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In quantum mechanics, a particle is best described by the wave packet instead of the plane
wave. Here, we study the wave-packet scattering problem in Weyl semimetals with the low-energy
Weyl fermions of different chiralities. Our results show that the wave packet acquires a chirality-
protected shift in the single impurity scattering process. More importantly, the chirality-protected
shift can lead to an anomalous scattering probability, thus, affects the transport properties in Weyl
semimetals. We find that the ratio between the transport lifetime and the quantum lifetime increases
sharply when the Fermi energy approaches to the Weyl nodes, providing an explanation on the
experimentally observed the ultrahigh mobility in topological (Weyl or Dirac) semimetals.

PACS numbers: 72.10.-d, 03.65.Sq, 73.43.-f, 71.90.+q

I. INTRODUCTION

With the discovery of two-dimensional ultra-
relativistic material—graphene, many exotic phe-
nomena find their wonderland, and can further be
realized in simple table-top experiments.1 Beyond the
graphene, three-dimensional ultra-relativistic materials,
dubbed Dirac semimetals, are predicted and confirmed
recently.2–9 The energy dispersion is linear near the
band touching points (Dirac points), which is protected
by the crystalline symmetry. When either the time-
reversal symmetry or the inversion symmetry is broken,
the Dirac semimetals (DSMs) evolve into the Weyl
semimetals (WSMs), in which low energy Weyl fermions
are embedded.10–19 Both of DSMs and WSMs are called
topological semimetals (TSMs). Like the DSMs, WSMs
also have linear energy dispersion near the band touch-
ing nodes (Weyl nodes). Importantly, the Weyl nodes
can be viewed as magnetic monopoles in k-space, and
generates the Berry curvature Ω.11 Due to the transverse
anomalous velocity vA = Ω × eE,20,21 a host of novel
transport phenomena can happen in WSMs, such as
chiral magnetic effect, the topological Imbert-Fedorov
effect, etc.22–33. The Weyl semimetal state has been
confirmed by photoemission and magneto-transport
experiments in the noncentrosymmetric TaAs family of
compounds.34–42

All of the transport experiments confirmed two strik-
ing universal features of the TSMs: (i) the negative mag-
netoresistance when the magnetic field is parallel to the
electric field,38,40,41,43 and (ii) the ultrahigh mobility in
the TSMs systems.3,39–42,44–47 The negative magnetore-
sistance feature has been predicted theoretically, which
is caused by the chiral anomaly effect in WSMs. How-
ever, the physical mechanism that leads to the ultra-
high mobility remains puzzling. The mobility is deter-
mined by the transport lifetime τt. Conventionally, τt
is regarded as the same order as the quantum lifetime

(or single particle scattering time) τq.
48,49 In the case

of 2DEG in GaAs/AlGaAs, the ratio Rτ = τt/τq can
be large (10 − 100) because the scattering centers are
separated from the carriers.49–52 The charge fluctuations
in the dopant layer lead only to small-angle scatterings,
which strongly limit τq but hardly affect τt.

52 Unexpect-
edly, a recent experiment shows that the ratio Rτ can be
as large as 104 in TSM.3 If τq is assumed to be of normal
magnitude, large ratio Rτ implies ultrahigh mobility in
TSM. However, there is no obvious separation of the scat-
tering centers from the conduction electrons in TSM, yet
Rτ is extremely larger. There should exist an unknown
mechanism that strongly suppresses the backscattering.

In this Letter, we address the unknown mechanism
that leads to the ultrahigh mobility in the TSMs. Firstly,
we show that a chirality-protected shift occurs in the
wave-packet scattering process. Our result shows that
the chirality-protected shift reaches its maximum in the
backscattering case. Secondly, we discuss how the shift
modifies the effective impact parameter of the wave
packet, and thereby results in the anomalous scattering
probability. Thirdly, to validate the argument we made,
we present a full quantum calculation on the wave-packet
scattering process, and the results are consistent with our
semiclassical argument. At last, we calculate the trans-
port lifetime τt and the quantum lifetime τq. Our results
show that the ratio Rτ = τt/τq increases steeply as the
Fermi energy approaches to the Weyl nodes.

