation, and 46 lift-off (see Ref. [33] for a detailed description of the fabrication procedures). Figure 1 shows 47 bright-field transmission electron micrographs of the three dolmen structures under investi-48 gation. In (a) we have included the relevant regions of interest **A**, **B** and the characteristic 49 dimensions describing the dolmen geometry. Although we have drawn only one box per 50 region of interest we have used two (on the left and right side of the structure) making use 51 of the symmetry of the dolmen to improve the signal-to-noise ratio in the spectra. This 52 averaging does not significantly affect the overall spectral shape.

The CL measurements were performed in a FEI XL-30 SFEG SEM equipped with a 53 ⁵⁴ home-built CL-system [7, 34]. The measurements were taken using a 30 kV acceleration ⁵⁵ voltage and a beam current of 0.8 nA. The pixel sizes were 7.5, 8.5, and 10 nm for the ⁵⁶ three dolmen sizes respectively, with an integration time of 0.5 s per pixel. The EELS ⁵⁷ measurements were taken in a monochromated FEI Titan TEM in scanning transmission ⁵⁸ electron microscopy (STEM) mode at 300 kV acceleration voltage with a beam current of ⁵⁹ 0.2 nA. During the EELS acquisition we simultaneously collect a STEM image using the 60 annular dark field detector. To obtain a good reference spectrum we measure the zero-loss ⁶¹ peak (ZLP) through a punctured membrane, *i.e.* through vacuum. From this measurement ⁶² we determined that the energy spread of the primary beam was 80 meV (full width at half ⁶³ maximum). We use a Richardson-Lucy algorithm to deconvolute the experimental EELS ⁶⁴ spectra with the ZLP which is considered to represent the point spread function (PSF) of the ⁶⁵ system in energy space. The scanning pixel sizes were 3, 3.75, and 5 nm for the three dolmen ⁶⁶ sizes respectively with an integration time of 5 ms per pixel. We convert the EELS data to ⁶⁷ intensity per unit wavelength by applying the appropriate Jacobian $(hc/e\lambda_0^2)$. This allows us ⁶⁸ to directly compare the spectral shapes obtained in EELS and CL. In order to quantitatively ⁶⁹ compare the absolute EELS and CL signals one would need to account for the beam currents, ⁷⁰ integration times, and absolute system responses which are challenging to determine exactly.

FIG. 1. Bright-field transmission electron micrographs of the dolmen structures with (a) size 1, (b) size 2, and (c) size 3. In (a) we have also indicated the relevant regions of interest for the experiment (\mathbf{A}, \mathbf{B}) and the characteristic dimensions of the dolmen structure. Scale bars correspond to 50 nm. Hybridization schemes for (d) transverse dimer modes, (e) longitudinal dimer modes, and (f) relevant dolmen modes. Each set of resonances hybridizes to give a set of bonding (lower energy) and antibonding modes (higher energy). In the case of the dolmen the hybridizing bare-state resonances are also detuned in frequency which leads to asymmetric mode splitting. The \otimes symbol indicates that a mode is symmetry forbidden for plane-wave excitation at normal incidence.

⁷¹ Additionally, the experiments were performed at different acceleration voltages which has
⁷² an effect on the plasmon excitation probability [6]. Hence, we show normalized spectra
⁷³ which allow direct comparison of the spectral shape but cannot be used for quantitative
⁷⁴ comparison. The EELS experiments were performed before the CL experiments in this case.

	L1	W1	L2	W2	S	d	h
Size 1	125	60	90	40	30	30 - 60	33
Size 2	185	85	130	60	40	45	40
Size 3	215	100	160	90	30	45	40

TABLE I. Dimensions of the dolmen structures for the three different sizes. The in-plane dimensions were derived from BF TEM data and the thickness from atomic force microscopy (AFM) measurements on reference metal pads on the membrane support. The dimensions are listed in nanometers.

75 SINGLE NANORODS AND DIMERS

In order to understand the response of the dolmen structure under electron beam irradiation we first study the response of its constituent building blocks. To that we end we measured spatially resolved CL and EELS spectra on individual rods and dimers. We raster-scan the electron beam in small steps over the structure and measure the EELS/CL spectrum at each position. As the gold layer is quite thick (\sim 40 nm as determined with AFM), the EELS signal that is measured through the metal does not uniquely represent the optical resonances as other inelastic processes occurring in the dense gold layer also cause energy loss. We therefore only take into account the excitation positions where the beam does not directly hit the structure. Because the evanescent electromagnetic fields extend away from the electron trajectory it can still couple to the nanostructure in this "aloof" excitation configuration, while it does not experience inelastic collisions in the dense gold are material.

