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Abstract

We theoretically study spin and charge transport induced by a twisted light beam irradiated
on a disordered surface of a doped three dimensional topological insulator (TI). We find that
various types of spin vortices are imprinted on the surface of the TI depending on the spin and
orbital angular momentum of the incident light. The key mechanism for the appearance of the
unconventional spin structure is the spin-momentum locking in the surface state of the TI. Besides,
the diffusive transport of electrons under an inhomogeneous electric field causes a gradient of the
charge density, which then induces nonlocal charge current and spin density as well as the spin
current. We discuss the relation between these quantities within the linear response to the applied

electric field using the Keldysh-Green’s function method.

PACS numbers: 78.20.Ls



I. INTRODUCTION

Emergence and manipulation of spins are a major research topic in spintronics. Applying
a controlled light is one of the promising techniques to manipulate spins. Recently, the
spin angular momentum of a circularly polarized light has been observed to induce the
magnetization in solid-state materials through spin-orbit interactions’ . This technique has
further been applied to the ultrafast magnetization switching, whose time is much shorter
than that by an applied magnetic field®©.

When a light is irradiated on a surface of a three-dimensional topological insulator (TT),
spin is predicted to emerge in the perpendicular direction to the electric field of the light”*.
Here, a TTI is an anomalous material with strong spin-orbit interactions. Electrons insulate
in the bulk, while they conduct on the surface of the TI, where the exotic surface state of the
TI is caused by both the spin-orbit interaction and the topological electric structure!® 2.
On the surface of the TI, the direction of the spin and that of the momentum are perfectly
locked to be perpendicular to each other, which is dubbed spin-momentum locking. Because
of this spin-momentum locking, the charge current generated along the direction of the
electric field causes the spin density in the perpendicular direction”®. Such a manipulation
of spin and charge current using a light may make it possible to develop magneto-optical
devices based on TIs” %1314,

Recently, magneto-optical effects and optical excitation using a twisted light beam, whose
phase is twisted around the direction of the propagation of light, have been theoretically

d®20 and experimentally carried out??2. A twisted light has the following two

predicte
intriguing properties distinct from a plane wave?®. First, the phase of the light is twisted
around the center of the beam, and hence, has a singularity at the center. As a result,
strength of the light becomes zero at the center of the beam. Second, because of the twisted
phase, the strength of the light strongly depends on the space, whose distributions are

manipulated by the angular momentum of the light. The above properties can be well-

understood by writing down the electric field of the light. The electric field of the twisted

light beam traveling along the z axis at z = 2y, E = (E,, E,), can be described by* 2
E(r, p,t,20) = E(r, zo)Re[(1, iof )e!l1=07 M mie] (1)
where (r,¢) is the two-dimensional polar coordinates at z = zy, t is the time, and ¢,

and ) are the momentum and frequency of the twisted light beam, respectively. Here,



E(r, zp) denotes the magnitude of the electric field, which depends on the space and becomes
zero at the center r = 0 for a nonzero mj due to the phase singularity. of = 1,—1 and
mj = 0,%£1,£2, .- represent the z components of the spin and orbital angular momentum
of the light, respectively. The former corresponds to the direction of the circular polarization,
i.e., of = 1(—1) represents a right-handed (left-handed) circularly polarized wave, while the
latter describes the winding of the electric field in the z = zy plane. In fact, the electric field
of a twisted light has the topological quantity. We will see later that the winding number of
a twisted light given by Eq. (1) is proportional to of and mj [see the discussion below Eq.
(67)).

So far, it has been theoretically predicted that in the presence of the spin-orbit interac-
tion, unconventional photo-induced spin excitation and current emerge due to the spatial
dependence of the strength of the electric field of the twisted light. It is expected that
the interband excitation can be influenced by not only the spin angular momentum but
also the orbital angular momentum of the twisted beam. However, the latter effect has not
been observed so far. Actually the experimental investigation of the photo-induced spin
polarization?? could not detect the orbital angular momentum dependence in the semicon-
ductor with the Rashba and Dresselhaus type spin orbit interaction. There is a theoretical
prediction that the orbital angular momentum dependence can be observed in cylindrical
quantum disks'®.

In this paper, we theoretically study spin and charge generation due to the electric field of
the twisted light beam on a disordered surface of a doped T1I by using the Green’s function
technique. We analytically calculate the linear response function of the spin density to
a space-time dependent external electric field. We find that the local and nonlocal spin
densities are induced by the electric field and the gradient of the electric field, respectively,
via the spin-momentum locking. Here, the local spin density comes from the charge current
that flows along the electric field, whereas the nonlocal one couples to the diffusive charge
current due to the impurity scatterings on the disordered surface of the TI. In addition, the
gradient of the electric field also induces the charge density and the spin current. Applying
the obtained results to the electric field of a twisted light beam, we find that various spin
distributions appear depending on the orbital as well as spin angular momentum of the
light. Moreover the spin distributions have topological structures i.e., magnetic vortex-like

textures, characterized with winding numbers, which dependent on both of and mj. The



induced spin structure evolves in time but its winding number remains a constant. The
manipulation of such a topological spin structure could be applicable for the spintronics
related to magnetic vortices and skyrmions.

This paper is organized as follows. In Sec. II, we introduce the model Hamiltonian for
the disordered surface of the TI in the presence of a space-time dependent electromagnetic
field. We also present the Green’s functions on the disordered surface of the TI. In Sec.
ITI, we calculate the response function on the surface of the TI within the linear response
to the applied electric field. Readers who are interested only in the physical meaning of
the responses can skip Sec. III. Section IV discusses the main results of the responses |
Egs. (39), (46), and (48)], e.g., general properties of the charge density, spin density, charge
current, and spin current induced by the electric field on the surface of the TI. Section V
discusses the properties of the twisted-light-induced spin and charge distributions. Section
VI summarizes the paper. Appendices A and B-H give the detailed calculations used in Sec.

IT and Sec. III, respectively.

II. MODEL

In this paper, we consider a high quality TI such as Bij 5SbgsTe; 7Se; 3, namely, the
Fermi level is assumed to be located between the valance and conduction bands of the
bulk TT? as schematically illustrated in Fig. 1(a). In such a high quality TI, only the
electrons at the surface contribute to the transport and the bulk is an ideal insulator. In
the surface state, the spin and momentum are perfectly locked. The low-energy effective
Hamiltonian describing the electrons in the surface states has been theoretically derived and

experimentally demonstrated!’'? as
o = [ da[-ihve(o % ). ~ ecl )

where ¢ = T (x,t) = (1@ wj) and v are the creation and annihilation operators of con-
duction electrons on the surface of the TI, ¢j—,,,.) are the Pauli matrices, and e < 0 is the
elementary charge of electrons. Here, we assume a doped TI, and er and vg are the Fermi
energy and the Fermi velocity, respectively, on the surface of the doped TI. We further

take into account nonmagnetic impurities on the surface of the TI as well as an applied



electromagnetic field. The total Hamiltonian is given by

H=Hri+Hem + Vimp, (3)
Hom = —EUp / dm¢T(& X Aom);ﬂbu (4)
Vimp - /dw Uﬂw@b (5)

Here, Hen is the gauge coupling between conduction electrons and the electromagnetic field.
The vector potential of the electromagnetic field A., generally depends on the space and
time, and the electric field and the magnetic field are respectively given by E = —0; A
and B =V X Agy. Vimp i Eq.(5) describes the potential due to the nonmagnetic impurity

scatterings®3033

, where w;(x) = Zjv:ll up (6(x — R;) — 75) is the potential energy density
with N; being the number of the impurities, u, a constant, R; the position of the j-th

impurity on the surface, and L? the area of the surface. Here, the contribution from the

Niug
A

impurity potential is treated as the impurity average (u;(q)u;(q’)); = dq.q'» Where u;(q)
is the Fourier transform of u;(x). Because the electrons that contribute to transport exist at
the surface of the TI, whose wave function spreads over a few unit cells from the surface®?,
we take account of impurities only at the surface, i.e., impurities existing within a few
unit cells from the surface. Moreover, since the metallic surface states at the Fermi level are
energetically well separated from the bulk conduction and valence bands, impurity scattering
occurs within the surface states as described by Eq. (5)%30732,

Figure 1 shows a schematic illustration of the energy band of the TT and the possible op-
tical transition processes. Among the three interband transitions (1)-(3) and one intraband
transition (4) shown in Fig. 1(b), this paper takes account of only the process (4). This is
because we are considering to apply a terahertz beam®, whose energy is in the order of a few
meV. By contrast to this, in the case of Bij 55bg 5Te; 7Se; 3, for example, the bulk energy gap
and the Fermi energy measured from the Dirac point are respectively given by E,; ~ 0.3 eV
12 and ep ~ 0.2 eV 2. Since the characteristic energies required for the transition process
(1)-(3) are (1) Ey, (2) €, ~ E;/2+ ep and €. ~ E,/2 — ep, and (3) 2ep, the low-energy
incident light (AQ ~ a few meV) cannot excite none of the interband transitions (1)-(3).