II. THE CHIRALITY-PROTECTED

TRANSVERSE SHIFT

In this section, we derive the chirality-protected trans-
verse shift in the wave-packet scattering process. The
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FIG. 1: The chirality-protected transverse shift occurs in the
scattering process in WSMs. (a) The schematic of the wave-
packet scattering. b is the impact parameter, θ and φ are
two angles that characterize the outgoing direction of the
scattered wave. (b) The chirality-protected transverse shift
versus Fermi energy for different scattering angles. (c) The
chirality-protected shift ∆ch emerges in the wave-packet scat-
tering process. The red arrows stand for the outgoing direc-
tion of the scattered wave(C = −1). (d) shows the momentum
texture of the scattered wave (C = −1). When one views the
scattering process in the z-direction, the momentum direction
of outgoing wave forms a texture, and the radius of the tex-
ture is the chirality-protected shift. For Weyl fermions with
chirality C = 1, the radius remains the same, whereas the
momentum texture reverses.

effective Hamiltonian of Weyl fermions is17

H =
∑

i,j∈x,y,x

~vij kiσj , (1)

where vij have the dimensions of velocity, ki is the wave
vector, and σ = (σx, σy , σz) are the Pauli matrices.
The chirality (handedness) of Weyl fermions is defined
as C = sgn [det(vij)]. For convenience, We study the
isotropic Weyl semimetal described by the Hamiltonian
H = C ~vk ·σ. We consider that the wave packet is scat-
tered by a single impurity Ri in WSM (Fig. 1(a)). In
Ref.31, the authors find that a topological transverse shift
occurs in the reflection process in WSMs. Therefore, we
also expect that a transverse shift may appear in the im-
purity scattering process. In principle, there can also be
a longitudinal shift in the wave-packet scattering process.
However, the longitudinal shift should not contribute to
the total angular momentum, and we do not consider it
here. Because of the rotational symmetry about z-axis,
the z-component of the total angular momentum should
be conserved in the wave-packet scattering process, by
which the transverse shift can be obtained. Because of
the massless nature of Weyl fermions, the chirality is the
same as the helicity, which can be understood as the pro-
jection of the spin angular momentum to the canonical

momentum. If the chirality C = 1(−1), that means the
spin direction is (anti-)parallel with the momentum. For
the Weyl fermions with the chirality C = ±1, the spin
angular momentum changes ∆S = ±~

2 (r̂ − êz), where
r̂ = (sinθcosφ, sinθsinφ, cosθ) is the unit vector in the
same direction with the outgoing wave packet. The
orbital momentum changes ∆L = ∆ch × pout, where
∆ch = ∆ch (sinθ0cosφ0, sinθ0sinφ0, cosθ0) is the trans-
verse shift, and pout = p r̂ is the momentum of the
scattered wave packet. φ0 and θ0 characterize the direc-
tion of the transverse shift. We initially assume that the
chirality-protected shift is perpendicular to incident mo-
mentum pin and out scattered momentum pout. Thus,
one can obtain θ0 = π/2 and φ0 = φ ± π/2. The to-
tal angular momentum conservation in z-direction gives
∆Sz +∆Lz = ~

2 (cosθ− 1)±∆ch ×p sinθ. Therefore, one
can readily obtain the absolute value of the transverse
shift

∆ch =
1

2k
tan

θ

2
. (2)

Because of the rotational symmetry, the absolute value
is independent of the azimuthal angle φ. Fig. 1(b) shows
the chirality-protected shift versus the Fermi energy with
different scattering angles. The direction of the shift ∆ch

can also be obtained by considering the conservation of
the total angular momentum. For Weyl fermions with
chirality C = 1, the spin angular momentum decreases in
the scattering process, leading to increase of the orbital
angular momentum. Therefore, we obtain φ0 = φ− π

2 for
C = 1. Analogously, we obtain φ0 = φ + π

2 for C = −1.
Therefore, the transverse shift is

∆ch =
1

2k
tan

θ

2
[cos(φ− δ), sin(φ− δ)], (3)

where δ = ±π/2 for Weyl fermions with chirality C = ±1,
respectively. The phase shift δ = ±π/2 characterizes the
chiral nature of the wave-packet scattering process. Fig.
1(c) and (d) show the scattering momentum texture due
to the transverse nature of the chirality-protected shift.

