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A new approach of using distributed transmission line analogy for solving transport 
equations for ballistic nanostructures is applied for solving the three dimensional problem 
of the electron transport in gated ballistic nanostructures with periodically changing 
width. The structures with the varying width allow for modulation of the electron drift 
velocity while keeping the plasma velocity constant. We predict that in such structures 
biased by a constant current, a periodic modulation of the electron drift velocity due the 
varying width results in the instability of the plasma waves if the electron drift velocity to 
plasma wave velocity ratio changes from below to above unity. The physics of such 
instability is similar to that of the sonic boom, but, in the periodically modulated 
structures, this analog of the sonic boom is repeated many times leading to a larger 
increment of the instability. The constant plasma velocity in the sections of different 
width leads to the resonant excitation of the unstable plasma modes with the varying bias 
current. This effect (that we refer to as the super plasmonic boom condition) results in a 
strong enhancement of the instability. The predicted instability involves the oscillating 
dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to 
the terahertz (THz) electromagnetic radiation due to the periodic geometry of the gated 
structure. Our estimates show that the analyzed instability should enable powerful tunable 
terahertz electronic sources. 
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I. INTRODUCTION 

 
The plasma wave propagation in the two-dimensional electron gas is strongly affected by 
the electron drift. At the values of the drift velocity smaller that the plasma velocity, the 
Doppler effect leads to the plasma wave instability [1,2]. When the drift velocity reaches 
the plasma velocity, the electron flow is “choked” leading to the current saturation [3]. 
The transition from the sub-plasmonic drift velocity to the super-plasmonic drift velocity 
should be accompanied by the “plasmonic boom” similar to the sonic boom. This analogy 
is due to the hydrodynamic equations describing the plasma wave of the small amplitude 
being identical to those describing the sound waves. The plasmonic boom effect can be 
used for exciting plasmons with rapidly increasing amplitude in the periodically 
modulated two-dimensional electron gas (2DEG) [4,5]. Since the plasma frequency in the 
periodically modulated 2DEG structures is typically in the THz range, this instability 
should lead to the emission of the THz radiation enabling a new type of the THz 
electronic sources. As shown in this paper, the instability is resonantly enhanced if the 
plasma velocity is the same in all device regions (we refer to this condition as a super 
plasmonic boom.) 

 Developing an efficient electronic THz source is one of the key challenges to be 
met for closing the famous THz gap [6]. The existing electronic sources use Gunn diodes 
with frequency multiplication by Schottky diodes [7] and InGaAs based High Electron 
Mobility Transistor Integrated Circuits [8]. These and other similar electronic sources 
suffer from low power, low efficiency and high cost. Using the plasma wave instabilities 
in ballistic Field Effect Transistors (FETs) proposed in [1,9] has a promise of developing 
more efficient THz sources. However, the observed THz radiation [10-12] has mostly 
been broadband until recently, when the proposed arrays of the ballistic FETs [13,14] 
have been implemented and improved to include Asymmetric Digital Grated Gate 
structures [15]. Nevertheless, the goal of reaching 1 mW at 1 THz using plasmonic 
sources has not been reached yet. 
 A recent proposal was to use a grating gate periodic structure with two sections in 
each period, such that the electron velocity has the value between the values of the 
plasma wave velocity in these sections [4,5]. In such a structure, the plasma waves 
behave similar to the sound waves emitted during the sonic boom, when a jet crosses the 
sound barrier, except that such transition occurs many times over. In Refs [4,5], the 
multi-gated structure with two sections having different electron densities was proposed 
to modulate the plasma velocity.  
 In this paper, we develop a theory of the ‘plasmonic boom” instability in a 
periodically modulated 2D electron channel. We propose and analyze a more general 
structure, where either the periodic modulation of the electron velocity or the plasma 
frequency or both achieve the repeated “plasmonic boom” conditions. Our approach 
allows us to analyze the new structures with a periodic modulation of the device width. In 
these structures biased by a constant current the electron drift velocity periodically 
changes but the plasma velocity remains constant. The constant plasma velocity in the 
sections of the different width leads to the resonant excitation of the unstable plasma 
modes when the bias current is tuned thus strongly enhancing the instability (the super 
plasmonic boom). Our estimates show that the analyzed instability should enable 



powerful tunable terahertz electronic sources. The proposed structure might be the most 
practical implementation of a periodic THz source, see Figure 1.   

The structure shown in Figure 1 consists of the alternating 2D strips with two 
different widths ଵܹ ൏ ଶܹ and lengths ܮଵ and ܮଶ. The metal gate positioned above the 2D 
channel control the electron density in the strips and allows tuning of the plasma wave 
velocity. We also assume that a dc current flows between the source and the drain. This 
structure represents a periodic plasmonic medium forming a 1D plasmonic crystal 
[4,5,16-22]. In this paper, we demonstrate that constant electron drift qualitatively 
changes the plasmonic crystal spectrum and may result in the instability of the drifting 
plasma modes different from the plasma instability regimes described in [1] and [23]. 
 