To calculate the spin density and the charge density, we use the Green’s function method.

In the absence of the electromagnetic field, the retarded Green’s function is given by?30:31:36

—1

G = B+ e = hoee - (o x 2) = S| (6)
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FIG. 1: (Color online) (a) Schematic illustration of energy band of topological insulator and (b)
processes of optical transitions: (1) interband transition from the valence band to the conduction
band in the bulk TI, (2) interband transition from a surface state to a bulk energy band of the TI
and vice versa, and (3) interband transition from a surface state to the other surface state with

opposite helicity. This paper considers (4) intraband excitation near the Fermi surface.

Here, a variable with a hat denotes a two-by-two matrix. By calculating the self-energy ik,w

30,31,36

within the self-consistent Born approximation and expanding it with respect k up to

the linear terms,3*3137 Eq. (6) is rewritten as
Gho = [hw + ep — Tipe - (k x 2) +1in] ", (7)

where U = vp/(14£) is the modified Fermi velocity due to nonmagnetic impurity scatterings
with & = nyu2/(47h*v3) being a constant depending on the properties of the TI, and the
imaginary part of the self-energy n = mnsulv./2 defines the transport relaxation time 7 =
h/(2n). Here, n; = N;/L? is the concentration of the impurities on the surface and v, is the
density of states of electrons on the surface. Since we are considering a metallic state, 7
satisfies i/(ep7T) < 1. By comparing Eqs. (2) and (7), we see that the effective Hamiltonian
for the surface electrons affected by impurities is given by the right-hand side of Eq. (2) with
replacing vp with op. Accordingly, vp in Eq. (4) is replaced by 0p. The detailed derivation

is shown in Appendix A. Although the value of ¥ is almost the same as that of vp 3%, we



keep vp instead of v in this paper so as to explicitly express the contribution from impurity

scatterings.

III. SPIN AND CHARGE DENSITIES INDUCED BY AN APPLIED ELECTRIC
FIELD

In this section, we calculate the response functions, i.e., the spin density and the charge
density, to an applied electromagnetic field within the linear response theory. The results
are summarized at the beginning of Sec. IV. Those who are interested only in the results
can skip this section and go to Sec. IV.

We calculate the spin density induced by an applied electric field on a disordered surface
of a doped TI by using the Keldysh Green’s function method within the linear response
to Hem. The spin density s = %(@Z)T&w) is described by using the lesser component of the
Keldysh-Green’s function in the same position and time —ihG<(x,t, x,t) = ()i (x, ) (ax,t))

as

si(x,t) = —%tr[m(f(w txt)] (i=uz,y,2), (8)

where tr denotes the trace over the spin indices. Then, from the Dyson’s equation for
G<(w, t,x,t) the induced spin density within the linear response to Hey, is given by
zhevp

(.’B t) 572 Z €zvu Z o Qt—g-x) tr| W(q7 Q)]Acm,u(q7 Q), (9)

v, u=x,yY,z

where €., is the Levi-Civita symbol, ﬂw is the spin-spin response function, and g = (¢,, ¢,)
and 2 are the momentum and frequency of Aqn .(q, §2), respectively. The response function
fIW can be decomposed as fIW = &uﬂv and I, is represented by

ﬂu(q>Q) = Z[g —w %Au(w>q>Q)gk+g,w+%]<' (10)
k,w

Here, A, is the vertex function due to Vimp, Whose diagram is shown in the Fig. 2, and is

given by

Avw,q. Q) =6,+ > Z w, 4, V)]",, 00, (11)

pn=0,z,y,z n=1
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FIG. 2: Vertex function due to Vimp. The dashed and wavy lines mean the potential due to
the nonmagnetic impurity scatterings and gauge coupling between conduction electrons and the

electromagnetic field, respectively.

where 7 is the two-by-two identity matrix and I' is a 4 x 4 matrix defined from the following

equation
fu(waqa Q) = niuizzgk—%,w—%a"/gk-i-%,w-‘r% (12)
k
= Y Tou(w,q.9)3,. (13)
pn=0,x,y,z

Expanding Eq. (10) with respect to the retarded and advanced Green’s functions, §* and
g%, based on the formula® g, = f.(3k., — k), Where f, = 1/(e” + 1) is the Fermi

distribution function, the spin-spin response function can be divided into three terms:

ﬂl/(q> Q) = f[’r/a(q’ Q) + f[’r/r(q’ Q) + ﬂia(qa Q)’ (14)
(g, ) =) (furs — fuo2)0h a0 o M@0 DG a0, (1)
k,w
(g Q) == forafy o, oA (@ DG4y a, 0. (16)
k,w
g =) foobh g, oM@, 0. Q50 0. (17)
k,w

Here, A’B (A B = r,a) is defined by

AP (w,q. Q) =6, +> T*%(w,q,Q)]",,6, (18)
n=1
MAB — 2 ~A ~ B
Fl/ (wv q, Q) = Ny ;gk—;w-gal’gkﬁ-g,wﬁ-g’ (19>
= > TH(w,q.9)5,. (20)
pn=0,x,y,z

By expanding ffj and ffja with respect to q and €2, we find that they are in the order of
EFLT < 1 and A7 (A*) in [T (I1%) can be approximated with &, (see Appendices B-D for



the detailed calculation). Then, by expanding the Fermi distribution function with respect

to , the dominant contributions of Eqgs. (15), (16) and (17) are written by

ra I At Ara ~a,

HI/ =0 § fwgk_%w_%‘/\u (w>q>Q)gk+g7w+%a (21)

ﬂrr _ f AT Goar + EQf/ AT Gt (22>
I R L SRS L vy

ﬂaa _ Z f ~a, A ad o EQf’ ~a 5 A2 (23)
v £ ng—%,w—%a”gk-i-%,w—i-% 2 wgk—g,w—%a”gk—i—%w—i—% )

In addition, II'* and I1** are shown to be much smaller than II'*® (The detailed calculation
is given in Appendix E). Thus, II, is approximately given by

/\

, 1 =0 Z ol g oM (@.q. D3, q 0. (24)

In the low-temperature limit, we approximate the derivative of the Fermi distribution func-

tion as f/, = —d(w). Then, the integral over w in II'* reduces to
Tra Q Ara ~a
Hu (qa Q) 27’(‘ gk_%_%Au (Oa q, Q)glﬂ_%%' (25)
We further expand A™ as A% = Za:(my L0, A%, and rewrite Eq. (25) as
- Q
II*(q,Q) = —— I,(g, QA2 (0,q,9). 26
(g, 9) 2%:%:@,2 (a, A (0,4,0) (26)

Here, we define fg(q, Q) =>,0 g, 0, Qagngrq o, which is calculated up to the quadratic

272
terms in ¢ and the primary terms in Q as (see Appendices B and C for the detailed derivation)

. T, . 1 R PR
IQ:O = 277 |:<1 — Q7 — 552([2) oo + auZ::m ) §€UUQQ€uaz:| ) (27>
. T, 1 . 3 1 . v
v=x,y a=z,y

- h
I, =0| — 2
o), (29

where ¢ = ¥p7 is the mean free path. Since ]}:Z is negligibly small as compared with fczo
and I._,,, we consider only the contributions from I_q . ,. Since Egs. (27) and (28) do not
include &, they are represented by using the Pauli matrices as

h
- & -
D2 L+ o <6F7) , (30)

p=0,z,y

where I¢, is the 3 x 3 symmetric matrix given by

9



1—1iQr — %£2q2 %qu —%ﬁqm

TlVe i .
I= 5La, (1 =97 — 3026%) + 50(q2 — q) 100y
_%Equ’c i€2qu'cqy %(1 — 0T — %€2q2) - 1€2(
(31)
On the other hand, from Eq. (18), the vertex function A™ can be described by
Ar=6,+ D, Ditdat Y (0™ ada +
a=0,z,y a=0,z,y
- Z [(1 _Fra)_l]ua&av (32>
a=0,z,y

where the second equality holds when max{}_, |I}s|} < 1 is satisfied. By using 1 —iQ27 =
o O (Q2), '™ = nail, and Eq. (31), one can see I'"™ indeed satisfies max{}_, [I%[} <

1. Then, the matrix ["™*A™ is calculated as

raA™ — 4 (1 - Fra)—l

1 'MQ?J _ MQI
000 G202 +iQT 202 +iQT q202+iQr
_ ity at? 4z gyl
010 + G202 +iQT P2 HQT 202 +iQT ’ (33)
001 _ ilgs G qyl* azt?

