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The thermoelectric power of the two-dimensional electron system (2DES) at the LaAlO3/SrTiO3

interface is explored below room temperature, in comparison with that of Nb-doped SrTiO3 single
crystals. For the interface we find a region below T=50 K where thermopower is dominated by
phonon-drag, whose amplitude is hugely amplified with respect to the corresponding bulk value,
reaching values ∼mV/K and above. The phonon-drag enhancement at the interface is traced back
to the tight carrier confinement of the 2DES, and represents a sharp signature of strong electron-
acoustic phonon coupling at the interface.

I. INTRODUCTION

The rise of thermoelectric efficiency in low-dimensional
materials1–8 is a long-standing source of inspira-
tion for material design9–15. The potential of
LaAlO3/SrTiO3

16–21 and, more in general, of SrTiO3-
based heterostructures as thermoelectric materials, stems
from the early idea1–3 (still controversial6 and not clearly
verified in experiments so far) that 2D electron confine-
ment could burst the already large thermoelectric power
of the SrTiO3 bulk, with room-T Seebeck coefficient (S)
of several hundredths µV/K in the low carrier density
range n ∼1019 cm−3,22,23. In addition, with respect to
the known Bi- and Te-based thermoelectric materials, ox-
ides have the important advantage of being non toxic and
structurally compatible for integration in multifunctional
heterostructures.

Remarkably large thermopower was reported for sev-
eral 2D oxides. Most notably, an S up to ∼ 1000 µV/K,
with a strong dependence on the carrier density was mea-
sured in SrTiO3/SrTi0.8Nb0.2O3 superlattices24–29. For
what concerns LaAlO3/SrTiO3, the first measurement of
Seebeck coefficient in the range from T=77 K to room-
T 30 gave values similar to those observed for low-doped
SrTiO3 bulk, but also revealed the possibility of tuning
S by a gate voltage, as previously highlighted in the im-
plementation of SrTiO3-based transistors.31 An anoma-
lous low-T behavior of thermopower in LaAlO3/SrTiO3

was also reported.32 The first S measurement in the ex-
tended T= 4-300 K range33 revealed the presence of
an impressively narrow and deep peak (∼ 500 µV/K)
below T=50 K, in striking contrast with the underly-
ing diffusive regime which dictates a smooth and al-
most linear approach to zero with decreasing temper-
ature. For assonance with the thermoelectric behav-
ior of semiconductor-based quantum wells34–36, it was
logical to attribute the peak to the phonon-drag ef-
fect, i.e. the extra contribution to the electronic ther-
mopower due to the drag of the electrons with the diffus-
ing phonons, induced by the electron-phonon coupling.
The presence of large phonon-drag reappeared later
in ion-gated SrTiO3

37 and in strongly charge-depleted

LaAlO3/SrTiO3
38, the latter in form of spectacular See-

beck oscillations observed under negative gate field, with
a Seebeck amplitude reaching record-high values of sev-
eral tens mV/K, and attributed to the presence of local-
ized states below the mobility edge.

In order to rationalize the general behavior of phonon-
drag and its sensitivity to the quantum confinement
and localization, here we use a combination of exper-
iments and modeling to perform a comparative analy-
sis of phonon-drag in several LaAlO3/SrTiO3 interfaces
and doped SrTiO3 crystals. We furnish a clear evi-
dence that for the interfaces the low-T thermopower is
dominated by a marked phonon-drag peak, which in-
stead is absent (or barely detectable) in the bulk. Fur-
thermore, we demonstrate that the phonon-drag peak
is a consequence of the tight 2D electron confinement
typical of oxide heterostructures. Indeed, in the low-
temperature limit, the coupling of acoustic phonons
with 2D-confined electrons is enhanced by the loss of
the crystal momentum conservation in the interface-
orthogonal direction, enabling the interaction of the elec-
tron gas with many more phonon frequencies. The
close relation between strong electron-acoustic phonon
scattering and large phonon-drag was previously ana-
lyzed in AlxGa1−xAs/GaAs39, MgZnO/ZnO40 and car-
bon nanotubes41. For LaAlO3/SrTiO3, the huge phonon-
drag peak can be understood as another manifestation of
the strong electron-phonon coupling recently revealed by
the polaronic nature of the 2DES42, and also proposed
to be the source of its superconducting behavior43.