II. BASIC EQUATIONS 
 

We will describe plasma oscillations in the 2D electron gas in the presence of a dc 
electric current within the hydrodynamic model. In this model, the local electron density ݊ሺݔ, ,ݔሺݒ ሻ and velocityݐ  ሻ obey the Euler and continuity equationsݐ
ݐ߲ݒ߲  ൅ ݒ ݔ߲ݒ߲ ൌ כ݉݁   ݔ߲߲߮
ݐ߲߲݊ (1)                                                                                                                                            ൅ ߲ሺ݊ݒሻ߲ݔ ൌ 0 , 
 
where we assumed that the plasma wave in the 2D layer (ݖ ൌ 0) propagates in the x-
direction between the source and the drain. Here ߮ሺݔ, ݖ ൌ 0,  ሻ is the electric potential inݐ
the 2D plane, െ݁  and ݉כ  are the electron charge and effective mass, respectively. 
Hydrodynamic model can be used for description of the 2D plasma oscillations if the 
mean free path for electron-electron collisions is much smaller than both the sample size 
and the mean free path for collisions with impurities and phonons. We also assume the 
ballistic transport in the nanostructure and neglect the collisional damping term due to 
scattering on impurities and phonons as well as the pressure gradient term in the Euler 
equation. Justification of these approximations is presented in Section IV of the paper. 
Eqs. (1) could be linearized for small fluctuations of the electron density and velocity: ݊ ൌ ݊଴ ൅ ݊ߜ ݒ ,  ൌ ଴ݒ ൅ ݒߜ  , where ݊଴  is the equilibrium electron density in the 2D 
channel and ݒ଴ is the electron drift velocity due to dc source-drain electric current. We 
also assume that the system fluctuations of the electron density ݊ߜ and electric potential ߮ߜ in the gated 2D electron channel are connected as െ݁݊ߜ ൌ ܥ where ,߮ߜܥ ൌ  is ݀ߨ4/ߝ
the capacitance per unit area between the 2D channel and the metal gate separated by the 
distance d, ߝ is the dielectric constant of the barrier layer between the metal and the 2D 
channel. This assumption is justified if d is much less than the plasmon wavelength. The 
solution of Eqs. (1) (linearized with respect to ݊ߜ, ݒߜ ן ݔݍሺെ݅݌ݔ݁ ൅  ሻሻ isݐ߱݅

ఠܫ  ൌ ଵ݁ି௜௤భ௫ܫ ൅  ଶ݁ି௜௤మ௫ܫ
                                                      
(2) 



  ఠܸ ൌ ଵ஼ௐ ൬ ூభ௩బା௩೛ ݁ି௜௤భ௫ ൅ ூమ௩బି௩೛ ݁ି௜௤మ௫൰ , 

 
where ܫఠ ൌ ఠ݆ߜܹ ൌ െܹ݁ሺݒ଴݊ߜఠ ൅ ݊଴ݒߜఠሻ is the total current in the 2D channel of 
width W and ఠܸ ؠ  ሻ is the voltage distribution in the plasma wave (both taken atݔఠሺ߮ߜ
frequency ߱ ). The plasmonic wave vectors ݍଵ,ଶ are determined as ݍଵ,ଶ ൌ ߱/൫ݒ଴ േ  ௣൯ݒ
where ݒ௣ ൌ ඥ݁ଶ݊଴/݉ܥכ is velocity of the gated acoustic 2D plasmon in the absence of 
the drift [24]. Drifting plasmon in the gated channel also has linear dispersion but with 
Doppler shifted wave velocity due to constant electron drift [1]. Constants ܫଵ,ଶ in Eqs. (2) 
are determined by the boundary conditions. 
 The total power carried by the drifting plasma wave includes the electromagnetic 
power and the kinetic power due to the drift of the electrons oscillating in the wave. The 
average complex power ఠܲሺݔሻ carried by the drifting plasmon in the x-direction can be 
written as 
 ఠܲሺݔሻ ൌ ܹ ׬ ܵ௫݀ݖஶିஶ െ ௠כ௩బଶ௘ כఠܫఠݒߜ  ,   (3) 
 
where ܵ௫ ൌ െሺܿ/8ߨሻܧ௭,ఠܤ௬,ఠכ  is the x-component of the complex Poynting vector 
averaged over the THz period, ܧ௭,ఠ  and ܤ௬,ఠ  are the components of the electric and 
magnetic fields in the plasma wave, c is the speed of light. The first term in Eq. (3) 
describes the electromagnetic power. The second one represents the kinetic power and 
vanishes at ݒ଴ ൌ 0. The electric and magnetic fields in the plasma wave as well as the 
kinetic power can be expressed in terms of the voltage ఠܸ and the current ܫఠ from Eqs. 
(2). After the integration Eq. (3) yields 
 