Figure 2(a) shows the CL and EELS spectra for a single gold rod with dimensions corresponding to dolmen size 2, spatially integrated over the full scan area. An annular-dark field (ADF) STEM image of the structure is shown as inset. We clearly observe two peaks in the spectra which correspond to localized surface plasmon resonances (LSPRs) in the structure (see table II for peak positions and amplitudes). To identify these resonances we simulate the scattering (Q_{scat}) and absorption (Q_{abs}) cross sections (normalized to the geometrical

FIG. 2. CL and EELS spectra, spatially integrated over the full scan area of a (a) single gold rod and (d) dimer with similar dimensions to the size 2 dolmen. The peak amplitudes and positions are listed in table II. ADF STEM images of the structures are shown as insets. (b,e) Scattering (solid curves) and absorption (dashed curves) cross section simulations for the single bar and dimer for two orthogonal polarizations as indicated by the arrows, calculated using a TFSF source in FDTD. The cross sections have been normalized by the geometrical cross sections of the structures. As insets we show the corresponding E_z near-field distributions. (c) EELS and CL spatial excitation distributions for the single rod for $\lambda_0 = 590$ and 860 nm corresponding to transverse and longitudinal dipole resonances. (f) EELS and CL spatial excitation distributions for the dimer for $\lambda_0 =$ 550, 600, and 750 nm. Scale bars correspond to 50 nm.

⁹⁴ cross section) for plane-wave excitation with the polarization along and transverse to the ⁹⁵ long axis of the rod, using total-field scattered-field simulations in FDTD [32] (for details ⁹⁶ on the simulation setups see supplementary information in Ref. [33]). Although plane-wave 97 excitation is physically different from electron beam excitation, such simulations still pro-⁹⁸ vide a straightforward tool to identify relevant modes and to quantify their radiative and ⁹⁹ absorptive extinction. While this approach is fast and simple and the method of choice in this case, we note that rigorous 3D simulation methods could be employed as well, such 100 as the green dyadic method [35], the discontinuous Galerkin method [36], the boundary-101 element method [37, 38], electron-driven discrete-dipole approximation [39], or line-dipole 102 FDTD simulations [40]. These approaches can be more directly compared to EELS and CL 103 experiments because they can include the electron beam interaction with the structure and 104 ¹⁰⁵ hence they can provide a means to obtain even more direct quantitative insight into the ¹⁰⁶ radiative and non-radiative properties of nanophotonic structures.

The simulation results are shown in Fig. 2(b). For polarization along the long axis we 107 observe a peak in the scattering at $\lambda_0 = 860$ nm while for transverse polarization a peak 108 is observed at $\lambda_0 = 620$ nm. Both resonances have cross sections that significantly exceed 109 the geometrical cross section of the particle, as is often the case for LSPRs. The transverse 110 resonance is blueshifted with respect to the longitudinal resonance because the conduction 111 electrons experience a larger restoring force due to the reduced width. As insets we also 112 plot the real part of the out-of-plane electric field component (E_z) of the induced near-field 113 (in the middle of the rod, h = 20 nm) which clearly reveals that we are driving transverse 114 (high-energy peak) and longitudinal (low-energy peak) electric dipole resonances. In the 115 FDTD field map for the transverse mode we observe four spots in which the fields are higher 116 whereas this is not the case in the actual experiment. We attribute this to the fact that the 117 ¹¹⁸ real structures are more rounded than the simulated structures, mitigating these hotspot 119 effects.

The simulated scattering cross section spectrum qualitatively matches the integrated 121 CL data, where the resonance wavelengths, linewidths, and relative peak heights are well-122 reproduced. This is expected as CL probes the radiative response only [6, 23]. While the 123 EELS spectrum shows similar peak wavelengths and linewidths, the transverse resonance is 124 stronger than the longitudinal resonance (see also table II), contrary to the CL measurement. 125 This can be explained as follows: The transverse dipole mode is strongly confined to the ¹²⁶ rod and hence a significant amount of the field resides within the metal. Additionally, the resonance wavelength is in a spectral regime where gold is absorbing significantly due to 127 interband transitions. As a result, Ohmic dissipation is significant for the transverse mode 128 and the scattering is rather weak, as illustrated by the low peak amplitude in CL. Because 129 the absorption is strong for this mode the total extinction, *i.e.* the sum of absorption and 130 scattering, is significantly larger than the purely radiative scattering response. In Fig. 2(b) 131 the simulated total extinction for the two polarizations can be obtained by summing the solid 132 and dashed curves. As the total extinction corresponds to the quantity that is measured 133 with EELS, a larger peak amplitude is expected compared to CL, consistent with the data. 134 In contrast, for the longitudinal mode the degree of confinement is smaller and gold is also 135 less absorbing in the IR. Hence, the structure scatters more efficiently at this wavelength, 136 ¹³⁷ leading to a strong peak in CL compared to the transverse mode. These observations are corroborated by the FDTD simulations. 138

We note that for the transverse resonance the CL and EELS data are slightly blueshifted 139 compared to the FDTD results. It has been suggested that one might expect a redshift in 140 the EELS measurement, compared to an optical experiment because the near-field should 141 be redshifted compared to the far-field [41]. Thus far it has not been resolved in literature 142 whether CL and EELS measurements are generally blueshifted or redshifted with respect 143 to each other or compared to optical data and it highly depends on the experiment and 144 structure what is observed [42, 43]. For comparison with optical simulations, differences in 145 the exact sample geometry and optical constants are a major factor but there are several 146 ¹⁴⁷ other effects as well that can influence the experimentally measured spectral positions such as charging and carbon deposition as is explained in detail in Ref. [43]. 148

¹⁴⁹ By studying the spatial EELS and CL profiles we can verify the nature of the observed ¹⁵⁰ resonance peaks. Figure 2(c) shows the 2D EELS and CL excitation maps at two resonance ¹⁵¹ wavelengths. As the electron beam preferentially couples to E_z components [6], an electrical ¹⁵² dipole resonance will be excited efficiently at the particle extremities along the dipole axis as ¹⁵³ there is a strong E_z component at those positions (see the field profiles in Fig. 2(b)) [44, 45]. ¹⁵⁴ Indeed, the EELS and CL maps clearly show such features, consistent with the excitation ¹⁵⁵ of in-plane transverse and longitudinal dipole resonances.