The article is organized as it follows: In Section II we
describe the experimental setup; section III is devoted
to the description of results, separated in thermoelec-
tric and transport measurements (III A), measurements
under field-effect (III B), and theory results (III C). In
section IV we draw our conclusions. Finally in the Ap-
pendices we describe the model used for our calculations
in detail.
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II. EXPERIMENTAL SETUP

LaAlO3/SrTiO3 interfaces are prepared by pulsed laser
deposition. On a TiO2-terminated (001)-oriented SrTiO3

crystal, 5 unit cells (uc) (sample B) and 10 uc (samples
A and C) of LaAlO3 are grown at substrate tempera-
ture of 650o C (sample A) and 800o C (sample B and
C) in an oxygen pressure of 10−5 mbar, and then an-
nealed in an oxygen pressure of 200 mbar for one hour
at 520o C before cooling down to room temperature in
the same oxygen atmosphere.44 A gold pad is evaporated
on the back of the 0.5 mm thick substrate and used as
a gate electrode, for field effect experiments. Commer-
cially available SrTi1−xNbxO3 single crystals with dif-
ferent Nb doping are also measured. Seebeck coefficient
is measured in a home-made cryostat, from 4K to room
temperature, using an a.c. technique45. A sinusoidal
heating power with a period of 150 s is supplied to one
side of the sample, producing a thermal gradient of 0.15
K/mm. Hall effect and resistivity data are measured in
a PPMS system by Quantum Design, from 4K to room
temperature in magnetic fields up to 9 Tesla.

III. RESULTS

A. Thermoelectric and transport measurements

Figure 1a) displays the Seebeck coefficient measured
as a function of T for the three different interface sam-
ples. We see that above 50-70 K, S is linear for all the
samples, as expected in the diffusive regime. The lin-
ear slopes, varying between -0.37 and -1.28 µV/K2, are
reported in Table I, together with other measured trans-
port quantities of the interfaces. Below 50 K a sharp peak
associated to the phonon-drag mechanism is observed.
The temperature position of the peak is around 15-20 K
in all the cases, consistently with the fact that the max-
imum amplitude of the electron coupling with acoustic
phonons is expected around θD/10, if θD is the Debye
temperature (for undoped SrTiO3 θD ∼ 513 K46). At
higher T , on the other hand, other phonon scattering pro-
cesses (namely boundary scattering, phonon-impurity,
and phonon-phonon scattering) become dominant over
electron-phonon, and phonon-drag rapidly fades. If the
peak position is substantially the same in all the samples,
its amplitude is clearly sample-dependent (see Table I),
with a trend not trivially related to other fundamental
characteristics such as carrier density, sheet resistance,
or mobility (also reported in Table I): at low T , n2D

is rather similar for interfaces B and C, and a factor-
two higher for A; consistently, Rsheet is nearly double
for the formers. Nevertheless, the highest phonon-drag
peak occurs in C (|S| ∼1180 µV/K) and the smallest
in B (|S|∼500 µV/K), while A remains in the middle
(|S|∼715 µV/K). The Hall mobility is not quite helpful
either in rationalizing the phonon-drag behavior: since a
large phonon scattering due to defects or disorder plays

FIG. 1. a): Seebeck coefficient S measured for the three in-
terfaces as a function of temperature. b): Seebeck coefficient
for the three Nb-doped single crystals. c): sheet resistance
(Rsheet), 2D carrier density (n2D) and Hall mobility (µ) for
the interfaces. d): resistivity (ρ), 3D carrier density (n3D)
and Hall mobility (µ) for the Nb-doped SrTiO3 single crys-
tals.

in favor of phonon-drag suppression,47,48 it could be rea-
sonable to expect a relation between low-T mobility and
phonon-drag. However, our data in Table I defy such a
simple interpretation: samples A and B have same mo-
bility but quite a different drag peak. With the help of
modeling, we will see later that the difference in ampli-
tude can be actually traced back to different 2DES con-
finement thickness and planar charge localization, fea-
tures not easily determined experimentally. The other
transport quantities shown in Fig. 1c follow the expected
behaviors: Rsheet increases with temperature and satu-
rates to a residual, slightly sample-dependent value; the
Hall-measured n2D for all samples stays within the usual
1013-1014 cm−2 range, and the Hall mobility decreases
with increasing T .