                                       ఠܲ ൌ ଵଶ ൬௩೛మି௩బమ௩೛మ ఠܸ ൅ ௩బ஼ௐ௩೛మ ఠ൰ܫ כఠܫ  .   (4) 

 
At ݒ଴ ൌ 0  the standard expression ܲ ൌ 2/כܫܸ  for the power flow in the plasmonic 
waveguide in the limit of the strong gate screening is recovered. The electron drift 
effectively modifies the voltage distribution in the plasmonic waveguide by adding the 
so-called kinetic voltage ఠܸ௞௜௡ ൌ െ݉ݒכ଴ݒߜ/݁  first introduced for description of the 
electron beam waves in tubes [25]. Expression for the power flow in Eq. (4) reduces to its 
standard form after defining an effective voltage 
 

                                       ఠܸ௘௙௙ ൌ ఠܸ ൅ ఠܸ௞௜௡ ൌ ௩೛మି௩బమ௩೛మ ఠܸ ൅ ௩బ஼ௐ௩೛మ  ఠ .    (5)ܫ

 
According to Eqs. (2) and (5), the values of ఠܸ௘௙௙ and ܫఠ at the opposite boundaries of the 
2D electron strip of length ℓ (ݔ ൌ 0, ℓ) are connected via the transfer matrix ̂ݐ : 
 

                                    ቆ ఠܸ௘௙௙ሺ0ሻܫఠሺ0ሻ ቇ ൌ ݐ̂ ቆ ఠܸ௘௙௙ሺℓሻܫఠሺℓሻ ቇ ,     (6) 

 
 



where 
 

ෝݐ                    ൌ ݁ି௜ఠೡబೡ೛஀ ൭ cos Θ ௜ௐ஼௩೛ sin Θܹ݅ݒܥ௣ sin Θ cos Θ ൱ ,     Θ ൌ ఠℓ௩೛௩೛మି௩బమ  .  (7) 

 
 
 The dispersion relation for the drifting 1D plasmonic crystal formed in the 
structure of Figure 1 depends on the boundary conditions between the strips 1 and 2 in 
the crystal elementary cell. In the limit of a strong gate screening, the 2D channel in each 
strip can be considered as a plasmonic transmission line (TL) supporting 2D TEM plasma 
waves [20,21]. In the absence of drift, the continuity of the current and voltage at the 
boundary between the strips represents the standard TL boundary conditions providing 
the continuity of the power flow through the boundary. A finite drift breaks the 
reciprocity of the TL due to the different wave velocities of the plasmons propagating in 
the opposite directions. To preserve the continuity of the power flow, we assume the 
continuity of the current ܫఠ  together with the continuity of the effective voltage ఠܸ௘௙௙ 
defined in Eq. (5). The latter condition accounts for the conservation of the total electron 
energy equal to the sum of electric energy and kinetic energy due to electron drift at the 
boundary. For these boundary conditions, the values of ܫఠ and ఠܸ௘௙௙ at the opposite sides 
of the crystal elementary cell are connected by the transfer matrix ̂ݐଶ̂ݐଵ where ̂ݐ௜, ݅ ൌ 1,2 
are the transfer matrices defined in Eq. (7) for the strips 1 and 2. In the translationally 
invariant periodic plasmonic medium, the dispersion equation for the 1D drifting 
plasmonic crystal can be found using the Bloch theorem and solving the resulting 1D 
Kronig-Penney problem [26] 
 
    cosሺ݇ܮ ൅ ߱ܶሻ ൌ cos ߱ ଵܶ cos ߱ ଶܶ െ ଵଶ ቀߛ ൅ ଵఊቁ sin ߱ ଵܶ sin ߱ ଶܶ ,   (8) 
 
Here ߛ ൌ ௐభ௩೛భௗమௐమ௩೛మௗభ, ܮ  ൌ ଵܮ ൅ ଶܮ  is the crystal lattice constant, ݇ א ሾെܮ/ߨ, ሿܮ/ߨ  is the 

plasmon Bloch wave vector, and indices 1 and 2 refer to the strips 1 and 2, respectively. 
Parameters ܶ and ௜ܶ, ݅ ൌ 1,2 are defined as [5] 
 
                    ௜ܶ ൌ ௅೔௩೛೔௩೛೔మ ି௩బ೔మ  ,  ݅ ൌ 1,2 ;   ܶ ൌ ∑ ௩బ೔௩೛೔ ௜ܶ௜ୀଵ,ଶ                 (9) 

 
Eq. (8) generalizes the dispersion equation for the 1D drifting plasmonic crystal found in 
Ref. [5] to the case of periodically changing strip width W and the gate-to-channel 
distance d. Parameter ߛ ൑ 1 in Eq. (8) describes the modulation depth of the plasmonic 
medium. 
 One should point out that the periodic modulation of the channel width may also 
cause opening the gaps in the single electron spectrum. However, we restrict our 
consideration to the situation when the period of modulation is much larger than the 
electron Fermi wavelength, and the electron band structure can be ignored. 
  