¹⁵⁶ Next, we perform a similar analysis for the isolated dimer structure. The response of ¹⁵⁷ a single dimer rod is not shown here as it is similar to what is shown in Fig. 2(a-c) but ¹⁵⁸ blueshifted because of the smaller rod size. Figure 2(d) shows the spatially integrated CL ¹⁵⁹ and EELS spectra for the dimer. Again, two peaks are clearly visible in the spectra. The ¹⁶⁰ short-wavelength peak is quite weak for CL and appears as a shoulder around $\lambda_0 = 600$ $_{161}$ nm whereas for EELS it is much more pronounced and centered around $\lambda_0=550$ nm. The ¹⁶² FDTD field plots in the inset of (e) shows that plane-wave excitation drives a transverse and longitudinal dipole modes with the rods excited in phase. Compared to a single dimer rod 163 however, these collective dimer modes are redshifted for the transverse mode and blueshifted 164 for the longitudinal mode respectively (not shown here). This can be understood from a 165 hybridization scheme were the transverse mode is energetically favorable (bonding) and the 166 longitudinal mode is energetically unfavorable (antibonding) due to the charge distributions 167 associated with these modes (see Figs. 1(d,e)) [46, 47]. For the dimer it is less straightforward 168 to directly compare the plane-wave case to the CL and EELS spectra and excitation maps 169 as we could for the single rod. The dimer also supports an antibonding mode for transverse 170 excitation and a bonding mode for longitudinal excitation, where the dipole moments in the 171 rods are in anti-phase (again see hybridization schemes in Fig. 1(d,e)). These modes are 172 symmetry-forbidden for plane-wave excitation under normal incidence [48–51] but can be 173 accessed with local electron beam excitation [39, 44, 52–54]. Hence the peaks observed in 174 CL/EELS could be due to four modes rather than two. 175

We can use the spatial profiles in Fig. 2(f) to help with the identification of the peaks 176 ¹⁷⁷ observed in the EELS and CL data. For the blue peak in EELS at $\lambda_0 = 550$ nm (excitation map (1)) we observe excitation hotspots along the short axis of the rods and a relatively 178 ¹⁷⁹ high excitation probability in the gap region between the two rods, whereas at $\lambda_0 = 600$ nm (excitation map (2)) the excitation probability is significantly lower in the gap region. In the 180 transverse bonding mode destructive interference leads to near-zero E_z component in the 181 center of the gap (clearly visible in the E_z field profile for this mode in Fig. 2(e)), so a low 182 excitability is expected at that position. In contrast, for the transverse antibonding mode 183 there is constructive E_z interference leading to a high excitability in the gap region [44, 52– 184 54. We therefore conclude that map (1) is consistent with the transverse antibonding mode 185 and map (2) is consistent with the transverse bonding dimer mode. The position of the 186 ¹⁸⁷ peak in CL coincides with the peak in FDTD for the bonding mode and also the spatial 188 profile matches well with the calculated field profile for that mode (see Fig. 1(e)). The 189 blueshifted antibonding mode does not radiate efficiently which is most likely caused by ¹⁹⁰ strong absorption and destructive interference in the far field. Hence, its contribution to CL is small compared to the EELS spectrum. We note that the vertical z-dipole mode in 191 the rods could play a role in explaining the discrepancy between the EELS and CL signal 192 as well. This resonance has a low albedo due to the high degree of confinement along the 193 z-axis, and thus may appear more clearly in the EELS spectrum. FDTD simulations show 194 that this resonance peaks around $\lambda_0 = 500$ nm with a maximum extinction cross section of 195 1.6 (not shown). Finally, we note that gold can also show material related energy losses in 196 the blue part of the spectrum as a result of interband transitions and bulk plasmons but 197 these are mostly filtered out by only considering aloof electron trajectories. 198

We will now focus on the longitudinal dimer modes which are dominant in this geometry 199 and most relevant for the canonical dolmen modes discussed in literature |24-26, 33|. In 200 principle, when the two rods are brought close enough the longitudinal bonding and anti-201 bonding modes can split in energy such that separate peaks are visible [49]. However, in 202 our case it is not possible to attribute the resonant peak at $\lambda_0 = 750$ in Fig. 2(d) to a mode 203 from the spectrum alone because there is no observable splitting. In our configuration the 204 apices where the fields are strongest are relatively far apart, resulting in small field overlap 205 and coupling, making the bonding and anti-bonding mode close to degenerate in energy. 206 Again, using the spatially resolved spectral information provided by EELS and CL aids the 207 interpretation of the observed spectral feature. 208