In Fig. 1b) we report the Seebeck coefficient measured
for three Nb-doped SrTiO3 bulk samples with different
doping concentrations. Differently from the interfaces,
they are essentially phonon-drag free, with the excep-
tion of the lowest-doped sample F, showing a minor de-
viation from the linear behavior in a form of a rounded
shallow bump below 50 K. A barely visible inflection is
also present for sample E. We can conclude that for bulk
samples phonon-drag should be minor or smaller than
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the diffusive contribution. Notice also that the absence
of phonon-drag in SrTiO3 crystals cannot be merely at-
tributed to the chemical doping, which would suppress
the phonon relaxation time: for sample F the mobility
at low-T is much higher than for the interfaces, thus we
may argue that for this sample the electron-phonon vs.
impurity scattering ratio is larger than for the interfaces,
and yet, there is no significant drag peak. Finally, in
Fig. 1d) the transport properties of the bulk samples
are shown as a function of temperature. The resistiv-
ity curves can be phenomenologically described by the
Bloch-Grneisen law49 plus a T2 term50 . The volume
carrier densities n3D are almost constant in the whole
temperature range. For all the three samples, n3D is
about three times as large as the nominal doping indicat-
ing that some oxygen vacancies contribute in providing
additional carriers. The mobility vs temperature curves
are similar to those seen for the SrTiO3/LaAlO3 inter-
faces; the largest low-temperature value is reached for
the least doped compound (2870 cm2V−1s−1 for sample
F). The relevant transport parameters of the three single
crystals are summarized in Table I.

TABLE I. Some relevant transport parameters for our exam-
ined samples. From left to right: the S slope vs. T in the
linear (diffusive) regime (µV/K2); S at room temperature
(µV/K); the phonon-drag peak amplitude Speak (µV/K); the
Hall-measured carrier densities at T=4 K (in cm−2 for the
interfaces, cm−3 for bulks); the sheet resistance Rsheet for the
interfaces (Ω) and the bulk resistivity ρ for the bulks (Ωcm)
at T= 4 K; the Hall mobility at T= 4 K (cm2/V/s).

LAO/STO dS/dT S Speak n2D Rsheet µ
A -1.25 -770 -715 4.8×1013 350 380
B -0.37 -290 -500 2.0×1013 800 380
C -1.28 -680 -1180 1.7×1013 740 560

STO dS/dT S Speak n3D ρ µ
D -0.40 -134 1.0×1021 7.85×10−5 78
E -0.73 -258 -62 2.9×1020 5.25×10−5 400
F -1.20 -517 -210 2.2×1019 8.65×10−5 2870

B. Field-effect measurements

In Fig. 2 we report Seebeck coefficient measurements
for interface sample A under a back-gate voltage Vg (no
”poling” protocol” is performed here51). We see that
phonon drag peak is significantly modulated by the gate
voltage. The asymmetry of S with respect to the sign
of Vg is related to the non-linear field dependence of the
dielectric permittivity, and disappears above 77K (see
Ref.30) when permittivity does not depend anymore on
the electric field. In the accumulation regime, Vg can
be varied up to +200 V without detectable leakage and
the magnitude of S at the phonon drag peak (Speak) is
suppressed by only 5%. On the other hand, negative
gate voltages are very effective in depleting the interface
of carriers. For Vg=-5V we obtain a peak enhancement

FIG. 2. Seebeck coefficient measured for interface sample A
as a function of temperature for three values of the back gate
voltage Vg.

of 30%, while the diffusive regime at high temperature
shows negligible modulation with the field, consistently
with previous data30. The application of a negative Vg
is known to produce a series of outstanding effects on
the 2DES characteristics, related to charge depletion and
increase of electron confinement.52 In particular, Ref.30
shows that negative gate fields of order MV/m can re-
duce the 2DES thickness up to a factor-2 in the high
temperature regime T > 77 K. Thus, the large phonon-
drag modulation by field effect is a clear evidence that
phonon-drag is crucially related to the 2D extension of
the gas.