 



III. RESULTS 
 
We will now consider Eq. (8) in the limit of strong modulation, ߛ ا 1, and look for 
solution in the form of the power asymptotic series ߱ ൌ ∑ ߱௣ߛ௣ஶ௣ୀ଴ . Substituting this 
expansion into Eq. (8) and combining terms of the same order, we find for the first two 
terms of the asymptotic series 
 

    ߱௠ሺ௜ሻ ൌ ߱଴,௠ሺ௜ሻ ൅ ଶቂሺିଵሻ೘శభ ୡ୭ୱቀ௞௅ାఠబ,೘ሺ೔ሻ ்ቁାୡ୭ୱ ఠబ,೘ሺ೔ሻ ்ೕቃ்೔ ୱ୧୬ ఠబ,೘ሺ೔ሻ ்ೕ ߛ ൅ ܱሺߛଶሻ; 

 ߱଴,௠ሺ௜ሻ ൌ గ௠|்೔| ,       ݅, ݆ ൌ 1,2  ݅ ് ݆,  ݉ ൌ 1,2, …                                                    (10) 
                                  
Frequencies ߱଴,௠ሺ௜ሻ  in Eq. (10) are the frequencies of the drifting plasmons confined in the 
cavity of length ܮ௜  with the symmetric boundary conditions. In Figure 2, we plot the 
frequencies of the first three quantized plasmonic levels in the strips 1 and 2 as a function 
of the electron drift velocity in the narrow strip 1, ݒ଴ଵ. In this Figure, we assume that both 
strips 1 and 2 have the same parameters except for the width, that is ݒ௣ଵ ൌ ௣ଶݒ ൌ ௣ , ݀ଵݒ ൌ ݀ଶ ൌ ݀  , and ܮଵ ൌ ଶܮ ൌ ߛ  ,In this case . 2/ܮ ൌ ଵܹ/ ଶܹ ൏ 1 , and as it follows 
from the continuity of the constant bias current, the electron drift velocity in the wide 
strip 2  ݒ଴ଶ ൌ ଴ଵ. The frequencies are plotted in units of ߱଴ݒߛ ൌ  . ܮ/௣ݒ2

It follows from Eq. (10) that the quantized plasmonic energy levels in the 
identical strips (1 or 2) are weakly coupled and broadened into the narrow plasmonic 
bands at ߛ ا 1. In this limit, strips 1 and 2 form two independent plasmonic sublattices. 
The plasmon frequencies in the bands in Eq. (10) are real. Hence, no instability occurs at 
any value of the electron drift velocity. 
 Points where ߱଴,௠ሺଵሻ ൌ ߱଴,௣ሺଶሻ, ݉, ݌ ൌ 0,1,2, … present special interest. In the absence 
of a dc drift, the band gaps in the plasmonic crystal spectrum vanish in these points, and 
plasma wave propagates through the entire crystal in a resonant manner [21]. The 
dispersion law for the drifting plasmon in these transparency points cannot be found from 
Eq. (10) because all terms in the asymptotic series used in this equation diverge, and an 
alternative asymptotic expansion is developed below. 
 Let ߱଴,௠ሺଵሻ ൌ ߱଴,௣ሺଶሻ ؠ ߱଴,௠௣ . At ߛ ا 1  solution of Eq. (8) has the form ߱௠௣ ൌ߱଴,௠௣ ൅ ∆߱  where ∆߱ ՜ 0 at  ߛ ՜ 0 . We expand Eq. (8) into quadratic polynomial 
with respect to ∆߱  and look for ∆߱  in the form of an asymptotic series ∆߱ ൌ∑ ఋೖஶ௞ୀ଴ߛ௞ߙ ௞ାଵߜ ,  ൐  ௞ can be found by the standard Newtonߜ ௞ andߙ ௞ . Coefficientsߜ
diagram method used for finding asymptotic expansion of the polynomial roots [27]. Our 
calculations yield 
 ߱௠௣ሺേሻ ൌ ߱଴,௠௣ േ ଶఊభ/మඥ భ் మ் ቐsin ቀ௞௅ାఠబ,೘೛்ଶ ቁ , ݉ ൅ cos݊݁ݒ݁ ݌ ቀ௞௅ାఠబ,೘೛்ଶ ቁ , ݉ ൅ ݀݀݋ ݌ ൅ ሺିଵሻ೘శ೛் ୱ୧୬൫௞௅ାఠబ,೘೛்൯భ் మ் ߛ ൅ܱ൫ߛଷ/ଶ൯            (11)  
 