III. ANOMALOUS SCATTERING

PROBABILITY

In the wave-packet scattering process, one can define
the impact parameter b, which is the perpendicular dis-
tance between the wave-packet center and the target cen-
ter(Fig. 1(a)).53 According to the wave-packet scattering
theory, the scattering probability P (θ,b) is exponentially
decay with the increase of the impact parameter b, i.e.

P (θ,b) ∝ e−b2/∆2
rσ(θ), where ∆r is the width of the

wave packet, and σ(θ) is the scattering cross section.53

Since we have shown that there is a chirality-protected
transverse shift in the scattering process, the effective
impact parameter b̃ should be renormalized due to this
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transverse shift, i.e.,

b̃ = b+∆ch. (4)

Therefore, because of the transverse shift ∆ch, the scat-
tering probability should be

P (θ,b) ∝ e−b̃2/∆2
rσW (θ), (5)

where σW (θ) is the scattering cross section for Weyl
fermions. As is shown in Fig. 1(b), the shift ∆ch → ∞
in the backscattering process (θ = π), which indicates
that the backscattering is strongly suppressed by the fac-

tor e−b̃2/∆2
r . Even in non-backscattering case (θ 6= π),

∆ch → ∞ when the Fermi energy approaches to the Weyl
nodes (EF → 0). This indicates that only small-angle
scatterings are possible in the wave-packet scattering pro-
cess in WSMs. We remark that the physical mechanism
of the ultrahigh mobility in topological semimetals is dif-
ferent from that in GaAs-based 2DEG.49–52 In the Ap-
pendix, we also calculate the wave-packet scattering for
the Dirac fermions in graphene. The scattering proba-
bility is still exponentially decay with the increase of the

impact parameter b, i.e. P (θ,b) ∝ e−b2/∆2
rσD(θ), where

σD(θ) is the scattering cross section for Dirac fermions.
Notably, there is no chirality-protected shift ∆ch for the
Dirac fermions in graphene.

IV. QUANTUM CALCULATION ON THE

WAVE-PACKET SCATTERING PROBABILITY

Previously, we discussed that the chirality-protected
shift could lead to the anomalous scattering probabil-
ity. To validate this argument, we perform the full quan-
tum calculation on the wave-packet scattering problem.
Notably, the two valleys in Weyl semimetals are usu-
ally separated with a large momentum difference. In our
manuscript, we use the Born approximation to deal with
the Coulombic impurity scattering problem. The inter-
node scattering requires large momentum transfer, which
will seldom happen due to the long range feature of the
Coulomb potential. As a contrast, we firstly calculate the
scattering cross section for the plane-wave scattering pro-
cess in WSMs. Assume that the plane wave is incident in
z-direction, which is expressed as ψin = (1, 0)T eikz . The
incident plane wave is scattered by a single impurity with
the potential V (r). Using the first Born approximation,
and the outgoing wave function is

ψout(r) =ψin(r) +

∫

dr′G(r− r′)V (r′)ψin(r′)

=ψin(r) + f(θ, φ)
eikr

r
,

(6)

where G(r) is the Green function of the Weyl Hamilto-
nian H, and f(θ, φ) is the scattering amplitude. The

differential scattering cross section is

σ(θ, φ) = |f |2 = 2

(

~vk

4π~2v2

)2

|M0|2(1 + cosθ). (7)

Here, M0 =
∫

dre−iq·rV (r), where q = kr̂ − kêz means
the transfer of the wave vector in the scattering process.
The angle θ is the scattering angle satisfying cosθ = rz/r.

Next, we consider the wave-packet scattering pro-
cess. The wave packet is described by the Gaussian dis-

tribution ϕ(k) =
(

1
π∆2

k

)
3
4

e
− (k−k0)2

2∆2
k , where ∆k is the

width of the wave packet in k-space, and k0 is the
mean wave vector.53 We assume that the wave packet
is incident in z-direction, and is scattered by an impu-
rity Ri located at the origin of the coordinate system.
The general eigenfunction of the Hamiltonian [Eq.(1)] is
(

cos θ02 , sin
θ0
2 e

iφ0
)T

with the angles θ0 = arccoskz

k and

φ0 = arcsin
ky√
k2
x+k2

y

characterizing the propagating di-

rection of the plane wave. Therefore, the incident wave
packet can be expressed as

ψin
g (r) =

∫

d3k

(2π)
3
2

ϕ(k)e−ik·(r0−r)−iEt

(

cos θ02
sin θ0

2 e
iφ0

)

=

∫

d3k

(2π)
3
2

ϕ(k)e−ik·(r0+v0t−r)

(

cos θ02
sin θ0

2 e
iφ0

)

.