C. Phonon-drag modeling

To shed light into the phonon-drag mechanism at
the fundamental level, we used the theory first devel-
oped by Bailyn53 and then adapted to 2DES systems
by Cantrell and Butcher39–41,54–56, based on the Boltz-
mann Transport Equation (BTE)57 for coupled electrons
and phonons. To make calculation affordable, we de-
scribe the 2DES electronic structure by an anisotropic
effective mass modeling (previously used for a series of
oxides33,58–61) and the acoustic phonon frequencies by
a simple linear dispersion. Hereafter we briefly sketch
the final phonon-drag expression, leaving the detailed de-
scription to the Appendices. The phonon-drag is:

Spdj = − eν2
s

(2π)
3
σjkBT 2

∑
n

√
m∗nxm

∗
ny

m∗nj
2

ε0n+Wn∫
ε0n

dε f(ε) τn(ε)

×
q0∫

0

dqp q
3
p

q0∫
−q0

dqz
Nq(1− f(ε+ h̄ωq))√

C2
0,n −X2

0,n

An(q, qz)

τ−1
ph (q)

(1)

where νs is the speed of sound, σj the 2D conductivity
(in Ω−1 ), m∗nj the effective mass of band n in direc-
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tion j (x or y); ε is the electron energy, f(ε) and Nq
are electron and phonon occupancies, respectively, and
An(q, qz) the electron-phonon coupling amplitude; τn(ε)
and τph(q) are electron and phonon relaxation times, re-
spectively; ε0n and Wn are band bottom and bandwidth,
C0,n and X0,n quantities dependending on phonon and
electron energy (see Eq.15 in Appendix I). The integral
over phonon wavevector q is solved in cylindrical coor-

dinates, qp=
√
q2
x + q2

y and qz are planar and orthogonal

components, q=
√
q2
p + q2

z . In Eq.1 the crucial quantity

which governs the phonon-drag magnitude is the ratio
of electron-acoustic phonon coupling to phonon lifetime,
with the former expressed as:

An(q, qz) = Ã(q)Fn(qz); Fn(qz) =

∣∣∣∣∣∣
∫
t

dz ψ2
n(z) eiqzz

∣∣∣∣∣∣
2

(2)

where Ã(q) includes the deformation potential and
the piezoelectric contributions39, and ψn(z) is the wave-
function of the 2D-confined electrons, whose Fourier-
transform Fn governs the coupling of 3D phonons with
the electrons confined along z within a slice of thickness
t. In the t→∞ limit Fn→δqz,0 i.e. only zero-wavelength
phonons can couple with electrons, and the coupling am-
plitude goes back to the 3D case, where q is fully deter-
mined by the crystal momentum conservation k’=k+q;
in case of infinite confinement (t=0), on the other hand,
all qz up to the Debye wavelength do contribute to the
coupling, and Fn=1. For what concerns τph(q), we use
the low-temperature modeling developed by Callaway62

(see Eq.19 in Appendix I), while band structure param-
eters m∗nj , ε

0
n, and Wn, are taken from our previous ab-

initio results.33,63

In the calculation we want to put in evidence the key
features which govern the phonon-drag amplitude: the
gas thickness t, the in-plane localization (thus m∗nj), and
the n2D charge density. Those are all quite difficult to be
precisely determined in the experiments, since crucially
affected by a number of hard-to-control conditions, such
as structural disorder, oxygen vacancies, cation intermix-
ing. Exploiting the flexibility of band modeling, we thus
treat them as variable parameters to explore the phonon-
drag behavior in a range of different conditions. For what
concern the 2DES thickness, ab-initio results33,63–72 show
that for the charge density of interest (∼2-4×1013 cm−2)
the gas is entirely included in a few (∼2,3) dxy states
confined in the TiO2 layers closest to the interface, while
only above ∼ 6×1013 cm−2 the more extended dxz, dyz
states sets in. However, in order to evaluate the scaling
with respect to the 2D confinement, it is convenient to
replace the actual squared wavefunctions with Gaussian
envelope functions of variable thickness t (see Appendix-I
for details). In Fig. 3 we show three sets of phonon-drag
calculations relative to different values of effective masses
and n2D, each of them for variable t from a single unit