It follows from Eq. (11) that at ଵܶ ଶܶ ൐ 0 , the resonant coupling of the quantized 
plasmonic levels in the adjacent non-identical strips 1 and 2 splits each unperturbed 
degenerate plasmonic level into the two plasmonic bands described by the second term in 
Eq. (11). If ଵܶ ଶܶ ൏ 0 , the degenerate plasmonic level broadens into one narrow 
plasmonic band described by the third term in Eq. (11). The second term in this equation 
becomes purely imaginary and corresponds to either unstable or decaying plasmon 
modes. The instability increment depends on the Bloch wave vector. From Eq. (9) it 
follows that the instability occurs when ݒ଴ଵ ൐ ௣ଵݒ ଴ଵݒ)  ൏ ௣ଵݒ ) but ݒ଴ଶ ൏ ௣ଶݒ ଴ଶݒ)  ൐ݒ௣ଶ). These inequalities constitute the necessary conditions for the repeated “sonic boom” 
with the dc current flowing in the structure. In Figure 2, the stable and unstable 
transparency points are marked by the open and closed circles, respectively. One can also 
show that at ߱଴,௠ሺଵሻ ് ߱଴,௣ሺଶሻ  but ቚ߱଴,௠ሺଵሻ െ ߱଴,௣ሺଶሻቚ ՜ 0  the interaction between nearly 
degenerate plasmonic levels in the strips 1 and 2 results in either two split plasmonic 
bands with real eigenvalues or one band with unstable and decaying branches dependent 
on the value of k in the Brillouin zone. 
 These analytical results are confirmed by the direct numerical solution of Eq. (8). 
For the structure shown in Fig. 1, we choose identical, except for the width, strips 1 and 2 
as described above and use dimensionless units for the complex plasma frequency ሺ߱ᇱ ൅ ݅߱ᇱᇱሻ/߱଴ and the electron drift velocity in the narrow strips ݒ෤଴ ൌ  . ௣ݒ/଴ଵݒ
 Figs. 3-6 show the results of the numerical solution of Eq. (8) for ߛ ൌ 0.1. Fig. 3 
shows the drifting plasmonic crystal spectrum for ݒ෤଴ ൌ 0.43. At this value of the drift 
velocity, ߱଴,௠ሺଵሻ ് ߱଴,௣ሺଶሻ at any ݉, ݌ ذ 1, and the low energy spectrum consists of the two 
sets of the plasmonic bands ߱௠ሺଵሻ  and ߱௠ሺଶሻ , ݉ ൌ 1,2, …  formed due to the resonant 
coupling of the plasmon energy levels ߱଴,௠ሺଵሻ  and ߱଴,௠ሺଶሻ  in the strips 1 and 2, respectively, 
as described by Eq. (10). One additional low energy solution appears in the transparency 
point ߱଴,଴ሺଵሻ ൌ ߱଴,଴ሺଶሻ. This solution can be interpreted as a lattice acoustic plasmon similar 
to the acoustic phonons in the atomic crystal lattice and corresponds to the ߱଴଴ሺേሻ modes in 
Eq. (11). Since at given value of the drift velocity ଵܶ ଶܶ ൐ 0, there is no imaginary part in 
the frequencies ߱଴଴ሺേሻ. 
 At ߛ ൌ 0.1, the instability occurs in the range of 1 ൏ ෤଴ݒ ൏ 10. Fig. 4 shows the 
numerically found plasmonic spectrum for ݒ෤଴ ൌ 1.12 when ߱଴,ସ௣ሺଵሻ ൌ ߱଴,௣ሺଶሻ , ݌ ൌ 0,1,2, … . 
The real part of the plasma frequencies, ߱ᇱ/߱଴ , is plotted in Fig. 4a. The plasmonic 
spectrum consists of the stable bands with purely real frequencies formed by the coupled 
strips 1 , ߱௠ሺଵሻ, and unstable bands , ߱௠௣ሺേሻ, in the transparency points where ߱଴,௠ሺଵሻ ൌ ߱଴,௣ሺଶሻ. 
Fig. 4a shows the two of these unstable bands. The instability increment, |߱ᇱᇱ|/߱଴, in 
these bands depends on the plasmonic Bloch wave vector as shown in Fig. 4b. These 
results correlate very well with asymptotic analytical formulas in Eqs. (10) and (11). 
 All the quantized plasmonic levels in strips 1 and 2 are perfectly matched if | ଵܶ| ൌ | ଶܶ| , see Eqs. (9) and (10). This last equation represents the super resonance 
condition when the plasmonic crystal becomes unstable at any plasma frequency ߱௠௣ሺേሻ, 
provided that ଵܶ ଶܶ ൏ 0 (the super plasmonic boom). For the structure considered here, it 
happens at ݒ෤଴ ൌ ඥ2/ሺ1 ൅ ଶሻߛ ൎ 1.41. In Fig. 2, the super resonance condition is marked 