(8)

r0 = (r0x, r0y, r0z) is the initial position of the wave

packet, and v0 = vk̂0 is the propagating velocity of the
incident wave packet. In deriving the above expression,

we used the approximation E =
√

~v(k2x + k2y + k2z) ≈
~v0 · k[see the Appendix]. According to the Born ap-
proximation, the outgoing wave function is

ψout
g (r) = ψin

g (r) + ψs
g(r)

= ψin
g (r) +

∫

d3k

(2π)
3
2

ϕ(k)×
∫

dr′G(r− r′)V (r′)e−ik·(r0+v0t−r′)

(

cos θ02
sin θ0

2 e
iφ0

)

.

(9)

Here, ψs
g(r) is the scattered wave function, which is ob-

tained after taking the integral on r′.

ψs
g(r) =

1

r

(

1 + cosθ, sinθe−iφ

sinθeiφ, 1− cosθ

)(

M
N

)

, (10)

whereM = − ~vk
4π~2v2M0∆

3
2

k π
− 3

4 exp
{

− (r−r0z−v0t)
2∆2

k

2

}

×

exp
{

− b2∆2
k

2

}

eik0(r−r0z−v0t) and N = (−ir0x∆2
k +

r0y∆
2
k) · 1

2kM . In the expression of M and N , b =

(bx, by) = (r0x, r0y) and b =
√

b2x + b2y represents the

impact parameter. In the Appendix, we present the full
details on the derivation of the expression of M and N .
Let us assume the detector has an area given by r2dΩ
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perpendicular to the radial direction. The particles flows
through the detector with the velocity v0. Therefore, in
an infinitesimally small time interval t—t + dt, all the
probability contained in the volume r2dΩ × v0dt flows
through the detector. Consequently, the probability of
observing a scattered particle in the time interval t—
t+ dt is |ψs

g(r)|2 r2dΩ× v0dt. Therefore, one can obtain
the total probability of detecting a particle at dΩ:

P (θ, φ,b) =

∫ ∞

−∞
(r2dΩ× v0dt)|ψs

g|2

=2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)×

exp{−∆2
k

[

(bx +∆ch · sinφ)2 + (by −∆ch · cosφ)2
]

},

(11)

where ∆ch = 1
2k tan

θ
2 . Strikingly, we find that ∆ch

is exactly the chirality-protected shift we obtained by
the angular momentum conservation method previously.
This result strongly supports the validity of our argu-
ment on the wave-packet scattering, i.e, the chirality-
protected transverse shift modifies the impact parameter
effectively, and thereby leads to the anomalous scattering
probability of the wave packet.

V. QUANTUM LIFETIME VS. TRANSPORT

LIFETIME

The quantum lifetime and transport lifetime are two
important time scales in condensed matter physics. The
quantum lifetime τq measures the inter-collision events in
all directions, which can be obtained from the Shubnikov-
de Haas (SdH) oscillations. In contrast, the transport
lifetime τt measures the collision events in one particular
direction, which can be obtained from the conductivity.48

Conventionally, the quantum lifetime and the transport
lifetime are usually of the same order. However, in the
Ref.3, the authors find that the ratio between the trans-
port lifetime and quantum lifetime can be as large as 104

in TSMs. Indeed, almost all of the transport measure-
ments of the TSMs show the ultrahigh mobility, which
challenges our consensus.47 In the TSMs, for instance,
the “ideal” Cd3As2 lattice, there are 64 sites for Cd ions
in each unit cell, and that exactly 1/4 of the sites are va-
cant, which can easily attract impurities and act as the
scattering centers.3 That means that even in the “ideal”
Cd3As2 material, the mobility should be severely sup-
pressed by the presence of the vacancies. Remarkably,
the puzzled ultrahigh mobility can be explained in the
wave-packet scattering scenario. For example, in the aim-
at-heart scattering case(b = 0), the chirality-protected
shift ∆ch reaches its maximum leading to the infinitely
large effective impact parameter b̃, which strongly sup-
presses the backscattering. In the plane-wave scatter-
ing scenario, the quantum lifetime is obtained from the
scattering cross section, i.e. 1/τq0 = vfni