FIG. 3. a), b), c): Model calculation of phonon-drag vs.
temperature at varying gas thickness t (indicated for each line
in nm). Each panel corresponds to different values of effective
masses and charge densities, also reported on each panel. d):
diffusive Seebeck coefficient (dashed lines) and total (diffusive
plus phonon-drag) Seebeck coefficient (full lines) for the three
sets of calculations and t= 1 nm. Green curves are for case
a), red curves for b) and blue for c). d) sheet resistance; e)
electron mobility.

cell up to 100 nm (i.e. in the bulk limit). Fig. 3a shows
the phonon-drag for masses derived from ab-initio calcu-
lations (m∗x=m∗y=0.7me for dxy states) which represent
the ’clean’ interface limit, while Fig. 3b is obtained us-
ing ’fattened’ effective masses (1.4me for dxy) mimicking
an increased in-plane charge localization, typically asso-
ciated with structural distortions and disorder; finally, in
Fig. 3c we use ’ideal’ masses and an increased n2D. (no-
tice that the explicit mass dependence in Eq.1 vanishes
for isotropic masses, but the most crucial mass depen-
dence is implicitly included in f(ε) through the Fermi
energy). In Fig. 3 we also report diffusive Seebeck coef-
ficient, sheet resistance, and mobility calculated by BTE
for the different masses and densities, and t=1 nm.

Overall, a good match with the observations is ob-
tained. Our phonon-drag values qualitatively repro-
duce the major features observed in the experiment: the
phonon-drag appears as a sharp peak centered at T∼20
K, and for T >50 K it disappears behind the diffu-
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sive Seebeck coefficient. The peak amplitude crucially
depends on both 2DES thickness and effective masses.
In fact, we see that only for thickness of ∼10 nm or
less the phonon-drag peak becomes significantly visible
above the low-temperature diffusive background. In par-
ticular, assuming as maximum possible confinement the
thickness of a single unit cell (t=0.39 nm) we obtain
peaks higher than 500 µV/K and 1000 µV/K for the
two sets of masses, which are in the range of the values
observed for the interfaces. More complicated is tracing
the phonon-drag dependence on the charge density: a
larger charge implies higher Fermi energy but also more
occupied bands (i.e. more bands actively contributing
to the phonon-drag). The net result is t-dependent: for
weakly confined 2DES, the second aspect prevails, and
the phonon-drag increases with the density. In the nar-
row thickness limit, the two effects neary compensate and
phonon-drag is slightly larger for the lower density. Over-
all, the effect of a pure charge-filling on the phonon-drag
appears to be weaker than confinement and localization.
Clearly, in actual cases these three ingredients (thickness,
localization, and density) are tightly interlaced with each
other, thus a fine-tuned interpretation of the differences
observed among the interface samples is cumbersome.
What is significant in the simulation, on the other hand,
is that, assuming realistic values for n2D, the phonon-
drag scaling with thickness and effective masses spans
the whole range of measured values, from the bulk to the
tightly-confined 2DES regime.

IV. CONCLUSIONS

In conclusion, we reported the measured thermopower
for several LaAlO3/SrTiO3 interfaces, in comparison
with that of Nb-doped SrTiO3 crystal samples. We give
evidence that for the interfaces, thermopower below 50 K
is dominated by a high phonon-drag peak, reaching huge
values of order ∼mV/K. On the other hand, phonon-
drag is substantially absent, or barely apparent, in bulks.
With the help of numerical modeling, we traced back the
presence of such a large phonon-drag peak to the tight 2D
confinement of the 2DES and to the charge localization
at the interface: specifically, the 2D thickness establishes
the cut-off on the wavelength of the acoustic phonons
which can couple to the confined electrons, while pla-
nar localization crucially controls the Fermi energy and
in turn the phonon-drag amplitude. From our analysis,
phonon-drag emerges as a remarkable marker of charge
localization and confinement in 2D heterostructures, and
a significant parameter of classification for 2DES systems
in general.
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APPENDIX I - PHONON-DRAG MODELING IN
2D

We follow the original Cantrell-Butcher (CB)
formulation55,56 for the expression of phonon-drag in 2D
heterostructures. The theory is developed starting from
the Boltzmann Transport Equation within relaxation
time approximation for a coupled system of 3D acoustic
phonons and 2D electrons. Using the same CB notations,
assuming intra-band scattering only, the phonon drag in
direction j=(x, y) can be expressed as:

Spdj =

(
2e

σjAkBT 2

) ∑
nk,nk′,q

h̄ωq

(
Γnk,nk′(q)