by the dashed vertical lines with red arrow.  Plasma frequencies and instability 
increments for this totally unstable plasmonic crystal are shown in Figs. 5a and 5b, 
respectively. 
 The results presented in Figs. 4 and 5 indicate that the instability has a resonant 
character and occurs every time when there is a perfect plasmonic level matching 
between different strips in the transparency points. In this case, the plasma modes are 
unstable at any value of the plasmonic Bloch wave vector k. However if the level 
mismatch is small the instability does not completely vanish but occurs at some intervals 
of k in the Brillouin zone. In Fig. 6, we plotted the plasmon dispersion curves for ݒ෤଴ ൌ 1.71  when ߱଴,௣ሺଵሻ ൌ ߱଴,ଶ௣ሺଶሻ ݌ , ൌ 0,1,2, … . Two unstable modes ଵ߱ଶሺേሻ  and ߱଴଴ሺേሻ  are 
shown in Fig. 6a with the corresponding instability increments shown in Fig. 6b. The 
unstable mode ଵ߱ଶሺേሻ is the result of the resonant coupling of the plasmonic levels ߱଴,ଵሺଵሻ and ߱଴,ଶሺଶሻ. When the drift velocity ݒ෤଴ changes, these two levels shift differently and decouple. 
The inset shows the dispersion curves for this mode at ݒ෤଴ ൌ 1.65 . The instability 
disappears at some interval of k, where instead of one unstable band two split stable 
bands emerge. When level mismatch increases the region of stability expands and finally 
the unstable band ଵ߱ଶሺേሻ transforms into two stable bands ଵ߱ሺଵሻ and ߱ଶሺଶሻ described by Eq. 
(10). 
 One should also point out that the low frequency acoustic mode ߱଴଴ሺേሻ  in the 
plasmonic crystal lattice remains unstable at any value of ݒ෤଴  within the instability 
window 1 ൏ ෤଴ݒ ൏  This result follows from the asymptotic expansion in Eq. (11) .ߛ/1
and is confirmed by the numerical simulations shown in Figs. 3-6. 
 

IV DISCUSSION 
 

 The results of this paper have been derived based on the hydrodynamic equations 
(1). For Eqs. (1) to be valid the mean free path for electron-electron collisions ݈௘௘ has to 
be smaller than both the sample size and the mean free path for collisions with impurities 
and phonons [1]. For 2D electron density of the order of 10ଵଷ cm-2 the average distance 
between electrons is of the order of several nanometers. Frequent electron-electron 
collisions at these distances form the local equilibrium electron distribution function 
while electron-electron collisions at larger distances (larger than the Bohr radius ~10 nm) 
are accounted for by the self-consistent macroscopic electric field [28]. The characteristic 
macroscopic spatial scale in this problem is defined by the structure periodicity which 
determines the plasmon wavelength and is of the order of 0.1 – 1 µ. Since this scale is at 
least the order of magnitude larger than ݈௘௘  the hydrodynamic equations (1) can be 
derived from the kinetic equation using the standard Chapman-Enskog method [29]. The 
hydrodynamic approximation works better at elevated temperatures since ݈௘௘  decreases 
with temperature. The hydrodynamic model was successfully used for description of the 
plasma oscillations in the 2D electron systems in the semiconductor nanostructures for a 
very long time [30] and more recently was used in graphene nanostructures [31]. 
 The Euler equation in the system of Eqs. (1) relies on the assumption that the 
electron scattering by impurities and phonons can be neglected (i.e. for the ballistic 
transport regime). This assumption is justified if the mean electron free path due to 
scattering by impurities and/or phonons exceeds the characteristic sample size. In the 



modern day semiconductor nanostructures, with the scattering mean free paths ranging 
from a few micrometers in the high mobility samples at cryogenic temperatures to a 
fraction of a micrometer at room temperature this condition can be easily satisfied. In this 
context, it is worthwhile to point out that the drift velocities of the electron fluid 
introduced in our model are ballistic velocities that are not related to the electron mobility 
dependent on the electron scattering by impurities or lattice vibrations but are determined 
by the so called ballistic mobility [32]. A more detailed discussion of this issue and 
additional relevant references can be found, for example, in the recent paper by J. Lin et 
al [33].  