The EELS and CL maps of the dimer for the peak at $\lambda_0 = 750$ nm (maps (3,6) in 209 $_{210}$ Fig. 2(f)) show that the excitation probability is highest at the rod apices but such behavior ²¹¹ is expected for both the bonding and antibonding longitudinal modes. However, there should ²¹² be a subtle difference between the two modes. For the antibonding mode the rods are in phase leading to constructive E_z interference in the gap region near the apices (also clear in 213 the E_z profile for this mode in Fig. 2(e)). As a consequence we expect that this mode can be 214 efficiently driven in the gap region as well, whereas for the bonding mode that is not possible 215 because there is no E_z component present due to destructive interference. In our case the 216 maps are more consistent with the latter case. Fig. 3 shows the EELS spectra for excitation 217 within the gap and at the apices, which clearly show a redshift of the spectrum for the apices 218 ²¹⁹ compared to within the gap. This effect is also apparent in the spatial EELS profiles in the 220 range $\lambda_0 = 650$ to 750 nm where the gap region gradually becomes darker for increasing ²²¹ wavelength (see maps (1-3) in Fig. 3(b)). These observations suggest that the main peak

FIG. 3. EELS spectra taken at the apices (cyan curve) and in the center (magenta curves) of the size 2 dimer. The spectral collection areas are indicated in the STEM image (inset). (b) EELS excitation maps taken at $\lambda_0 = 650$, 700, and 750 nm (maps 1 – 3) respectively, as indicated by the dashed lines in (a). (c) E_y near-field phase distributions of the dimer from FDTD when excited by a vertical point dipole source 10 nm away from the apex of the right rod. The results are plotted for $\lambda_0 = 665$, 710, and 765 nm and are taken at half-height of the structure. For reference the coordinate system is indicated. (d) Same plot as in (c) but now for excitation in between the rods. (e) Phase difference in E_y between center positions in the rods, calculated from the fields in (c,d) and plotted for the relevant spectral range ($\lambda_0 = 600 - 800$ nm). The center positions are indicated by the gray dots in map (1) in (c). Scale bars are 50 nm.

²²² at $\lambda_0 = 750$ nm in the spatially averaged spectrum in Fig. 2(d) is due to two modes, where ²²³ the excitation efficiency strongly depends on the excitation position and wavelength; the ²²⁴ excitation efficiency of the antibonding mode decreases relative to the bonding mode for ²²⁵ increasing wavelength.

To verify this hypothesis we perform FDTD simulations in a similar setup as in Ref. [33] where we place a vertically-oriented electrical point-dipole source as an approximation for the electron beam excitation at two positions: at the apex of one of the dimer rods and in ²²⁹ between the rods, similar to the excitation areas for the spectra shown in Fig. 3(a). The ²³⁰ driving field of the dipole cannot be removed like we could for plane-wave excitation and as a ²³¹ result the simulations show a mix of the driving field and the induced field on the dimer. To ²³² mitigate the obscuring effect of the driving fields we look at the E_y field component rather ²³³ than at the E_z component which is very strongly present in the driving field due to the vertical orientation of the driving dipole. Furthermore, by comparing the phase of $E_y(\Phi_y)$ 234 in the two rod centers we can straightforwardly determine whether the rods are in or out of 235 phase, *i.e.* in the antibonding or bonding modal configuration. Figures 3(c,d) show 2D Φ_u 236 maps for excitation at the apex and in between the rods like in (a), for $\lambda_0 = 665$, 710, and 237 765 nm. The patterns are taken at half-height of the structure. Although most of the driving 238 ²³⁹ field is filtered out by only considering E_y there is still some residual asymmetry visible but ²⁴⁰ this should not significantly affect the interpretation of the phase distribution. Clearly there ²⁴¹ is a substantial phase difference between the rods for excitation at the apex, whereas for ²⁴² excitation between the rods the phase is equal as expected from symmetry. These trends ²⁴³ are quantified in Fig. 3(e) where we have plotted the phase difference $(\Delta \Phi_y)$ for the two excitation positions in the relevant spectral region ($\lambda_0 = 600 - 800$ nm). For excitation 244 in the center the phase difference is 0 but for the apex excitation the phase difference is 245 246 non-zero and goes from being 0.5π to π for $\lambda_0 = 800$ nm. This suggests that at the center, the symmetric antibonding mode is predominantly excited whereas a mixture of the two 247 modes is excited at the apices, with the contribution of the antisymmetric bonding mode 248 becoming increasingly more dominant for longer wavelengths. These findings are consistent 249 with the spectra and spatial distributions in Figs. 3(a,b). We note that the excitation 250 positions near the apex are more relevant for the overall response as the CL/EELS intensity 251 is highest at those positions (see EELS and CL maps in Fig. 2(f)). Hence, we conclude that 252 ²⁵³ the main peak in the average spectrum shown in Fig. 2(d) indeed is a mixture of two modes, ²⁵⁴ illustrating that spectra of such coupled structures have to be carefully interpreted.

255 SIZE-DEPENDENT OPTICAL RESPONSE

Having understood the individual dolmen elements we now move to the dolmen structures. Previously, we have focused on the coupling between elements in the dolmen and how this is affected by the electron impact position [33]. Here, we investigate how the dolmen response

	CL	EELS
Monomer peak 1	0.32 (598 nm)	1 (566 nm)
Monomer peak 2	1 (867 nm)	0.78 (855 nm)
Dimer peak 1	0.31 (584 nm)	0.69 (541 nm)
Dimer peak 2	1 (740 nm)	1 (720 nm)

TABLE II. Peak amplitudes and center wavelengths (in between brackets) of the normalized CL and EELS spectra for the monomer (Fig. 2(a)) and dimer (Fig. 2(d)). The modes are numbered going from blue to red for both the monomer and dimer.