COCHOr @R+ @rR+iQr
from which we obtain the spin-spin response function as

B QV@ ra A ra A
HI/ ~ — 477 Z [F A ]C/VO'C/’ (34)

¢'=0,z,y

where we have used the fact that I and A™ are symmetric matrices. Thus, from Eqs. (9)

and (34), the u = x,y components of the spin density are given by

€1~)FI/6T iW(Qt—q-x ra A ra

Substituting Eq. (33) in Eq. (35), we obtain

2( .2
CORVeT — 0 Z i qw)“g (¢ Aemy + @ylo Aem,a)

1
Sy = 5evFI/eTEy 572 2 P01 iOr ) (36)
1 ~ 6UFV€ i(Qt—q-x) E (quem T + qu:cAem y)
Sy = —§evFVeTEm 52 — 0, qEQ a T ior (37)

10
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The second terms of Eqs. (36) and (37) can be described by using the charge density p.
on the surface. Here, p, = e(yTy)) = ’he he e e > a0 el @@t A, (g, Q), is obtained

from the charge-spin response function HOV =11, as

5, — iherve emze’(m a-)() { rfaAra]oyAem,u}

2nL?
e2VpleT , 1
_ eT / , i(Qt—q-x) Aom 5
2 OV g;e 202 +iQr (38)
= 2%, D7V - (E)p, (39)

where D = 1927 = %@pf is the diffusion constant. Here, (E)p is defined by the convolution

of E and the diffusive propagation function D as

D= — / dt/dac’Dac—a: t—t"E(x' 1), (40)

i(Qt—q-x)
Dl@,t) = L2 Z 2Dq + i€ (41)
WO |z?
~ §=Dt P [—@ - (42)

The diffusive propagation function D is also the Green’s function satisfying the following

differential equation
(8t — 2DV2) D(x,t) = 6(x)o(t). (43)

Equations (39) and (40) show that due to the impurities the effect of the applied electric
field on the surface electrons is not instantaneous but diffusively propagates on the surface
of the TI. Equation (40) gives the definition of such a nonlocal electric field. Suppose that
the surface of the TI is isotropic, the gradient of the charge density is given by

c*pvet : Ug3 Ao e + @yduAemyy)
wPo = — € a i(Qt—q-x) r{lem,x yYxr4lem,y 44
Vap L? tqZQ€ G202 + QT ’ (44)
e20pr,T : U P Aoy + QyGeAemz)
— e Z(Qt—q~:z:) y* rem,y ydx4tem,x 4
which is related to the spin density [Egs. (36) and (37)] as
1 14
8= §€UFVGT(E X z)+ % (z X V) pe. (46)

11



On the other hand, the spin density on the surface of the TT is related to the charge current
via

i, = OHem

a O0Aem

= 2e0p(2z X 8),, (47)

where we have replaced vp in Eq. (4) with oF so as to take into account the effects of

impurities. By substituting Eq. (46) in Eq. (47), we obtain
j = pv.tE — 5plV p,. (48)

We have confirmed that Egs. (39) and (48) satisfy the charge conservation law: p.+V -3 =0
(see Appendix G for the detailed calculation).

IV. PROPERTIES OF THE CHARGE, SPIN, CHARGE CURRENT, AND SPIN
CURRENT DENSITIES

We summarize the results obtained in the previous section [Eqgs. (39), (46), and (48)]
in TABLE 1. Using the above results, we discuss the property of the charge, spin, charge
current, and spin current densities induced by an electric field applied on the disordered
surface of the doped TI. We find that there are two types of quantities induced by the
applied electric field: one is directly proportional to the electric field E, such as the first
terms of Eqs. (46), and (48), and the other relates to E via (E)p, such as the second terms
of Egs. (46), and (48). We define the former (latter) as the local (nonlocal) quantity and
decompose Eqgs. (46), and (48) as

j=3"+3", (49)
s = s 4 gl (50)

where j@ (s®) and j® () are local and nonlocal charge current (spin) density, re-
spectively. In the following subsections, first, we show the properties of the local quantities
(Sec. IV A). Next, we consider the physical meaning of the charge density (Sec. IVB), and
show the nonlocal charge current and spin density (Sec. IV C), which are proportional to
the spatial gradient of the charge density, as shown in TABLE I. Finally, we discuss the
property of the spin current (Sec. IVD) .

12



TABLE I: Dependence on the applied electric field E of the induced charge density p., spin current
density ji*, spin density s, and charge current density j on a disordered surface of a doped TI,

where (F)p is defined in Eq. (40).

Pe(Charge density) jla (Spin current) S (Spin density)  J(Charge current)

Local - - zx FE E
Nonlocal V- (E)p €20iV - (E)p (zxV)V-(E)p V(V-(E)p)

A. Local charge current and spin density

From Eq. (48), the local part of the charge current is given by
§W(x,t) = v2v.TE(x,t). (51)

The local charge current is directly induced by the applied electric field E(x,t): as in the
conventional metal, electric current emerges in the direction of the applied electric field. The
conductivity 5 /E is proportional to 0% and 7. These properties are consistent with the
previous works®32.

Then, due to the spin-momentum locking, the spin density is also induced by the electric

field” 32 which corresponds to the local spin density given by the first term of Eq. (46):
o_1;
s = §6UFV6T(E X z). (52)

It is found that the induced spin density is perpendicular to the applied electric field. The
magnitude of the local spin density depends on the relaxation time. These properties agree
with the existing works” ®32. The phenomenon of the electric field induced spin polarization

t39

is similar to the Edelstein effect”, which occurs in the presence of the Rashba type spin-orbit

interaction in a two-dimensional system.

B. Charge density

We find that as shown in Eq. (39) the charge density p, is induced by the divergence of
the electric field with diffusion :V - (E)p. Therefore, when we apply a uniform electric field,
no charge density is induced. From Egs. (40)-(42) we obtain the diffusion equation for the

13



charge transport:
(@ — 2DV2) pe(w, t) = _2€2V6DV : E(.’B, t)? (53>

which indicates that the divergence of the applied electric field works as a source of the
diffusive propagation of the charge density. We find that from the left side of the equation
above, (0; —2DV?) p,, the diffusion constant is 2D, a twice of that on the surface of a
metal3!. The factor 2 comes from the difference in the self-energy due to impurity scattering:

The self-energy on the surface of an isotropic metal is given by Wniufl/eym, where v, ,, is the

1

2.
5TNu; Ve; The

density of states in the metal, whereas that on the surface of the TI is

factor %, which originates from the linear dispersion of the surface of the TI, leads to the

coefficient 2D. Here, the diffusive equation of motion qualitatively agrees with the previous

workg?32:40:41

C. Nonlocal charge current and spin density

Next, we consider the nonlocal charge current and spin density. The nonlocal charge

current density corresponds to the second term of Eq. (48):
3 = 202 v 7V (V - (E)p). (54)

It is found that the nonlocal charge current is proportional to the spatial gradient of the
charge density, which is shown in the previous subsection as 5™ = —9pfVp,. The charge
current in this form indicates that the nonlocal charge current is a diffusion current. Since
both the local and nonlocal charge currents are proportional to 02, their directions are the
same for top and bottom surface of the TI.

Due to the spin-momentum locking, the nonlocal spin density s = %(z X V)pe, which
corresponds to the second term of Eq. (46), is induced on the surface. The nonlocal spin is
given by

~ 2
Sl _ _evpr,Tl

T (2 x V) (V- (B)) (55)

The spin density is generated by the second spatial derivative of the nonlocal electric field

(E)p-

14



The nonlocal spin density diffusively propagates through the impurity scatterings on the
surface of the TI. The diffusion propagation of the spin is described by

evpv 02

(0, — 2DV?)s) = (zx V) (V- E). (56)

We find that the diffusion propagation of the spin is triggered by an inhomogeneous electric
field, V(V - E). (This property is also predicted in Ref. 34). Hence, when we apply a
uniform electric field on the surface, the nonlocal spin density is not generated. As in the
case of charge density, the diffusion constant for the spin density is 2D.

We note that both the local and nonlocal spin densities are proportional to vg. Since vp’s
on the top and the bottom sides of the TI have opposite signs, the direction of the induced
spin on the top surface of the TT is perfectly opposite to that on the bottom surface of the
TI, when we apply the same electric field on both the top and bottom side of the TI.