Electron scattering by impurities and phonons suppresses the instability. This 
effect can be accounted for by adding the friction term െݒ/߬௣ into the right-hand side of 
the Euler equation in Eqs. (1). Here, ߬௣ is the electron momentum relaxation time. The 
friction term leads to the additional contribution 1/2߬௣ to the imaginary part ߱ᇱᇱ of the 
plasma frequency and describes the decay of the plasma wave. As seen from Figs. 4-6, 
the value of ߱ᇱᇱ  is of the order of ߱଴  where ߱଴  is the plasma frequency. Hence, the 
plasma wave decay due random electron scattering is negligible at ߱଴߬௣ ب 1 . With 
plasma frequencies in the THz range the latter condition can be satisfied in the 
semiconductor nanostructures even at room temperatures. 

Another effect potentially suppressing the plasma wave instability is the Landau 
damping. The Landau damping refers to the transfer of energy from the collective plasma 
excitation to the individual electrons. This effect is ignored in the hydrodynamic model 
where the gas of individual electrons is replaced with the classical macroscopic electron 
fluid. The hydrodynamic approximation cannot be used if the Landau damping is the 
dominant effect. Transfer of energy from the plasma wave to the individual electron 
occurs when the electron moves in phase with the wave because, in this case, the wave 
electric field acting on these electrons is stationary and does not disappear after the time 
averaging as it happens for all other electrons which feel an oscillating electric field [34]. 
Therefore the Landau damping disappears if the plasma wave phase velocity ݒ௣ is larger 
than the electron Fermi velocity ݒி  in the degenerate electron gas or becomes 
exponentially small if ݒ௣  is larger than the thermal velocity in the non-degenerate 
electron gas. Using the expression for ݒ௣ from Section II and the Fermi velocity ݒி ൌ԰ඥ2݊ߨ଴/݉כ  in the inequality ݒ௣ ൐ ிݒ  we obtain condition ݀ ൐ ஻/2ݎ  for the Landau 
damping to disappear in our system. Here, ݎ஻ ൌ  ଶ is the 2D Bohr radius. The݁כ݉/԰ଶߝ
microscopic derivation of the last inequality based on solution of the kinetic equation can 
be found in Ref. [35]. With the typical effective Bohr radius of the order of 10 nm and the 
thickness of the gate dielectric d of the order of 30 nm to 100 nm the latter condition is 
met and the is no dominant Landau damping in the system even at finite temperatures 
[35]. 

Also omitted in the Euler equation (1) is the pressure gradient term ሺെ1/݊݉כሻ߲ܲ/߲ݔ where P is the local pressure in the 2D electron gas. The pressure term can 
be ignored because it is small in compared with the field term ሺ݁/݉כሻ߲߮/߲ݔ . Pressure 
in the 2D electron gas depends on the electron density as ܲ ൌ  For small .כ԰ଶ݊ଶ/2݉ߨ
fluctuations of the 2D electron density ݊ߜሺݔሻ the pressure term in the Euler equation 
reduces to ൫െߨ԰ଶ/݉כଶ൯߲ݔ߲/݊ߜ  . In the same linear approximation, the field term is 
equal to ሺെ݁ଶ/݉ܥכሻ߲ݔ߲/݊ߜ . The pressure term becomes much smaller than the field 



term if ݀ ب  ஻/4 and can be neglected in the structures considered in this paper. Theݎ
same inequality can also be written as ܥ/ܥொ ا 1 where ܥொ ൌ  ԰ଶ is the quantumߨ/ଶ݁כ݉
capacitance [36]. In the transmission line formalism, the effect of the quantum pressure is 
accounted for by adding the quantum capacitance in series with the gate capacitance C. 
The last inequality indicates when this effect can be neglected. One should also point out 
that inclusion of the quantum pressure into the Euler equation reduces to some 
renormalization of the constant plasma velocity [37] and does not change qualitatively 
the results presented in this paper. 

Finally, we estimate the effect of viscosity. For the viscosity term to be neglected, 
we must have  ݍߥଶ ا 1/߬௣ , where ߥ is the kinematic viscosity coefficient (of the order 
of ~10 cm2/s). This inequality is easily met for our characteristic space period scale of the 
order of 100 nm to 1 micrometer. 

As discussed above, the predicted instability increment is of the order of the 
plasma frequency ߱଴. This corresponds to the gain coefficient ݃~߱଴/ݒ෤௣ , where ݒ෤௣ ൌ߲߱/߲݇  is the plasma group velocity in the plasmonic crystal energy band, ݒ෤௣~ݒߛ௣. For 
the plasma frequency of 3 THz (߱଴~2 ൈ 10ଵଷ s-1) and ݒ෤௣~105 m/s, the gain ݃~2 ൈ 10଼ 
m-1. Demanding ݃ ب 1 for the efficient generation, we need structures with the length on 
the order of one micron. For a ballistic structure, the contact resistance on the order of 0.5 
Ωmm limits the device resistance. Assuming a typical radiation resistance of 300 Ω and 
the device width of 10 μm we estimate the current carrying capability on the order of Imax 
~ 30 mA for the electron velocity ~2×105 m/s and the 2D electron density of 1013 cm-2. 
Assuming the current swing of 0.5 Imax, we obtain the power of 80 mW with efficiency of 
approximately 20%.  
 