²⁵⁹ scales with size. It is well-known that plasmonic resonances generally redshift for increasing $_{260}$ particle size. Figure 4(a) shows EELS and CL spectra taken at position A (excitation of ₂₆₁ the horizontal monomer, see Fig. 1(a)) for the three fabricated dolmen sizes (see table III ²⁶² for peak positions and amplitudes). For the smallest dolmen we observe two peaks and for ²⁶³ the larger dolmens we see that an extra peak appears in the blue part of the spectrum. This additional peak can be attributed to the transverse monomer resonance also shown in 264 ²⁶⁵ Fig. 2(a,b). Strictly speaking this monomer resonance can also hybridize with the dimer but ²⁶⁶ the coupling is too weak to observe a perturbation. This transverse monomer mode is too strongly damped in the case of the small dolmens to give a significant EELS/CL response. 267 The other two peaks correspond to the antibonding (central peak) and bonding modes (right 268 peak) of the dolmen respectively (see Fig. 1(f) for charge distributions). For these modes there is a stronger interaction between the dimer and monomer, which is why both hybrid modes are visible even though only the monomer is being driven directly (see Ref. [33] for 271 a more detailed description of this coupling behavior in the dolmen). This dimer-monomer 272 coupling behavior is clearly preserved with dolmen size. Additionally, all of the modes move 273 ²⁷⁴ towards the red as the size increases, although the exact detuning between the peaks varies ²⁷⁵ somewhat for each size. This redshift is also observed in the spectra for the dimer excitation ²⁷⁶ positions (not shown here). Such redshifting for increasingly larger structures is generally 277 observed in plasmonic systems and can be explained by the increase in phase retardation

278 across the structure [1]. On the right side of the figure we also show the EELS and CL 279 excitation maps for the spectral point between the antibonding and bonding mode at $\lambda_0 =$ 280 685, 755, and 840 nm for size 1, 2, and 3 respectively. Similarly to the spectra, the spatial 281 profiles do not change significantly as the size increases. For the smallest size dolmen the 282 excitation positions on the particles were not masked in the EELS spatial maps because 283 the metal is substantially thinner (33 nm instead of 40 nm, see Table I) and the EELS 284 signal better reflects the optical modes that are excited because of a strong reduction in the 285 inelastic contributions.

For the smallest dolmens the CL data is significantly redshifted compared to the EELS 286 data. The redshift in the CL experiments is due to the local deposition of a thin carbonaceous 287 contamination layer during electron beam scanning which we only observed on this specific 288 sample. Despite the redshifting the quality factors and spectral shape remained roughly 289 constant which means that we can still qualitatively compare the spectral shapes for EELS 290 and CL. The spectral shape of the EELS spectrum for this size differs clearly from the CL 291 which shows that the total response (measured with EELS) differs from the purely radiative 292 response (measured with CL). For size 2 and 3 the responses are more similar although 293 in the EELS spectra the features at higher energies are more pronounced, similarly to the 294 reference structures (see Fig. 2). 295

Figure 4(b) shows the plane-wave scattering and absorption cross section for horizontal 296 polarization along the monomer for each of the dolmen sizes, calculated using FDTD. This 297 allows us to study the similarities and differences between plane-wave and electron beam 298 excitation. Also in the plane-wave response the spectral features redshift for increasing size 299 and we see that the scattering to absorption ratio is smallest for the smallest dolmen size 300 as expected, which could possibly explain the larger discrepancy between the EELS and 301 CL spectral shape for this size. Furthermore, we observe a modest transparency window 302 for each size (indicated by the gray dashed line). If one decreases the dimer-monomer 303 spacing d to below 30 nm the FDTD spectra show that the modal splitting and modulation 304 depth of the window can be substantially increased (not shown here). To prove that this 305 transparency window is similar to those discussed in literature we show the induced E_z near-306 ³⁰⁷ field distribution at the PIT wavelength, for each of the sizes in the first column on the right $_{308}$ of Fig. 4(b). We clearly see the reduced intensity on the monomer and the antisymmetric field ³⁰⁹ distribution in the dimer. To demonstrate that the well-known hybrid dolmen modes can

FIG. 4. (a) EELS (dark curves) and CL spectra (light curves) at excitation position 1 for all dolmen sizes. The spectra have been vertically offset for clarity. The peak amplitudes and positions are listed in table III. The EELS and CL spatial maps in the spectral region between bonding and antibonding mode where the PIT window occurs, are shown on the right (at $\lambda_0 = 685$, 755, and 840 nm for size 1, 2 and 3 respectively). Scale bars correspond to 50 nm. (b) Normalized scattering (solid curves) and absorption (dashed curves) cross sections of dolmen structures for polarization along the top bar, calculated by FDTD. The spectra have again been vertically offset for clarity. The PIT feature indicated by the gray dashed line shifts with size towards the red. First column on the right shows the E_z near field distribution at the PIT window for plane-wave excitation (PW) ($\lambda_0 = 730$, 750, and 880 nm for size 1, 2 and 3 respectively). Second column shows the same maps for vertical point dipole excitation 10 nm left of the top bar (excitation position **A**) at half-height of the rod.