D. Spin current

Next, we calculate the spin current due to the applied electric field on the disordered

surface of the doped TI. The spin current j¢* is defined by
5% + vz]? = Ta> (57)

where the subscript and superscript of ji* denote the direction of the flow and spin, respec-
tively, and T represents the spin relaxation. Using the Hamiltonian in Eq. (3) and the

Heisenberg equation for s, we obtain

. Up
= zaifPe- o8

The index z denotes the out-of-plane direction and €,,; means that the direction of the
spin and that of the spin current are both in the xzy plane and perpendicular to each other.
Note that the direction of the flow and spin is perpendicular each to other. This is the
consequence of the spin-momentum locking on the surface of the TI. We also note that the
spin current is proportional to the charge density, and from Eq. (39), proportional to the

divergence of the nonlocal electric field:

Jji = — etpr D7€,0;V - (E)p. (59)
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Hence, when we apply a spatially uniform electric field on the surface, no spin current is
induced. Besides, we find that the spin current is an odd-function of op, which means the
spin current depends on the chirality on the surface of the TI. Namely, the relative direction
between flow and spin of j{* on the top side of the TT is opposite to that on the bottom side
of the TL.

In the conventional spin-orbit coupled systems, the spin current is generated by an applied
electric field*> %, which called the spin Hall effect. Besides, the generated spin current can
be converted into the charge current via the spin-orbit interaction.*” These effect can be
understand from the coupling between the spin current and the charge current: j; o €05
47, On the surface of the TI, on the other hand, we find from Eqs. (54) and (59) that the

nonlocal charge current is proportional to the gradient of the spin current3:
§O = — ele,o; V2. (60)

Again, this is the consequence of the spin-momentum locking and Eq. (60) generally holds
for the system of electrons on a surface of TIs*". This property in the TI is distinct from
that in a conventional metal. The direction of the charge current is parallel to the spatial
gradient of j&. This relation is plausible due to the following reasons. First, the charge
density p. is proportional to the spin current. Second, a diffusive particle current generally
proportional to a spatial gradient of particles. We note that there is no relation between the
spin current and the local charge current jO.

Finally, we comment on the property of the spin relaxation torque. The relaxation torque

T« defined in Eq. (57) is obtained within the linear response to the electric field as

1 .
T :§€T7FV67'(E X 2)o — <

:%eﬁpye (7 x 2)o +2D7 (2 x V), (V- (B)o)] +ol(z x V)a(V - {E)p)].  (61)

l U
2—68t + 2—6> (2 x V), pe

Here, 7% can be divided into the local and nonlocal terms, which correspond to the first
and second terms, respectively, in the first square bracket in the most right-hand side of
Eq. (61). The local one is given by the time derivative of the applied electric field, and its
direction is perpendicular to both E and z. The nonlocal one is proportional to the second
derivative of the nonlocal electric field (E)p. These above results and properties are the

same as the spin density on the surface of the TI with magnetism37.
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V. RESPONSES TO THE ELECTRIC FIELD OF A TWISTED LIGHT BEAM

Using the results obtained in Sec. IV, we discuss the properties of the spin and charge
densities due to the electric field of a twisted light beam with various orbital angular mo-

mentum.

A. Electric field of a twisted light beam

First, we explain the property of the electric field of the twisted light beam with the
Laguerre-Gaussian modes?2°. We assume that the twisted light beam propagates along the
z axis and the electric field of the twisted light beam lies in the xy plane at the top surface

of the TT (z = zy). The schematic of the system is illustrated in Fig. 3. The twisted light

L+ twisted light beam

Y%

.
PANINS

\
\
!

- .
- .
|

7=7,

FIG. 3: (color online) Schematic illustration of the system. The optical twisted light beam is

applied to the surface of the topological insulator for normal incidence.

beam satisfies the wave equation, V2E — C%%ZT‘E = 0, where ¢; is the velocity of light in a
0

vacuum. Then, the electric field E(x,t) = (E,(r, ¢,t), £,(r, ¢,t)) on the surface is written
by 24,26

E = &(cos (Or + mip — Qt), —of sin (O + mjp — Qt)), (62)

where r = /22 4 y? is the distance from the center of the light on the top surface (z = z)
and ¢ = arctan (y/z) is the azimuthal angle. The helicity of = +1(—1) denotes the right-

hand (left-hand) circularly polarized light and corresponds to the spin angular momentum
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of light +1(—1). The orbital angular momentum of light, m{ = 0,+1,---, determines the
whirling pattern of the electric field on the plane at z = 2y, which can be manipulated in
experiments®. The phase Ox = Ox(r, z9) depends on 7 and the distance from the light

source, z, and is given by?®

q:r’

"~ 2R(z)’

Or = —(1+2p+ |mi|) tan™* [@}

(63)

where the first term denotes Guoy phase, R(z) = z[1 + (2,/2)?] is the radius of the beam
curvature with taking the origin of the z axis at the beam waist, z, = wd%/\ is the Rayleigh
range, dy is the waist size of the mj = p = 0 mode, X is the wavelength, and ¢, is the wave
vector of the light. The integer p is one of the indices that specify the Laguerre-Gaussian
mode and denotes the number of oscillations of the electric field £ in the radial direction.

Here, & is given by

2p!

Fra) = 50\/w<p + [mi DI+ (o/20)7)

(V2u)"™I L] (20) exp (—u?), (64)

where u = r/[do[1 + (20/2)2]2], & is a constant, and Lfmi‘(y) is the Laguerre polynomials
defined by

p

L) = (-1 o (65)

— p— &) (k + |mz )1k

In the following discussion, we consider only the p = 0 modes. We also assume that the
twisted light beam is focused at the surface of the TI, i.e., zp = 0. Then, the phase Ox

becomes zero, and the magnitude £ defined in Eq. (64) reduces to

Imf |
[ 2 V2r r?
E(r,0) =& R <d—0) exp (—d—%) (66)

Figures 4(a)-4(d) show the snapshots of the electric field for of = —1 and m{ = 0, 1,2,
and —1. In both cases of mj = 0 and m{ # 0, the amplitude of the electric field exponentially
decays with 72. In addition to this, for the cases of nonzero m?, the magnitude of the electric
field vanishes at r = 0 because of the phase singularity. This is a characteristic property of
the twisted light beam. Besides, the direction of the electric field depends on the polar angle
around the center of the incident light: While the direction of the electric field is uniform for
(of,mi) = (—1,0) [Fig. 4(a)], the direction of the electric field at (of, mf) = (—1, 1) rotates

by 27 in the counter-clockwise direction as one goes around the beam center from ¢ = 0 to
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27 [Fig. 4(b)]. Similarly for the cases of (of,mf) = (—1,2) and (—1,—1), the direction of
the electric field changes by 47 and —2m, respectively [Figs. 4(c) and 4(d)]. Note that the
configurations shown in Figs. 4(a)—4(d) are snapshots and they evolve in time depending on
of: of = —1 means that the electric field at a fixed point rotates in the clockwise direction
as time evolves [Fig. 4(e)].

The topological properties of the twisted light beam discussed above can be understood
by introducing the winding number of the electric field. In general, the winding number of

a 2D vector field n = (n,, n,) on a closed loop C is defined by

1
wy[n] = Y i@ﬁ’wd%& 0 <n,,) ) (67)

n] 9z, \n]
where €7 is the 2D Levi-Civita symbol, and |n| is supposed to be nonzero on C'. The winding
number corresponds to the number of times the 2D unit vector n/|n| rotates about the z
axis as one traces the contour C. For the electric field given by Eq. (62), the winding
number w,(E) is defined on a contour that encloses r = 0. Substituting Eq. (62) in
Eq. (67), we obtain w,(E) = —ofmj. For example, for the electric field with (of, mf) =
(—=1,0),(=1,1),(—=1,2), and (=1, —1), we have w,(E) = 0, 1,2, and —1, respectively, which
are consistent with the configurations shown in Fig. 4. The result w,(E) = —ofmf is
also consistent with the fact that the direction of the electric field with of = 0 is spatially
uniform even for m{ # 0 and that the whirling direction for of = 1 is opposite to that for

A

B. Charge density

We consider the charge density due to the electric field of the twisted light beam on the
disordered surface of the TI. The setup we consider is schematically described in Fig. 3.

The induced charge density p, is given by Eq. (39), which can be rewritten as
1 [ee]
pe(x,t) = —/ dt’/dm'D(:c',t’)ﬁe(w —a' t—1t), (68)
T — 0o
pe(x,t) = 2’1, DTV - E(zx,1). (69)

By using Eq. (62), Vr = r/r = (cosp,sinp) and Vi = (2 X 7)/r? = (—sinp/r, cos /1)
the divergence of the electric field for of = £1 is given by

V- E = (g—g — ULmLE) cos [((m]f, + o7 ) — Qt]. (70)
r r
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FIG. 4: (color online) (a)-(d) Snapshots of the electric field induced by the twisted light beam with
(a)(of,mi) = (=1,0), (b)(—1,1), (¢)(—1,2), and (d)(—1,—1), where of and mj denote the spin
and orbital angular momentum of light, respectively. Shown are density plots of the magnitude of
the electric field, and the black arrows show the direction of the electric field. dj is the waist size
for the mf = 0 mode. (e) Time evolution of the electric field with (of,mf) = (—1,1) (top) and

(—1,—-1) (bottom), where T' = 27 /Q with Q being the angular frequency of the light.