∫

σ(θ)dθdφ,
where vf is the Fermi velocity, ni is the impurity con-

centration. By contrast, the transport lifetime is 1/τt0 =
vfni

∫

σ(θ)(1 − cosθ)dθdφ. Rτ0 = τt0/τq0 is the ratio be-
tween the transport lifetime and quantum lifetime in the
plane-wave scattering process. In analogy with the life-
time defined above, we can define the quantum lifetime
and transport lifetime in the wave-packet scattering pro-
cess. In the wave-packet scattering process, the scatter-
ing cross section is replaced by the scattering probability,

i.e. σ(θ, φ) 7−→
∫ bc
0
dbP (θ, φ,b), where bc is the cutoff

of the impact parameter decided by the density of the
impurities.[see the Appendix] Therefore, one can define
the quantum lifetime and transport lifetime:

1

τq
= vfni

∫ bc

0

db

∫

dθdφP (θ, φ,b) (12)

1

τt
= vfni

∫ bc

0

db

∫

dθdφ(1− cosθ)P (θ, φ,b) (13)

The ratio between the transport lifetime and the quan-
tum lifetime is Rτ = τt/τq. We calculate the quantum
lifetime, transport lifetime and the ratio Rτ . Assume the
density of the impurities is about 1018 cm−3. To ensure
the single impurity scattering process, we set the impact
parameter cutoff as bc = 5 nm, which is the half of the av-
erage distance between the two nearest impurities. Fig.
2(a) shows the transport lifetime and quantum lifetime,
which saturate at large Fermi energy. Fig. 2(b) shows the
ratio Rτ versus the Fermi energy for wave-packet scatter-
ing and plane-wave scattering, respectively. In Fig. 2(b),
the ratio Rτ increases steeply when the Fermi energy ap-
proaching to the Weyl nodes, and is saturated at large
Fermi energy.54 The large ratio Rτ indicates that the im-
purities can strongly limit τq but hardly affect τt, which
is the physical mechanism of the ultrahigh mobility in
TSMs.

0.1 1 10 100

10

102

103

104

105

0 100 200 300 400 500
0

10

20

30

40

50

60 (b)(a)
lifetime ratio

( 
  
  
 )

FIG. 2: Quantum lifetime and transport lifetime in
WSMs. (a) The quantum lifetime τq and transport life-
time τt versus the Fermi energy EF in WSMs. τ−1

s =
2π−1vfni|

~vk

4π~2v2 |
2|M0|

2 is the unit of the y-axis. (b) The
blue solid line is the lifetime ratio Rτ = τt/τq in the wave-
packet scattering process, whereas the red dashed line is the
lifetime ratio Rτ0 obtained from the plane-wave scattering.

In experiment, the exact impurity density is not easy to
be identified, but can be quantitatively identified. There-
fore, we calculate how the impurity density ns influences
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the quantum lifetime τq and transport lifetime τtr. Since
the cutoff of the impact parameter is decided by the im-
purity density, the variation of the impurity density af-
fects both the quantum lifetime and the transport life-
time. Fig. 3 shows how the quantum lifetime and the
transport lifetime change with the impurity density. The
Fermi energy EF is set as 10 meV. Fig. 3 implies that
both the quantum lifetime and transport lifetime are
strongly suppressed in the scenario of the wave-packet
scattering.

( 
  
  
 )

FIG. 3: Quantum lifetime and transport lifetime vs. impurity
density in WSMs. τq0 is the quantum lifetime in the scenario
of the plane-wave scattering. τq and τt are the quantum life-
time and transport lifetime in the scenario of the wave-packet
scattering.