³¹⁰ also be driven when locally excited by a point-like source we show the near-field patterns ³¹¹ for dipole excitation at excitation position **A** as well (see second column in Fig. 4(b)). ³¹² We can clearly recognize the characteristic antisymmetric dimer mode in all dolmen sizes, ³¹³ showing that this type of local driving indeed leads to the excitation of the same modes ³¹⁴ as for horizontally polarized plane-wave excitation, independent of the size of the dolmen. ³¹⁵ Although we observe coupling effects in the measurements the system is not coupled strongly ³¹⁶ enough to display highly dispersive features such as a distinct Fano lineshape or PIT window. ³¹⁷ We note that in the plane-wave simulations the transverse mode in the dimer is driven ³¹⁸ simultaneously which leads to an increased contributions around $\lambda_0 = 600, 640$, and 680 nm ³¹⁹ for size 1, 2, and 3 respectively. As mentioned previously however, the high-energy peak in ³²⁰ the EELS/CL response is related to the transverse monomer mode (the transverse dimer ³²¹ mode is not excited at \mathbf{A}) and therefore cannot be compared with these peaks in FDTD. ³²² The two low-energy peaks of the FDTD spectra can be compared to the experiments more ³²³ directly because they correspond to the same modes. Especially for the largest two dolmens ³²⁴ there is a good qualitative correspondence to the red part of the FDTD spectra.

	CL	EELS
Size 1/peak 1	$0.47 \; (672 \; \mathrm{nm})$	$0.87~(656~{ m nm})$
Size 1/peak 2	$1 \ (750 \ {\rm nm})$	$1 \ (712 \ nm)$
Size 2/peak 1	0.15 (582 nm)	0.55 (568 nm)
Size 2/peak 2	0.32 (724 nm)	0.66 (720 nm)
Size 2/peak 3	1 (857 nm)	$1 \ (855 \ nm)$
Size 3/peak 1	0.26 (630 nm)	$1 \ (593 \ nm)$
Size 3/peak 2	0.51 (807 nm)	0.71 (780 nm)
Size 3/peak 3	$1 (935 \text{ nm}^*)$	0.90 (953 nm)

TABLE III. Peak amplitudes and center wavelengths (in between brackets) for the normalized CL and EELS spectra of the three dolmen sizes (Fig. 4(a)). For the largest dolmen (size 3) the CL measurement does not extend far enough into the IR to record the actual peak center wavelength for peak 3. The wavelength only indicates the limit of the detection range in this case. In EELS the peak position was properly resolved because the measurement extends all the way to the zero-loss peak (not shown here).

325 VARYING INTRINSIC COUPLING STRENGTH

So far we have investigated the effect of size on the optical response of the dolmen ³²⁷ geometry. Next, we control the degree of intrinsic coupling between the dolmen elements. ³²⁸ The coupling between monomer and dimer is mediated by the induced near fields in the ³²⁹ nanorods which extend ~30 nm away from the structure. Hence, the intrinsic coupling ³³⁰ strength is mainly determined by the spacing *d* between monomer and dimer. Figures 5(a,b) ³³¹ show CL and EELS spectra at positions **A** and **B** for dolmens of size 1 with different spacings ³³² d = 30, 40, 50 and 60 nm. We have also included reference spectra from an individual ³³³ reference monomer and dimer of this size (" $d = \infty$ "). The spectra are vertically offset for ³³⁴ clarity. For each separation distance the corresponding BF TEM image is shown on the ³³⁵ right.

As described in detail in Ref. [33], the coupling between monomer and dimer is most

FIG. 5. Change in coupling as function of distance d between top bar and dimer. (a) CL spectra and (b) EELS spectra for positions **A** and **B** for dolmen size 1 at spacings d = 30, 40, 50, and 60nm. We also show the reference single bar and dimer spectra ($d = \infty$). The spectra have been vertically offset for clarity. On the right side we show the corresponding BF TEM images of the structures. (c) CL (1,3) and EELS (2,4) maps for d = 30 and d = 60 nm at $\lambda_0 = 675$ nm. Scale bars correspond to 50 nm.