Then, p. becomes

o ofmi&
or

pe(x,t) = =20, DT ( ) cos (jio — Qt), (71)
where jf = m{ + of denotes the total angular momentum of light.
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We further simplify Eqgs. (68) and (69). First of all, these equations are valid only for
Q1 < 1. This condition means that the period of the oscillation of p., which is the same
as that of the electric field, 7' = 27/€, is much slower than the electron relaxation time 7.
On the other hand, the length scale of the spatial variation of p,. is in the order of the beam
waist dy [see Eq. (64) and Fig. 4], which is comparable to the wavelength A of the light.
Since A satisfies (/X = 2mlQ/cy = (2m0p/cy)2T < 1, the spatial variation of p, is much
slower than the mean-free path ¢, where ¢ is the speed of light and we have used 270r < ¢
for realistic TIs?**. Then, since 7 and ¢ determines the decay time and decay length of the
diffusion propagator D(x,t), respectively, p.(x — a’,t — ') in the integrand of Eq. (68) can

be approximated as p.(x,t), and the convolution can be approximately described by
pe(wv t) = aﬁe(:c, t)? (72>

where o = L [[ dtdeD(x,t) is a constant coefficient and is estimated by
1 T 2T 0
o~ —/ dt/ dgb/ rdrD. (73)
T Jo 0 0

Figure 5 represents the nonlocal charge density due to the twisted light beam, p., for
aof =—1and m{ =0,1,2, and —1. We find that the distribution of p. depends on the
z-component of the total angular momentum of light, jf. For jf = 0 [Fig. 5(b)], the charge
density is isotropically induced from the center and the sign of the induced charge changes
at r ~ dy. On the other hand, the charge density for nonzero jf distributes anisotropically.
The symmetry of the distribution of p. with |jf| = 1 [Figs. 5(a) and 5(c)] and |jf| = 2 [Fig.

5(d)] are the same as that for the electron wave functions with the p, and d,2_,2 orbital,

—y
respectively. The dashed lines in Figs. 5(a), 5(c) and 5(d) indicate the axes of the inversion
symmetry of the charge density. As time evolves, the distribution of the induced charge
density rotates around the beam center (jf # 0) or oscillates around the zero value (jf = 0)
with the frequency of light € [see Fig. 5(e)]. The time evolution of the charge density
also depends on the total angular momentum of light: When the sign of the total angular
momentum is minus (plus), the distribution of the charge density rotates in the clockwise
(counterclockwise) direction around the phase singularity during the irradiation. When we
turn off the incident light, the charge density diffusively propagates on the disordered surface
of the TT with obeying the diffusive equation of motion represented in Eq. (53). Eventually,

the induced charge vanishes.
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FIG. 5: (color online) Snapshots of the charge density induced by the optical twisted light beam
with (a)(of,m{) = (=1,0), (b)(—1,1), (¢)(—1,2), and (d)(—1,—1). The dashed lines in (a), (c),
and (d) indicate axes of the inversion symmetry. (e) Time evolution of the charge density with
(6f,m{) = (—1,1) (top) and (—1,—1) (bottom). In all figures, we use dyp = 0.5 mm, ep = 100

meV, op =3 x 10° m/s, and 7 = 1 x 10713 5.
C. Spin density

We turn to discuss the spin density induced by the electric field of the twisted light beam
in the same setup as that considered in Sec. V B. As discussed in Sec. IV B, the induced

spin density can be divided into the local and nonlocal ones as s = s 4+ s(™). The local
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spin density s() is described in Eq. (52) and its snapshots for several m? are shown in Figs.
6(al)-6(d1). The direction of s is perfectly perpendicular to the electric field. We find
that the dynamical vortex-like spin structure is generated by the twisted light beam and
the winding number of the local spin density, which is defined by Eq. (67) with n = s is
identical to that of the electric field,

wv[s(l)] = w,[E] = —ofmj (74)

[see Figs. 6(al)-6(d1) and Figs. 4(a)-4(d)]. On the other hand, the nonlocal spin density
s is proportional to the spatial gradient of the charge density [see the second term of Eq.
(46)], and can be estimated by using Eq. (72) as s®") ~ 2 (2 x V) p.. The snapshots of

nl)

s are shown in Figs. 6(a2)-6(d2). We find that dynamical vortex-like spin structures

appear and the spin density becomes zero at the center of the vortex. Here, we note that

") and Vp, share the same winding number as they are perfectly perpendicular to each

sl
other. Since the winding number w,(Vp,) is 1(—1) around the maxima and minima (the
saddle points) of pe, the centers of the spin vortices locate at the extrema (minima, maxima,
and saddle points) of p., and therefore, they align on the symmetry axis of the distribution
of pe [the dotted lines in Fig. 5]. For the cases shown in Figs. 6(a2)-6(d2), all spin vortices
have the winding number w,(s™)) = 1 except for the one at the center of Fig. 6(d2), which

) is related

corresponds to the saddle point of p, and has the winding number —1. Since s!
to V - E rather than E, the configuration of the spin vortices depends on the total angular
momentum j?. Note however that with the parameters for a realistic system, [s®|/|s")] is
in the order of £2/d? ~ 1077 and s™ is negligibly small as compared with s!). When we
turn off the beam, s™) becomes prominent and diffusively propagates. We expect that the

photo-induced spin texture can be observed by pump prove technique with the twisted light

beam and circularly polarized light beam®.

D. Charge and spin currents

The profile of the charge current is similar to that of the spin because of the spin mo-
mentum locking on the surface of the TI. In Fig. 7, we show the snapshots of the charge
current for various angular momentum of light, where left (right) four panels depict the local

(nonlocal) components. Reflecting the relation j || z x s, the magnitude of 5™ has the
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FIG. 6: (color online) Snapshots of the spin density induced by the electric field of the optical
twisted light beam with (al) and (a2) (of,m{) = (—1,0), (bl) and (b2) (of,mf) = (—1,1), (cl)
and (c2) (of,mf) = (—1,2), and (d1) and (d2) (of,m{) = (—1,—1). The left (right) panels show
the local (nonlocal) spin density. The color map and the direction of the arrow show the magnitude

and direction of the spin density, respectively. The parameters are the same as those in Fig. 5.

L) is obtained by rotating s by

same profile as that of |s!™)|  while the direction of j(
—m/2 about the z axis. As in the case of the spin density, the local (nonlocal) part of the
charge current is related to E (V - E) and hence its configuration is mainly determined by
i, (7).

Figure 8 shows the light-induced spin current. As one can see from Eq. (58), the magni-
tude of the spin current is proportional to |p.| and the direction of the spin and its current
perfectly perpendicular to each other. These properties also come from the spin-momentum
locking on the surface of the TI. We find that the spatial profile of the spin current is dif-
ferent from that of the (spin-polarized) charge current, which are shown in Figs. 8 and 7

respectively. In fact, they are related to each other via Eq. (60) and only the nonlocal

charge current couples to the spin current.

VI. CONCLUSION

We study the charge density, the spin density, the charge current density, and the spin
current density induced by a twisted light beam shined on a disordered surface of a doped T1

by using the Keldysh-Green’s function method. We have discussed the responses of charge
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FIG. 7: (color online) Snapshots of the charge current density induced by the electric field of the
optical twisted light beam with (al) and (a2) (of,mf{) = (—1,0), (b1) and (b2) (of,mj) = (-1, 1),
(c1) and (c2) (of,mj) = (—1,2), and (d1) and (d2) (of,m{) = (—1,—1). The left (right) panels
show the local (nonlocal) charge current density. The color map and the direction of the arrow
show the magnitude and direction of the charge current density, respectively. The parameters are

the same as those in Fig. 5.

and spin to the space-time dependent electric field. The obtained results are summarized
in Tab. I. The effect of the electric field on the electric charge is twofold. First, it induces
a charge current along the direction of the electric field. Second, the inhomogeneity of the
electric field causes a gradient of the charge density, which then leads to a diffusive charge
current. We call the former the local charge current and the latter the nonlocal charge
current, based on whether the charge current depends only on the local electric field or is
affected by the nonlocal one. Since the spin and momentum of electrons on a surface of a
TT are locked to be perpendicular to each other, the emergence of the charge current implies
that the spin density is induced in the perpendicular direction to the charge current. Our
calculation based on the linear response theory gives the analytic description for the local
and nonlocal spin densities as well as the local and nonlocal charge current densities. We
also find that the induced charge density also gives rise to a spin current, which is related
to the nonlocal part of the charge current via Eq. (60).