τ−1
ph (q)

)
×vj(q) [τ(nk)vj(nk)− τ(nk′)vj(nk

′)] (3)

with A the unit area, σj the 2D conductivity (in Ω−1),
q = (qx, qy, qz) and k = (kx, ky) phonon and elec-
tron crystalline momenta, τph(q) and τ(nk) phonon and
electron relaxation times, vj(q) and vj(nk) phonon and
electron velocities, and Γnk,nk′(q) the electron-acoustic
phonon scattering rate:

Γnk,nk′(q) = fnk (1− fnk′)NqAn(q)

×δ (εnk′ − εnk − h̄ωq) δk′,k+qp
(4)

where fnk and Nq are electron and phonon occupan-
cies, An(q) is the coupling amplitude, and the two delta
functions account for energy and in-plane momentum
conservation (qp=(qx, qy)). Notice that Eq.4 is writ-
ten for the absorption process, but emission is implicitly
accounted for in Eq.3. In Ref.56 Eq.3 is made treatable
assuming linear phonon dispersion and parabolic band
modeling for electrons. Here we follow the same strategy,
except for the generalization to anisotropic band masses
in the plane, which is better suited to describe the t2g

states of the 2DEG. It is easy to see that:

vj(q) [τnkvj(nk)− τ(nk′)vj(nk
′)] = − h̄vs

m∗nj

q2
j

q
τ(nk)

(5)

where m∗nj is the effective mass of nth band in direction
j; also for simplicity we assume τ(nk) = τ(nk′). Notice
that the minus sign in Eq.5 comes from the fact that
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for positive band curvature (electrons) the band velocity
increases with k; it follows that phonon drag is negative
for electrons, just like diffusive thermopower. In order to
treat anisotropic bands we introduce the following change
of in-plane j=(x, y) variables:

kj = Kj

√
m∗nj
m

; qj = Qj

√
m∗nj
m

(6)

where m is an auxiliary mass which, using in-plane
momentum conservation, allows to write:

εnk =
h̄2K2

2m
; εn,k+qp = εn,K+Q =

h̄2(K + Q)2

2m
(7)

δ (εK+Q − εK − h̄ωq) = δ

(
h̄2Q2

2m
+
h̄2KQ cos θ

m
− h̄ωq

)
(8)

where θ is the angle formed by K and Q. It is conve-
nient to introduce another variable change:

X =
h̄2KQ

m
cos θ = C0 cos θ; X0 = h̄ωq −

h̄2Q2

2m
(9)

Then, we solve the sum over K in 2D for a fixed K in
radial coordinates, taking the azimuth angle to be that
formed by K and Q. It is easy to see that:

dθ = −dX 1√
C2

0 −X2
; KdK =

m

h̄2 dεK (10)

∑
k

δ (εK+Q − εK − h̄ωq) =
A

(2π)2h̄2

√
m∗nxm

∗
ny

×
∫
dε

∫
X∈[−C0,C0]

dX
δ(X −X0)√
C2

0 −X2
(11)

The argument of the square root is always positive,
since X ∈ [−C0, C0]; to have a non-vanishing integral in
dX it must be -C0 ≤ X0 ≤ C0, i.e.:

h̄2(K−Q)2

2m
≤ εnk + h̄ωq ≤

h̄2(K + Q)2

2m
(12)

which has a simple interpretation: after absorption the
carrier energy must be higher (lower) than the band en-
ergy corresponding to antiparallel (parallel) K and Q
orientation. We have:

∫
X∈[−C0,C0]

dX
δ(X −X0)√
C2

0 −X2
=

2√
C2

0 −X2
0

(13)

Since θ ∈ [0, 2π] there are always two values (cos(θ0)
and cos(-θ0)) for which the delta function is non-
vanishing. Inserting Eq.4 in Eq.3, solving for the energy-
conserving delta function according to Eqs.11 and 13,
and using ωq = νsq, the phonon drag in 2D becomes:

Spdj = − 4ev2
sV

(2π)5σjkBT 2

∑
n

√
m∗nxm

∗
ny

(m∗nj)
2

∫
d3q q2

j

NqAn(q)

τ−1
ph (q)

×
ε0n+Wn∫
ε0n

dε fε
(
1− fε+h̄ωq

)
τn(ε)