337 clearly reflected in the fact that both the bonding and antibonding hybdrid dolmen modes $_{338}$ are visible in the EELS and CL spectra for excitation at A. For the dolmen size considered ³³⁹ in Fig. 5 the main peak centered around $\lambda_0 = 750$ nm corresponds to the bonding mode and ³⁴⁰ the antibonding mode is visible as a shoulder at $\lambda_0 = 675$ nm (for the smallest spacing of d = 30 nm). For d = 40 nm this shoulder is substantially lower and disappears completely for 341 342 the dolmens with larger particle spacings where the spectrum just resembles the spectrum of an isolated monomer, indicating that the dimer and monomer mode no longer couple and 343 act as independent resonators. These results show that efficient near-field coupling between 344 dimer and monomer requires spacings smaller than 40 nm for this dolmen size. The spectra 345 for position **B** do not noticeably change as the distance between the elements increases and 346 are close to the isolated dimer spectrum. For this excitation position a smaller effect of 347 the coupling on the spectrum is expected [33]. We note that the main resonance positions 348 also vary slightly from dolmen to dolmen without a clear trend, which we attribute to small 349 size/shape variations in the dolmen elements. Figure 5(c) show CL and EELS maps for $\lambda_0 =$ 350 675 nm for d = 60 nm (maps (1,2)) and d = 30 nm (maps (3,4)). These profiles reveal that 351 there is significant field overlap between monomer and dimer in the case of d = 30, reflecting 352 the efficient near-field coupling, while for d = 60 nm this overlap is much lower thereby 353 preventing effective coupling between dimer and monomer. As a result of this difference in coupling efficiency the EELS intensity and CL intensity measured on the monomer at $\lambda_0 =$ 355 675 nm is reduced for larger spacings. This effect is particularly clear in the EELS maps 356 (2,4). These results demonstrate that near-field coupling can affect the spectral shape as 357 well as the spatial profile of CL/EELS measurements and that such coupling can be studied 358 ³⁵⁹ in detail using these techniques.

360 CONCLUSIONS

In conclusion, we have studied the resulting electron energy-loss and cathodoluminescence emission when a beam of fast electrons is used to excite individual or coupled metallic nanorods placed in a dimer or dolmen metamolecule configuration. We directly compare electron energy-loss and cathodoluminescence signals and determine the radiative properties of the plasmonic modes with deep-subwavelength resolution. We find that the electron energy-loss response is stronger for higher energies compared to the cathodoluminescence ³⁶⁷ spectra, related to the far-field scattering efficiency of these modes. The transverse an-³⁶⁸ tibonding dimer mode in particular, is so heavily damped that it only shows up in the ³⁶⁹ electron energy-loss spectrum. We demonstrate that the dolmen spectral response redshifts ³⁷⁰ for increasing size as is expected for plasmonic structures. The dimer-monomer coupling ³⁷¹ that is observed in the dolmen spectra is a nanoscale near-field effect and we show that the ³⁷² intrinsic coupling can be reduced by increasing the spacing between the elements. We show ³⁷³ that this coupling has a pronounced effect on the spectra and observed spatial excitation ³⁷⁴ profiles. This work demonstrates that combining electron energy-loss and cathodolumines-³⁷⁵ cence spectroscopy provides a powerful method to elucidate the optical properties of complex ³⁷⁶ nanophotonic systems at the nanoscale.

377 COMPETING FINANCIAL INTERESTS

A.P. is co-founder and co-owner of Delmic BV, a startup company that develops a commercial product based on the ARCIS cathodoluminescence system that was used in this work.

381 ACKNOWLEDGEMENTS

We would like to thank Sander Mann and Said R. K. Rodriguez for useful discussions. The work at Stanford was supported by a Multi University Research Initiative (MURI FA9550-184 12-1-0488) from the AFOSR. This work is part of the research program of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM), which is financially supported by the 'Nederlandse organisatie voor Wetenschappelijk Onderzoek' (NWO). It is also funded by NanoNextNL, a nanotechnology program funded by the Dutch ministry of economic affairs, and the European Research Council (ERC).

^{389 *} coenen@amolf.nl

 ^[1] N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, Chemical Reviews 111, 3913
 (2011).

³⁹² [2] L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).

- ³⁹³ [3] M. Notomi, Rep. Prog. Phys. **73**, 096501 (2010).
- ³⁹⁴ [4] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. White, and M. L. Brongersma, Nat.
 ³⁹⁵ Mater. 9, 193 (2010).
- ³⁹⁶ [5] H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
- ³⁹⁷ [6] F. J. García de Abajo, Rev. Mod. Phys. **82**, 209 (2010).
- ³⁹⁸ [7] T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Nano Lett. **11**, 3779 (2011).
- ³⁹⁹ [8] N. Yamamoto, S. Ohtani, and F. J. García de Abajo, Nano Lett. **11**, 91 (2011).
- ⁴⁰⁰ [9] X. Zhu, J. Zhang, J. Xu, H. Li, X. Wu, Z. Liao, Q. Zhao, and D. P. Yu, ACS Nano 5, 6546
 ⁴⁰¹ (2011).
- ⁴⁰² [10] R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, Nat. Mater.
 ⁴⁰³ **11**, 781 (2012).
- ⁴⁰⁴ [11] A. C. Atre, B. J. M. Brenny, T. Coenen, A. Polman, A. García-Etxarri, and J. A. Dionne,
 ⁴⁰⁵ Nat. Nanotechnol. **10**, 425 (2015).
- ⁴⁰⁶ [12] J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna,
 ⁴⁰⁷ I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, Nat. Phys. 3, 348 (2007).
- 408 [13] D. Rossouw, V. J. Couillard, E. Kumacheva, and G. A. Botton, Nano Lett. 11, 1499 (2011).
- 409 [14] S. von Cube, F. Irsen, R. Diehl, J. Niegemann, K. Busch, and S. Linden, Nano Lett. 13, 703
 410 (2012).
- 411 [15] O. Nicoletti, F. de la Pēna, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Nature
 502, 80 (2013).
- ⁴¹³ [16] F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Nat.
 ⁴¹⁴ Commun. 5, 3604 (2014).
- 415 [17] S. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, Nano Lett. 14, 3799
 416 (2014).
- ⁴¹⁷ [18] S. F. Tan, L. Wu, J. K. W. Yang, P. Bai, M. Bosman, and C. A. Nijhuis, Science **343**, 1496
 ⁴¹⁸ (2014).
- 419 [19] C. Colliex, O. Stéphan, and M. Kociak, Ultramicroscopy, DOI:10.1016/j.ultramic.2015.11.012
 420 (2015).
- ⁴²¹ [20] A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Erik Dujardin,
 ⁴²² Nat. Mater. 14, 87 (2014).