By taking into account the spatial and temporal configuration of the electric field asso-

ciated with a twisted light beam, we have shown that various types of spin vortices arise.
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FIG. 8: (color online) Snapshots of the spin current density induced by the optical twisted light
beam with (al) and (a2) (of,mf) = (—1,0), (bl) and (b2) (¢f,m{) = (—1,1), (cl) and (c2)
(of,m{) = (—1,2), and (d1) and (d2) (of,m{) = (—1,—1). The left (right) panels show current
of the x (y) component of spin. The color map shows the magnitude of the spin current density.
The blue and green arrows show the direction of the flow of the spin. As in the case of the charge
density, the distribution of the spin current depends on the total angular momentum of the twisted

light beam. The parameters are the same as those in Fig. 5.

Since the local spin density is perpendicular to the electric field, their winding numbers are
identical and determined by the product of the spin and orbital angular momentum of the
twisted light beam [TABLE II|. In this paper, we have assumed that the time and length
scales of the diffusion of electrons is much faster than those of incident light. In such a
situation, we can approximate the nonlocal electric field with the bare electric field, and
the nonlocal quantities are described using the divergence of the electric field. Thus, the
configurations of the nonlocal densities and currents are determined by the total angular

momentum of the twisted light beam.
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Appendix A: Modification of vgp

The Fermi velocity of the Hamiltonian on the surface of the TI is modified from the
contributions of the impurity scatterings in the absence of electromagnetic fields30-31:36:37,
Below, we will demonstrate the modification of vg in the presence of electromagnetic fields.

The Green’s functions including the electromagnetic fields with considering impurity
scatterings is given by

. -1
Gl A) = B+ ep — hupg - (k x 2) + cvpar - (A x 2) = Sau(A)] . (A1)
Here, the self-energy ZA]kM(A) is given by

Sho(A) =m0 > uk_r[*Gh o (A) = m; Z |t1g|* Tt g0 (A)- (A2)
k/

We assume that the Green’s function can be expanded with k and A as

0

~r 0 .. o
Ykw(A) =n; Z |uq| [gq w a_kgk-‘rmw(A)’ +A- a—Agk+q7w(A)

A=k=0 ’A:k:o]

+ 0(/&, A%, kA). (A3)
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— (3031

The above function are given by using lim, , uq as
8 AT AT o airw-}(o) AT
Gl )| = 850 [hoe(z x 6) + =22 07,,(0), (A4)
8 AT AT S air ,W(A) AT
Talheao )| =00 —en(z x &)+ 8] g 0, (A5)
and the self-energy becomes
Dho(A) = Tokw(0) + 31 kw(0) + 1L 0u(A) + O(K?, A% kA), (A6)
with
S kw(0) =11 ) [ug*3y.,(0), (A7)
q
. N 0L (0)]
S al0) = 15 3 g5 (O [th(z x )+ T] 5,00, (A8)
q

0% ,(A) ’ ] .
A=0

21 00(4) =1 Y lug*G(0)A - | — eve(z x &) + —22 Goul0): (A9)

q

¥ w(0) and X7, (0) have been calculated®?!, hence we calculate 37 o ,(A) within

the same formalism of the preexisting works®!. We suppose that 31 ,(A) is obtained by

the following form: ZA)‘LO’W(A) = —evpd;;A;0; with a second rank tensor d;;. Substituting
ii,O,w(A) = —evpd,;jA;0; into the above equation, we can calculate as

5% 0ul(A) =1 > [ug*35,,(0) D A| = evn(z x &) — evndyy;] 35.,(0)
q

j=z,y

u2€U .
= 1Ny Z AgoiFO'j [Efzj + d@j]. (AlO)

: 4h?v3
L=y

Therefore, we obtain

nyud
C Anh202
4mh2vg

and dy; = &/(1 + &)egj.. As a result, the self-energy becomes

dej = (€025 + doj]

. —£ R
EJ_,07UJ(A) = 1+-¢ T £€£jz€UFAin-
From the result, Eq. (A1) is modified within O(k? A% kA) as
Orw(A) = [hw + ep — hipo - (k x 2) + elpo - (A x 2) +in] . (A11)

From the above equation, we see that the Fermi velocity in Eq. (4) is also replaced by vp.
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Appendix B: Derivation of f“

We estimate [ , in Eq. (26) by expanding with respect to g and Q within ¢/ < 1 and
Q71 < 1 and by using the Green’s function
2 A

1 0% Gy, 3 2
- E — 4+ 0 0,0
’ 8 ﬁﬁ’;xngqg akﬁakﬁ' N (q O )’

Gy, Ok
_Jr 9] )
2t T,

AT _AT ﬂ:l
gk::l:g,:l:% =9k 2
=y w—0

where we use the short hand notation gy = gi ,—- I u 1s decomposed into four terms as

I, = fﬁo) + Q]ﬁff) + Z qgf;g? + Z q§q5/ffg)§/, (B1)
E=z,y &&=,y
IO =" grocdh, (B2)
k
. 1 oG8
W= 2 ghoe —22) —h B3
K 2 ; (gkUC Ow . ’C) ) ( )
r) _ 1 e Ok
. 1 a2ga a2gr agr aga
1(3)/:_ AT A k k - Aa_2_k:A k ) B5
nee = 3 ; (g’“gf Dhedke | Okedke %% ™ % Bk 7 Dke (B5)

In Appendix F, we list useful formulas for the integral of the Green’s functions, which are

used in the following calculations.

1. Calculation of IA,SOZ)I,W

First, to calculate I\, , . in Eq. (B2), we divide 010,05, into the even and odd functions

of k:
glrc&uglac - DrDaQ&uQTa (B6)

where DT, D* = [D*]*, O, OF, h, and h* are defined by

D' = (h* — R*02K*) 1, (B7)
Q= h+ hivk - (z x &), (B8)
Of = h* + hipk - (2 x &), (B9)

h = ep + 11, (B10)
h* = ep —in. (B11)
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D" and D* are the even functions of k. Q&u O is represented by

06,0" = |6, + 1252 Y keke(z X 6)i5,(2 x &)

Ll =x,y

+hip Y [hkebu(z X 6)¢ + h'ke(z X 6),6,]. (B12)

t=a,y
The first and second terms are corresponding to the even and odd functions of k, respectively.
In the following calculation, we simply assume that the surface of the TT is isotropic as a
function of k: k2 = k2 = k*/2. By taking an average over the direction of k, ( )i, in Eq.
(B12) and using (k¢)r = 0 and (keke ) = 55>, we obtain

B

(06,00, = |h|*6, + 2h26§k2 D (2 x6)bu(z x &) (B13)

l=x,y

The second term in the above equation becomes

> (2x6)bu(zx &)=Y (204,60 — dub,) (B14)

l=xy l=zy

= —20,.6.. (B15)

Thus, we obtain I, £0) as

10, = P> 1D s, (B16)
k
10 = 3 (1P = W5k D' 6. (B17)
k

The integral of Eq. (B16) is obtained by

12|Dr‘2_i/w kdk _i/w dx
V< o Jo o [ — R20RR2)[(h*)2 — R202K?]  2ep Jo [h% — x][(h*)? — 1]

v, o 1 1
= - d - B18
), e =) o
where v, = 5—5=> is the density of states on the surface. Here, the above integral is given
S
by
00 1 1 o h2 T—00 T—00
d =1 =X —h?) — — (h*)?

[ o=~ =] o, e -]
(B19)
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In the above equation, we have used logz = Log|z| + iargz, where z = a + ib = |z|e?,

a,b € R. Here, § = arg z is

tan=1(b/a) (@ >0 and b > 0)
=< m+tan"'(b/a) (a<0) : (B20)
27 + tan"!(b/a) (a >0 and b < 0)

Thus, arg (z — h?)[;35° = 7 + o(h/ep), arg [r — (*)*|[;35° = —7 + o(h/epT)), and

Tz — h2 T—00
log|————3 ~ 2w (B21)
T = (h )2 z—0
are satisfied. We have 75 >, |D'|* = i+ o(h/epT) and
F
(1 o 7TVe ~
l(L:)Ly o 417 Op- (B22>

Eq. (B17) can be estimated around the Fermi energy k — kp = ep/(htr) as

) ) . A
10~ (0 - 13ti2) D Do, = o (). (B23)
k

2. Calculation of fﬁlz)xyz

To calculate [A,(f:)xy in Eq. (B3), we divide Qi&u%u_}o = —hgo.(08)?* =

~

—hD*(D*)?Q6,(QN? into the even and odd functions of k. Here, (Q7)? and Q5,(Q")?

becomes
(QN?2 =[(h*)? 4 K202k 4 2h* hipke(z X &), (B24)
Q5,(0h)? = [h{(h*f + BA0ER? Y6, 4+ 2R PR keke (2 X &)i6,(2 ¥ a—)@}
+ [2\h\2kag(z X 606,06, + {(h*)? + R*0pk*} hipk(z ¥ &)m}. (B25)

The first and second terms of the above equations are the even and odd functions of k .