VI. DISCUSSION

Before the conclusion, we make several remarks on our
work in this section. (i) Side jump effect: The chirality-
protected shift is reminiscent of the side jump effect in
spin-orbit coupling systems.55–58 However, the chirality-
protected shift is very nontrivial because the divergence
of the Berry curvature near the Weyl points. In this pa-
per, we study the impurity scattering effect of the Weyl
fermions. In the backscattering case, the shift tends to
infinity leading to vanished scattering probability, which
is the reason of the ultrahigh mobility. (ii) Wave-packet
width: There are several important length scales include
the wave-packet width ∆r, the impact parameter cut-
off bc, the chirality-protected shift ∆c, and lattice con-
stance a. Because we are using the continuous low-energy
model, we demand that ∆r >> a. If we also demand
the final result do not depend on the wave-packet width,
we require that bc >> ∆r. In practice, we only need
bc > 1.5∆r to eliminate the wave-packet width ∆r de-
pendence of the final result. Therefore, in order to make
our result solid, we need to combine the above condi-
tions, i.e., bc > 1.5∆r >> a. (iii) Temperature influence:
The real experiments are always done in finite tempera-
ture, and the temperature influence must be taken into
account. However, the temperature only serves as the

fluctuation of the Fermi energy. When temperature is
low enough, the final result will not change much. (iv)
Large Fermi energy in Ref. [3]: We comment that our
theory may be not applicable to the Ref. [3], in which
the authors report the observation of the ultrahigh mo-
bility for large Fermi energy (232 meV). In our model,
the lifetime ratio Rτ is extremely large when Fermi en-
ergy approaches to the Weyl nodes, and can be strongly
suppressed due to the increasing of the Fermi energy.59

VII. SUMMARY

We found the chirality-protected shift in the wave-
packet scattering process by using the angular momen-
tum conservation method. The chirality-protected trans-
verse shift modifies the effective impact parameters, and
leads to the anomalous scattering probability. More im-
portantly, we give a full quantum treatment on the wave-
packet scattering process, and derived the exact result
of the wave-packet scattering probability. Our results
show that the ratio between the transport lifetime and
the quantum lifetime increases sharply when the Fermi
energy approaching to the Weyl nodes. The unexpected
large ratio can lead to the experimental findings of the
puzzling ultrahigh mobility in topological semimetals.
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Appendix A: Detail Derivation of the

Wave-packet Scattering for the Weyl Equation

In this section, we present the systematic derivation of
the wave-packet scattering in Weyl semimetals (WSMs),
and compare it with the plane-wave scattering result.
First of all, we give the detail derivation for the plane-
wave scattering. Then, we construct the wave-packet
scattering from the plane-wave scattering result.
Plane-wave scattering— The effective Hamiltonian of

WSMs is

H = vσ · p+ V (r), (14)

where V (r) is the potential of the impurity. First of all,
we present a simple derivation of the Green function of
the Weyl equation. The Green function is defined as

(vσ · p− E)G(r) = −δ(r)I2, (15)

where I2 is the unit 2 × 2 matrix. Although the Green
function can be obtained systematically by using the
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algebra relation G(r) = [E −H]
−1

, we give a simpler
derivation below. Assume G(r) = 1

v2~2 (vσ ·p+E)Gn(r),
then one can find

(vσ · p− E)G(r) =
1

v2~2
(vσ · p− E)(vσ · p+ E)Gn(r)

=
1

v2~2
(v2p2 − E2)Gn(r)

=− (∇2 + k2)Gn(r) = −δ(r).

(16)

We can see that the Gn(r) is exactly the Green function
of Schrödinger equation, which can be find in text book:

Gn(r) = − eikr

4πr .
60 Then, one can obtain G(r) from the

normal Green function Gn(r):

G(r) =
1

v2~2
(vσ · p+ E)Gn(r)

=− ~vk

4π~2v2

(

cosθ + 1 sinθe−iφ

sinθeiφ 1− cosθ

)

eikr

r
,

(17)

where θ and φ characterize the outgoing angle of the
scattering wave. Assume the plane wave is incident in

z-direction, i.e., ψin =

(

1
0

)

eikz . Using the first order

Born approximation, the scattered wave function is

ψs(r) =

∫

G(r− r′)V (r′)ψin(r′)dr′

=− ~vk

4π~2v2

(∫

dre−iq·rV (r)

)

×
(

1 + cosθ sinθe−iφ

sinθeiφ 1− cosθ

)(

1
0

)

eikr

r

=f(k, r̂)
eikr

r
,

(18)

where f(k, r̂) = − ~vk
4π~2v2

(∫

dre−iq·rV (r)
)

(

1 + cosθ
sinθeiφ

)

is the scattering amplitude. Therefore the differential
scattering cross section can be obtained:

σ(Ω) = |f |2 dΩ = 2(
~vk

4π~2v2
)2 |M0|2(1 + cosθ) dΩ, (19)

where Ω is the solid angle and M0 =
∫

dre−iq·rV (r).