1√
C2

0,n −X2
0,n

(14)

C2
0,n =

2h̄2q̃2
n

m∗nxm
∗
ny

εK ; X0,n = h̄ωq −
h̄2q̃2

n

2m∗nxm
∗
ny

(15)

where q̃2
n = q2

xm
∗
ny + q2

ym
∗
nx. In 2D the electron-

acoustic phonon scattering amplitude can be written, at
the simplest level of approximation:73

An(q, qz) =

[
CDP q + CPZ

q3

(q2 + q2
D)2

]
Fn(qz); (16)

CDP =
πD2

V ρνs
; CPZ =

πe2νsK
2
em

V k0k
; (17)

Fn(qz) =

∣∣∣∣∣∣
∫
t

dz ψ2
n(z) eiqzz

∣∣∣∣∣∣
2

(18)

CDP and CPZ account for deformation potential and
piezoelectric scattering, respectively; D is the deforma-
tion potential, ρ the mass density, k0 and k vacuum per-
mittivity and dielectric constant, Kem the 3D-averaged
electromechanical coupling, and qD the Debye screening
length; ψn(z) is the space-localized wavefunction of the
scattered electrons. The deformation potential term de-
scribes the coupling of electrons with longitudinal acous-
tic waves treated as an homogeneous strain. The piezo-
electric scattering is the additional contribution due to
the coupling with the electric field produced by the strain.
For a non-polar system (Kem =0) or in the limit of large
doping concentration (i.e. strong Debye screening) the
second term vanishes and only the deformation potential
contributes to the acoustic scattering. In case of small
screening (qD=0) and highly ionic compounds, on the
other hand, the piezoelectric contribution (∼1/q) may
become dominant at small q. Assuming a very long De-
bye screening length (qD ∼0) screening becomes discard-
able, and the electron-phonon scattering increases ,36 i.e.
in the low-density charge-localized limit, carrier mobility
is so small that the piezoelectric interaction becomes un-
screened. In the case of LaAlO3/SrTiO3 both terms are
relevant and should be included in the treatment.
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FIG. 4. Left panel: z-localized squared wavefunctions with
varying localization length, normalized to unity. Right: cor-
responding Fourier transforms. Each wavefunction is built as
a sum of Gaussian functions, centered in the middle of a per-
ovskite unit cell, further interpolated by a Gaussian envelop
of varying thickness.

In the form factor Fn we assume the same initial and
final wavefunction for the scattered carrier; this is reason-
able since Fn depends weakly on the specific wavefunc-
tion shape; what matters the most is its overall extension,
i.e. the thickness t of the well. In Fig.4 we show the re-
lation between a series of normalized squared wavefunc-
tions obtained by a superposition of Gaussian functions,
with localization length progressively increased from one
to eight unit cells, and the corresponding Fourier trans-
forms Fn: in case of maximum localization, all the charge
is enclosed in a single unit cell (black line), and the cor-
responding Fn weight is about unity, i.e. all the phonons
with qz up to the Debye wavelength (qz ∼ 0.83 Å−1 in
SrTiO3) contribute to the scattering; for a squared wave-
function localized in 8 u.c. (about 31 Å in SrTiO3) on
the other hand, only phonons with qz > 0.2 Å−1 do con-
tribute. In the limit of complete delocalization (t → ∞)
is Fn → δ(qz, 0). Thus, the 2DEG confinement is a major
factor of phonon-drag amplification in oxide heterostruc-
tures, as discussed in the main text.

Finally, for the phonon relaxation time we use the Call-
away formula:62

τ−1
ph = Aω4

q +B T 3ω2
q +

νs
L

(19)

including scattering by point impurities (first term),
phonon-phonon scattering (second term), and boundary
scattering (third term; here L is a characteristic sample
length; in our model L=1 mm). In our calculations, A
and B are adjusted to have a phonon-drag value in the
bulk limit (t → ∞) which is small with respect to the
diffusive Seebeck, consistently with what is observed in
the experiments; then these values are kept fixed while
t is progressively reduced, in order to describe the scal-
ing effect purely due to the confinement thickness on the
phonon-drag amplitude.