Then, we have

(Q6,(QN*)k =h{(h*)* + K TFk*}6, (1 = z,), (B26)
(Q6.(9NH), =h{(h")? + h*02k*}6., — 20 B2 02k%6,  (u = =), (B27)
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from which I{" = — 2y l980,(93)? — h.c.] is obtained by

v, = —g{h > DD [(h*)? + WP ipk?] 6, — h.c.}
k
Wlve (21 7 ) h
) {87}2 (m — g) (1 + z;) - C.C.] o, +o0 (61:—7')
—ihru, h
p— %) —_— B2
oo (=), (B2s)
A h
W = —5{2 D'(D*)?[h(h*)* + (h — 2h*)R*0EK?] 6, — h.c.}
k
h | —imv, n . h
=—= 1+i—) —cc.|6. —
5 [ 46% < —|—Z€F) cc] o +0<€F7_)
ihru, h
= 5 — B2
4ez " ¢ <€FT) (B29)
3. Calculation of f(z)_
w(=z,y,2)¢
% is given by
agi: ~ A r 2~2 A r\2
D~ hip(z x 6)eD" + 2R 0pke Q(D)?. (B30)
By using Eq. (B30), <g_iif6u§z>k becomes
gy, ~ ~a ~ ~ r ~ A r ~ a A
<a—£]i’;<7ugk)k = |nie(z x &)eD" + 21253k Q(D)?] 3,D* Q'
—hip(z X 6)e0,(QN) | DY|? + 20202 (ke 05,01 (DF)2 D2 (B31)
Here, (O1);, and (k:Q5,Q1); are given by
(Qi =1, (B32)
(ke Q6, 0N = hvp(keko){h6,(z x &)+ h* (2 X 6)i6,}
.
- %k%gw(h@&u + W u5). (B33)
IAL(L? in Eq. (B4) is given by
R T
% :§e§zu > {|Df\2(ha—ua—u — h*6,6,) + R0EK?| D|(D* — D*)(h6uGy + h*646,) |-
k
(B34)
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Here, ho,6, + h*6,6, can be transformed as
hé 6., — h*6u0, = 2100, + 2i€p€ 0y, (B35)
hé 6. + h*6,6,, = 2€r0,, — 21€,,0, . (B36)

As a result, T ;(L? is obtained by

. )
~(2) _ hvpimr, n n A i
[u(=w,y)5 o 877]2652“ |i<1 + 26_2) 6,uu + — €0 :| +o (—)

F g ERT
IV, ., h
- 812 hipeus. + o <€F—7_) ) (B37)
hiopimy, n? n h
1(2) - u < 2u 1 2— 5zu - quAV -
¢ 32 €¢ + e% +€F€ o,| +o -
v, - .
= Y hé-F +o| — . (B38>
8epn €pT
4. Calculation of [
’ m(=z,y,2)E¢'
I 52&, in Eq. (B5) is represented by using the partial integral as
i 1 PG . -
[Mffl = 1 ; {maugk + h0:| . (B39)
In order to consider (%a—ug;)k, we use the following equations:
D" 22 r\2
> Dr 2 .
a%(T) = hip(z x 6)a(D")? + 4R*0pke Q(DY)?, (B41)
g/
2 A1 R .
8,? k= %Qﬁ%{%Q(Dr)Z + AR 52 keke Q(DY)? + hiwlke (2 X 6)¢r + ke (2 % a—)g](Dr)?},
§Uhve!
(B42)
2 AT
Tk a0 — o122 L e O(DF)26, 01 D" + AR 3R ke O(DF)?6,01 D*
-+ hﬁp[l{?g(z X &>§’ + ]{55/(2 X &)g](Dr)2&uQTDa} (B43)
The average of k in Q&HQT, ke(z x &)5,&“QT and keker Q&HQT become
(96,9 = [h[*6,, (B44)
A 1
<l€5(2 X &>§’&MQT>/€ = 577/(71:‘]{72(2 X &)g!é’u(z X 6')5, (B45)

<]€§]€5/QA5'#QT>]€ = ‘h‘2<k§k5/>k5’u + h2@%<k5k5/k5k[>k(2 X &)g&u(z X 6')5/. (B46)
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Here, we have used <k5k5/l€gl€g/>k = %4(555/5551 + (5@55/@/ + (Sgglégfg). Then, f;(é)ﬁ’ is given by

. h2p2 . . N 1., N a ~ ~ ~ /
18 = T S [acoulb (DD + DD (5 x 9)c,2 x 0 + (€ )
k

+ 2| h PR 52 K606, (D) D?
1
 GHD D (2 x 9)ed,(x x D)e + (€ 0 €]

+ h.c.} (B47)

= TR e, (1D + %)+ 2RI D + ()
k
+ {h%ﬁkz\DrF(Dr + D*) + R*opk| D' P{(D")? + (Da)ﬂ
X [eezu(z X 0)er + €grap(z X 6)c — 5&@}}- (B48)
Here, we have used

(2 % 6)eu(z x 6)g + (§ & &) =2[ecu(z X ) + (2 X )¢ — deer6y]

I 52)5, is given by using equations in Appendix F as

2(3) - 9.9 Tl . h
Lo mee =~ 7" 64n3 [Efzﬂef’z'f T €erap€ea + 555/6””} v to <€FT) ’ (B49)
A h
7 _p252 e 4 . B50
8 UF 861%7] ¢ €pT ( )

USing dodp |:€azu€ﬁzl/ + €ﬁzp€azl/ + 50{55141] = (o498 [36&651}# — 250{1165;1,}7 we obtain

- o T .
qaqﬁ]l(l?;)ﬁ - _h2U% 647]3 qadp [Béaﬁéu,u - 250{1/55#} Oy. (B51)

Thus, I, = f,(f]) + Qf,gl) + qgf}g? + q§q5/f52§, is obtained by

. TV,
Y Jp——
p=z,y "
A h
[H:Z ~ 0 <€F—T) s (B52)
2

where D = 2027 and ¢ = 0p7 are the diffusion constant and the mean free path of the

. 3 . . .
|:(1 — Q7 — §D7'q2)0'u + angeuaz + DTq;quUV ’

surface electrons, respectively.
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Appendix C: Calculation of I

We will calculate I using the same formalism in the Appendix B. Here, Iy =

>k g;_%’_%gg%% can be expanded with respect to ¢ and  within ¢/ < 1 and Qr < 1 as

=1+ QL + > ald + > qeae I, (C1)
£:x7y 575l:x7y
~(0 e n
Ié )= nggka (C2)
k
. 1 agy
= Gr Lk —h.c. C3
Peap T ) @
/\(2) o 1 AT agz
k
R 1 a2ga a2gr agr aga
[(3)/:_ AT k k 02— 9 k k ‘ 5
0ce" ™ 8 Zk: (g’“ OkeOke N DkeOke ¥ " ke Oke (C5)

1. Calculation of féo)

We will calculate /" in BEq. (C2). By using ¢Lg2 = D"D?* Q)% and (QQ"), = [|h|? +

n252k?), 1" becomes

I =" ID PR + r2oERY). (C6)
k

The above equation can be estimated around the Fermi energy, k — kg = ep/(hvp) as

- - N TV,
17 ~ [0 + W5RkE] 1D = 3 ()
k

2. Calculation of fél)

fo(l) in Eq. (C3) is calculated by using

|y = hDH (D) (09
|Q* = {|h|]* + R*0Ek*} + (h + h*)hipk - (2 X &), (C9)
(Q(ON)), = |h*h* + (h + 2h")h202E?, (C10)
(Q*QN, = |h|*h + (2h + W) 202k, (C11)
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h+ h* = 2ep, and h*D* — hD' = ep(D?* — D¥) — in(D? + D*) as

. h . 12(Da _ DF
I ==5> leF<|h|2 + W*0ph®)| D'*(D* — DY)
k

— in(|h]* + R202k?)|DY2(D* + DY) + 2eph*02k?| D' [2(D* — DY)
4n? €FT

3. Calculation of fé?

fég) in Eq. (C4) is obtained by

i :? ; €0t {(h — 1) + 2eph202K2(D* — DNY| | D2 ~ 7;2 ‘ WTFTW&@. (C13)
Here, we have used the following equations
(ke |02} — %hﬂp(h + RV (2 X 6)e = ephinkecsnba, (C14)
(gi’r; O = hvpec.o0, [0 + 2R* 03k ep D] | D). (C15)
4. Calculation of fégé,
gg; g%; becomes
hij%g—gﬁ ot 600 | D' + A5 kaks| OF| D
+ 2hip€nze{Goks QY| D 2D + 2hipes.o{ka Q0w }| DF|2 D" (C16)
The average <ng;§_1€;> k is reduced to be
h%@g—]ig—?k ot 5160 | D2 + 2605 | B]? (hwk) 2| DF|* + 26,5 (k)| D