- ⁴²³ [21] M. Bosman, V. J. Keast, J. L. García-Muñoz, A. J. D'Alfonso, S. D. Findlay, and L. J. Allen,
 ⁴²⁴ Phys. Rev. Lett. **99**, 086102 (2007).
- 425 [22] Z. Mahfoud, A. T. Dijksman, C. Javaux, P. Bassoul, A. L. Baudrion, J. Plain, B. Dubertret,
 426 and M. Kociak, J. Phys. Chem. Lett. 4, 4090 (2013).
- 427 [23] A. Losquin and M. Kociak, ACS Photonics 2, 1619 (2015).
- 428 [24] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).
- 429 [25] N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nord-
- 430 lander, and S. A. Maier, Nano Lett. 9, 1663 (2009).
- ⁴³¹ [26] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat.
 ⁴³² Mater. 8, 758 (2009).
- 433 [27] S. O. Guillaume, N. Geuquet, and L. Henrard, Proc. SPIE 8096 (2011).
- ⁴³⁴ [28] Z. Ye, S. Zhang, Y. Wang, Y. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, Phys.
 ⁴³⁵ Rev. B 86, 155148 (2012).
- 436 [29] C. Forestiere, L. Dal Negro, and G. Miano, Phys. Rev. B 88, 155411 (2013).
- 437 [30] B. Abasahl, C. Santschi, and O. J. F. Martin, ACS Photonics 1, 403 (2014).
- ⁴³⁸ [31] C. Yan and O. J. F. Martin, ACS Nano 8, 11860 (2014).
- 439 [32] FDTD solutions; Lumerical Solutions Inc.; <u>www.lumerical.com</u>.
- 440 [33] T. Coenen, D. T. Schoen, S. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and
 441 M. L. Brongersma, Nano Lett., 15, 7666 (2015).
- ⁴⁴² [34] T. Coenen, E. J. R. Vesseur, and A. Polman, Appl. Phys. Lett. 99, 143103 (2011).
- 443 [35] A. Arbouet, A. Mlayah, G. Christian, and G. Colas des Francs, New J. Phys. 16, 113012
 444 (2014).
- 445 [36] K. Busch, M. König, and J. Niegemann, Laser Photonics Rev. 5, 773 (2011).
- 446 [37] F. J. García de Abajo and A. Howie, Phys. Rev. Lett. 80, 5180 (1998).
- ⁴⁴⁷ [38] U. Hohenester, H. Ditlbacher, and J. R. Krenn, Phys. Rev. Lett. **103**, 106801 (2009).
- 448 [39] N. W. Bigelow, A. Vaschillo, V. Iberi, J. P. Camden, and D. J. Masiello, ACS Nano 6, 7497
 (2012).
- 450 [40] P. Das, T. K. Chini, and J. Pond, J. Phys. Chem. C 116, 15610 (2012).
- 451 [41] J. Zuloaga and P. Nordlander, Nano Lett. 11, 1280 (2011).
- 452 [42] V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-
- 453 Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzán, N. I. Zheludev, M. Kociak, and

- F. J. García de Abajo, Nano Lett. **12**, 4172 (2012). 454
- [43] M. Husnik, F. von Cube, S. Irsen, S. Linden, S. J. Niegemann, K. Busch, and M. Wegener, 455 Nanophotonics 2, 241 (2013). 456
- [44] M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de 457
- Abajo, Nano Lett. 9, 399 (2009). 458

472

- [45] T. Coenen, E. J. R. Vesseur, and A. Polman, ACS Nano 6, 1742 (2012). 459
- [46] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science **302**, 419 (2003). 460
- [47] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Nano Lett. 4, 899 (2004). 461
- [48] S. C. Yang, H. Kobori, C. L. He, M. E. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, 462 and S. Gwo, Nano Lett. **10**, 632 (2010). 463
- [49] J. Kern, S. Großmann, N. V. Tarakina, T. Háckel, M. Emmerling, M. Kamp, J. S. Huang, 464
- P. Biagioni, J. C. Prangsma, and B. Hecht, Nano Lett. 12, 5504 (2012). 465
- [50] P. Pablo Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, 466
- J. Aizpurua, and R. Hillenbrand, Opt. Express 21, 1270 (2013). 467
- [51] F. Bernal Arango, T. Coenen, and A. F. Koenderink, ACS Photonics 1, 444 (2014). 468
- [52] A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and 469 D. W. McComb, ACS Nano 3, 3015 (2009). 470
- [53] I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, and M. A. 471 Toimil-Molares, ACS Nano 5, 9845 (2011).
- ⁴⁷³ [54] K. H. Fung, A. Kumar, and N. X. Fang, Phys. Rev. B **89**, 045408 (2014).