APPENDIX II - APPROXIMATE SOLUTIONS
FOR THE PHONON-DRAG INTEGRATION IN

2D

Using the series of Eqs. from 14 to 19, phonon drag
can be obtained by numerical integration, and evaluated
at any given temperature and doping; however this re-
quires the integration over 4 coupled coordinates (3 for
the phonon wavevector and one for the electron energy).
To reduce the computational weight, we can follow two
routes:

a) Isotropic 2D approximation: in plane we take q2
j

∼ 1/2 q2
p; it follows that the arguments of the square

root in Eq.13 become dependent on 2 coordinates only,
and the integral over q can be expressed in cylindrical
coordinates. Thus phonon drag is reduced to a 3-variable
integration:

Spdj = − eν2
s

(2π)3σjkBT 2

∑
n

√
m∗nxm

∗
ny

(m∗nj)
2

ε0n+Wn∫
ε0n

dε fε τn(ε)

×
q0∫

0

dqp q
3
p

q0∫
−q0

dqz
Nq

τ−1
ph (q)

(1− fε+h̄ωq
)√

C2
0,n −X2

0,n

×
[
CDP q + CPZ

q3

(q2 + q2
D)2

]
Fn(qz)

(20)

which corresponds to Eq.1 and was actually used for
our calculations. Here πq2

0=(2π)2/A, and q0=2
√
π/a0.

Also, electron and phonon energies must obey the con-
straints:

h̄ωq ≤
h̄2q2

p

2m̃
+ h̄qp

√
2εnk
m̃

(21)

h̄ωq ≥
h̄2q2

p

2m̃
− h̄qp

√
2εnk
m̃

(22)

with

m̃n =
2m∗nxm

∗
ny

m∗nx +m∗ny
(23)

b) small phonon frequencies. In case of small
phonon energies and low T, the following Equation holds
(adopted in the CB work):

fε
(
1− fε+h̄ωq

)
∼ h̄ωq

1− e−
h̄ωq
kBT

= h̄ωq(Nq + 1)δ(ε− εF )

(24)

thus in Eq.14 the electron energy integral can be fac-
torized and solved, and the phonon-drag becomes only
dependent on phonon coordinates:
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Spdj = − 2eν2
s

(2π)4σjkBT 2

∑
n

√
m∗nxm

∗
ny

(m∗nj)
2
τn(εF )

×
∫
d3q q2

j

 h̄ωqNq(Nq + 1)

τ−1
ph (q)

√
C2

0,n(εF )−X2
0,n


×
[
CDP q + CPZ

q3

(q2 + q2
D)2

]
Fn(qz) (25)

with:

C2
0,n(εF ) =

2h̄2q̃2
n

m∗nxm
∗
ny

εF ; X0,n = h̄ωq −
h̄2q̃2

n

2m∗nxm
∗
ny

(26)

The approaches a) and b) give results to within 10-15%
from each other in the fully converged limit of electron
energy and phonon wavevector integration. The results
shown in Fig.3 are obtained using Eq.20.

APPENDIX III - VALUES OF PARAMETERS
USED FOR THE CALCULATION

Several parameters entering the phonon-drag modeling
are unknown or difficult to calculate for LaAlO3/SrTiO3;

in this case we rely on values appropriate for SrTiO3.
For the phonon drag we use νs=7.9×105 cm/s, k=300,
D=8 eV, Kem=0.35; for the phonon relaxation time
A=0.5×10−41 (adimensional), B=0.5×10−20 K−3, and
L=0.1 mm. The electronic band structure is described
by a multiband effective mass modeling, including three
t2g bands for each unit cell, with masses (m∗x, m∗y)= (0.7,
0.7)me for dxy, (0.7, 8.8)me for dxz, (8.8, 0.7)me for dyz;
the band bottoms ε0n are scaled according to the ab-initio
band structure calculations at varying charge density63:
for the dxy states ε01=0, ε02=20 meV, ε0i+1 =30 meV, for
i=2,3,4,... (i is the number of u.c. distance from the in-
terface); for the dxz and dyz states we take ε0i=30 meV
for each i, since they are substantially spread within the
substrate and their confinement along z is discardable for
charge densities n2D ∼ 1013 cm−2. Finally, for the cal-
culation of diffusive Seebeck and conductivity we use the
same formulation and parameters previously adopted in
Refs.33 and 38.
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