+ €020€8u000 (hOpk)?| D' |* D* 4 €20€au - 0w Go(Ropk)?| D |* D", (C17)

After we integrate the above equation as a function of k, we obtain

7aqp dg* 0g*
R203 4= Ok, Okg

— bus Z{W B (k) + (Roek) | D] — (howk)?| D\ (D + Df)}qaqg
k
Ve o h
- . C18
gy +o< ) (C18)
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Here, we have used

Qaq66aze5ﬁe =0,
Q0QB€azt€3:0 0000 = (aq30as,
G08€atz€8uz€rme = 4ads(0as0m — 0audpe)€rue = 0,
10q3€ax0€puz (000, D* + 6,6,D") = —qaqpdas(D* + DY),

Thus, qsqgrfo(zé, becomes

h
I, = 22 e 2 ). 023
Qeqer Toee U 16,5 ol (C23)

Appendix D: Calculation of I"*

: rr 2 AT
We estimate I'}) = njui ), A

_%a—ug; 12042 by using the same formalism in Appen-

dices B and C. Here, " = nyu? k0 a w20udy a . o can be expanded as
27 2 27 2
.2 AT AoAT __Arr(0) Arr(1) Arr(2) Arr(3) 3 2
it Ek:gk—%,w—%aﬂgk+%,w+% =0 QO+ 2: 9Ce™ + Z Gede Cpeer +O(a7, 42, 4%),

§=zy §,8'=xy

(D1)
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where coefficients in the above equation are given by

( nudv,

e Op (h==,9)
Arr AT A AT iUy TV, . N A
O = Y " [§76,4] = — e ars(—hw — e +in)o (=2, (D2
k o "
ST Pe | TR arg(—hw — ep + i) (u=0)
\ €r 2€F
AT niu? AT A 8Qr agr A AT
Cu(l) = 2 Z |ig Uﬂaw - 8w0ug:| =0, (D3>
k
( nulhvpy,
: - (R 0, Az )
: or o 2er (B g7 o] Ot er) s (=)
SO P i mthupv, A
CMS 2 Zk: |:g U“(‘)k: (%fa“g } _QEF[(hw + EF)Q + 772] [Z(hw + €F> + 77]05 (/~L = Z)
0 (n=0)
(D4)
R .0y2 82Ar a2gr
Crr(?),) :nlul AT A g AAT
pes =g zk: 9O D hedke  Oedke MY
( nyu? vy,
— - h > —n? = 2in(h
T2er{huo 1 ep)? 4 [+ &) =" = 2l o)
Xeeop(z X 0)gr + €2p(2 X 0)¢ — 20¢0:0,] (n==9)
= nsuZ vy,
— -~ < fuw + €ep)? — 1n* — 2in(hw + Oeer 0, =
4€F[(m)2;;2€§)2+n2]2 [( €r)” — 1 in( EF)} 0. (U= 2)
nu; i v, 5 ) _ .
I —n° —2in(h Oger =0
| 12¢p[(hw + €r)? + n?)? [( wker) = (o EF)} SEONG )
(D5)

From the Eqs. (D2)-(D5) and njulnv./n = 2, the elements of I is negligibly small as

compared with the ones of I"?, since EFLT < 1 is satisfied.

Appendix E: Calculation of II'F + 1122 (v = x,y)

We estimate the response function composed of only the retarded (advanced) Green’s

functions IT7(q, Q) (I1**(q, ) using the same formalism in Appendices B, C and D. From
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Eqgs. (22) and (23), [T (g, Q) + [12(q, Q) are written as

~ A~ AT A AT AT ~ AT T
I (g, ) +15%(g, ) = - Z{fw [gk—%,w—%g”gk+%,w+% N (gk+%,w+%g”gk—%,w—%) ]
k,w
1 I AT AAT AT A AT f
+ §wa gk—g,w—%g'/gk+g,w+% + <9k+g,w+%0'/gk—g,w—%> :
(E1)
The magnitude of second term of the above equation is smaller than that of I [see Eqs.

(21) and Appendices B, C and D |. The first term is expanded as

T
2 AT A AT AT A AT
2 {g’“—%vw—%"”gmg,w% (rg.urgdig.os)
w

- = ~ (2
=D + QDY + > q¢DZ + O(¢*, 402, 9?), (E2)

=,y

where lA?,(,O), DY and Dl(j? in the above equation are given by

DY == f, [9hubuih, —he] =0, (E3)
k,w
~ 1 AT ~ ag;;i,w agi:,w ~ AT
Dl =32 (i1~ i) +he] =0 -
) 1 9d,., O TRV, h
pe__ 2 g 6,2k ke o he | =— 26, — ). (E5
e 32 f ng,w% Dke ke OpJpw | T 0o Ser 0, +o0 ot (E5)

Here, we have used f, = #(—w) in the above equation, where 0(x) is a step function. From
Eqgs. (9), (14), (47) and (E5), there are spin density and charge current induced by the
magnetic field (i@ X Aeny). Since we consider only the electric field, we ignore the densities
induced by the magnetic field.

We find that the order of (II'f 4 I[12) /II"® are fi/epr and II'" 4 [12 are negligibly small as

compared with ﬂ,rf‘.
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Appendix F: Calculation of integral

We will show the following integrals as a functions of k. The integrals are obtained by

42
ZDfDa e (ir -2,
1677

€F

. o

PRk DT (DY)~ —— (1 4=
; el (DY) 16n*ep )

92 o 525212 DY (D? Ve 2-7?_2_772
N 1!

SRR + (b — 20" R 62k DY (D)? i (1 + zﬂ) ,

> RuE DD~ D") ~
k

TV,
D2 ~ —¢

k

VE
5 )
2ep

TV,

> [(D")*D* + (D*)*Dr] ~ —
k

> (hiek)’[(D')’D* + (D*)’ D] ~ —

- 4ned’

N (hipk) (D7) D~ — (1_@-2_’7),

- 64ezn3 €r

TV,

Z(h@Fk)z{(Dr)SDa +(D*)’D'} =~ B

k
TV,

hopk) (D")?D* ~ —
> (hiek) (D) e

> (hwpk)*(Dr

k

> (k) (D) = ;ww"* (n>4),

k

> (hwpk)* (D7) ~ —=> "(D")?,

k k

Z(hUFk)Q(Dr)4 = 3 (D) = 25.2.3

k

P 2 Ve
> hek) (D) = 3 320 = g5

k
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where ), is defined by

L0 ki e [T [Cede— e [T [T a F17
= = _°¢ ede = —< T. 1
Zk: (2%)2/0 /0 27T€F/0 /0 47r6p/0 /0 ( )

1 6(Dr)n—l
n—1)h2vike Ok

Here, we have used (D")" = o in the above equation.

Appendix G: Charge conservation

To check validity of our results, we substitute the charge current and charge density in
Eqgs. (48) and (39) into the charge conservation law p. + V -7 = 0. From Eq. (38), p.

becomes

62{112;\67/6 Z ei[Qt_q,m} 'Z.Q2q,/ (Gl)

'e - Aom v
Pe= 12 PO i

q,9

From Eq. (36), (37) and j = 2evp(z x s), V - j becomes

2~2 . ) B Q 2 €2 Q 3€2 ]
ijx _ E URpleT Zel[Qt—qm] _quAom,m 4 { 4y A + 4y A }

L @PC+iQr " @202 Qe ]
(G2)

e2oiu.r 4 r quq2€2 Qq3f2 -
v y = o Z[Qt_q.w] _Q Aem 7yAem x 7yAem 9

yjy L2 qZQ (& i qy N + q2€2 + ZQT , ‘l‘ q2£2 _'_ ZQT v |

(G3)

] ] 626%‘&/@ i[Qt—q-x inQu

Vx]x + vy]y - = 12 Z e [ a }m/lem’u. (G4)

q,Q

Therefore, p. and j follow the charge conservation law, p. + V -3 = 0.

Appendix H: Diffusive Green’s function D

Diffusive Green’s function on the disordered surface of the T1 can be integrated as follows:

62‘(Qt—q-m) 1 /oo Q)
5 iQ+2D¢? 2w J_ o Q2 —i2Dg?

= 0(t) exp [-2Dtq* —iq - x], (H1)

o
Ze—@DHJ%quw) ~ i/ dqxe—@th%Jriqzw)
2 J_

qz
VL ( 2x2)
=— _—exp|——]. H2

27V 2Dt P Dt (H2)
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Thus, from the above equations, D in the coordinates space is obtained by
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