IV. CONCLUSIONS 
 
The results of the analytical theory and numerical simulations show that the plasma 
waves in a1D plasmonic crystal become unstable when the electron drift velocity changes 
from the value smaller than the plasma velocity to the value larger than plasma velocity. 
This can be achieved by changing either the drift velocity or the plasma wave velocity in 
the strips constituting the plasmonic crystal.  The qualitative physics of the instability is 
similar to the physics of the sonic boom, which occurs when a jet airliner crosses the 
sound barrier.   The difference is that such “plasmonic boom” is repeated many times in 
the periodic plasmonic structure leading to a much stronger instability. Further 
enhancement of the instability occurs due to the resonant excitation of the unstable 
plasma modes including the super resonance condition when all plasma modes become 
unstable (the super plasmonic boom). Another advantage of this approach is that the 
plasmonic crystal can efficiently couple with THz electromagnetic radiation. In our 
analysis, we neglected the electron collisions with impurities and lattice vibrations. The 
modern silicon VLSI fabrication techniques reached a feature size of 10 nm in 2015 [38], 
which is smaller than the mean free path in Si at room temperature (~ 30nm). This makes 
the ballistic plasmonic crystal analysis to be realistic as the first approximation at room 
temperature and to be a very good approximation at cryogenic temperatures. High values 
of the electron mobility in graphene (up to 200,000 cm2/V-s at room temperature [39]) 
make this material a good candidate for the THz plasmonic crystal application [40]. 



Therefore, we believe that the THz generation mechanism proposed in this paper should 
enable a new generation of efficient and compact THz sources.  
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Figure captions 
 
Figure 1. Schematic diagram of the 2D transistor structure with modulated width. 
 
Figure 2. First three quantized plasmonic levels in the non-interacting plasma cavities 
formed in strips 1 (߱଴,௣ሺଵሻ , red lines) and strips 2 (߱଴,௠ሺଶሻ  , blue lines) as a function of the 
electron drift velocity in strips 1. Open (solid) circles indicate stable (unstable) 
transparency points. Vertical dashed lines marked with red arrow correspond to the super 
resonance condition. 
 
Figure 3. Energy band spectrum of the drifting plasmonic crystal when the electron drift 
velocity in both strips 1 and 2 is less than the plasma wave velocity: ݒ଴ଵ, ଴ଶݒ ൏ ଴ଵݒ ௣. Hereݒ ൌ ,௣ݒ0.43 ଴ଶݒ ൌ  ଴ଵ. Two lowest stable plasmonic bands formed due to theݒ0.1
resonant coupling of the quantized plasmonic levels in strips 1 (߱௠ሺଵሻ) and strips 2 (߱௠ሺଶሻ) 
are shown. Stable bands ߱଴଴ሺേሻ correspond to the lattice acoustic plasmon as described in 
the text. 
 
Figure 4. Energy band spectrum of the drifting plasmonic crystal when the electron drift 
velocity is within the instability range: ݒ଴ଶ ൏ ௣ݒ ൏ ଴ଵݒ ଴ଵ. Hereݒ ൌ ,௣ݒ1.12 ଴ଶݒ ൌ0.1ݒ଴ଵ.  (a) Plasmonic band frequencies in the stable bands (߱௠ሺଵሻ, solid black lines) and 
unstable bands (߱௠௣ሺേሻ, red circles and blue squares); (b) Instability increments in the 
unstable plasmonic bands 
 
Figure 5. Totally unstable energy band spectrum of the drifting plasmonic crystal at ݒ଴ଵ ൌ ,௣ݒ1.41 ଴ଶݒ ൌ  ଴ଵ corresponding to the resonant coupling of all quantizedݒ0.1
plasmonic levels in strips 1 and 2. The first four unstable bands are shown.  
(a) Plasmonic band frequencies; (b) Instability increments. 
 
Figure 6. Energy band spectrum of the drifting plasmonic crystal at the electron drift 
velocity within the instability range: ݒ଴ଵ ൌ ,௣ݒ1.71 ଴ଶݒ ൌ ଴ଵݒ0.1 . (a) Plasmonic band 
frequencies in the stable bands (solid black lines) and unstable bands (red circles and blue 
squares); (b) Instability increments in the unstable bands. Inset: the ଵ߱ଶሺേሻ unstable band at ݒ଴ଵ ൌ  ௣ showing the evolution of the unstable band with the changing drift velocityݒ1.65
as described in the text. 
 
 
 
 
 
 
 
 
 
 



     
 

Figure 1 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

Figure 2 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

Figure 3 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 

Figure 4 



 
 
 

 
 
 
 
 
 
 

Figure 5 



 

 
 

 
 

Figure 6 

 