Wave-packet scattering— In quantum mechanics, a
real particle is more like a wave packet. Therefore,
when considering a single particle scattering, wave-packet
dynamic treatment is more reasonable.53 We consider
the wave packet described by the Gaussian distribution

ϕ(k) =
(

1
π∆2

k

)
3
4

e
− (k−k0)2

2∆2
k , where ∆k is the width of

the wave packet in k-space, and k0 is the mean wave
vector.53,61 We assume that the wave packet is inci-
dent in z-direction, and is scattered by an impurity Ri

located at the origin of the coordinate system. The
general eigenfunction of the Hamiltonian [Eq.(14)] is
(

cos θ02 , sin
θ0
2 e

iφ0
)T

with the angles θ0 = arccoskz

k and

φ0 = arcsin
ky√
k2
x+k2

y

characterizing the propagating di-

rection of the plane wave. Therefore, according to the
linear superposition principle, the incident wave packet
can be expressed as

ψin
g (r) =

∫

d3k

(2π)
3
2

ϕ(k)e−ik·(r0−r)−iEt

(

cos θ02
sin θ0

2 e
iφ0

)

=

∫

d3k

(2π)
3
2

ϕ(k)e−ik·(r0+v0t−r)

(

cos θ02
sin θ0

2 e
iφ0

)

.

(20)

r0 = (r0x, r0y, r0z) is the initial position of the wave

packet, and v0 = vk̂0 is the propagating veloc-
ity of the incident wave packet. In deriving the
above expression, we used (i) the approximation E =
√

~v(k2x + k2y + k2z) ≈ ~v0 · k; (ii) the approximation

kr ≈ k · k̂0r. Here k =
√

k2x + k2y + k2z . The zeroth

order term is k = k0 =
√

k2x0 + k2y0 + k2z0 and the first

order term is ∂k
∂kx

|kx=kx0(kx−kx0)+ ∂k
∂ky

|ky=ky0(ky−ky0)+
∂k
∂kz

|kz=kz0(kz − kz0) = (k − k0) · k̂0. The zeroth order

term plus the first order term gives k ≈ k · k̂0. According
to the Born approximation, the outgoing wave function
produced by the scattering of the wave packet is

ψout
g (r) = ψin

g (r) + ψs
g(r)

= ψin
g (r) +

∫

d3k

(2π)
3
2

ϕ(k)×
∫

dr′G(r − r′)V (r′)e−ik·(r0+v0t−r′)

(

cos θ02
sin θ0

2 e
iφ0

)

= ψin
g (r) − ~vk

4π~2v2

(
∫

drV (r)e−iq·r
)

×
(

1 + cosθ sinθe−iφ

sinθeiφ 1− cosθ

)

×
∫

d3k

(2π)3/2
ϕ(k)

ei[kr−k·(r0+v0t)]

r

(

cos θ02
sin θ0

2 e
iφ0

)

.

(21)

In the above formula, ψs
g(r) is the scattered wave func-

tion, which can be obtained after taking the integral on
r′.

Now, one can expand the spinor of the incident wave
function to the second order, i.e.,

(

cos θ02
sin θ0

2 e
iφ0

)

≈





1− 1
8

(

kr

kz

)2

kr

2kz
eiφ0



 ≈
(

1− 1
8

k2
x+k2

y

k2
0

kx+iky

2k0

)

,(22)

where kr = ksinθ0, and sin φ0 = ky/kr. To obtain
the scattered wave function, one need to calculate the
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integral:

∫

d3k

(2π)3/2
ϕ(k)

ei[kr−k·(r0+v0t)]

r

(

1− 1
8

k2
x+k2

y

k2
0

kx+iky

2k0

)

≈1

r

∫

d3k

(2π)3/2

(

1

π∆2
k

)
3
4

e
−

[k2
x+k2

y+(kz−k0)2]

2∆2
k ×

eik·(rk̂0−r0−v0t)

(

1− 1
8

k2
x+k2

y

k2
0

kx+iky

2k0

)

(23)

where b = (bx, by) = (r0x, r0y) and b =
√

r20x + r20y is the

impact parameter. Now, the main task is to calculate
the integral Eq.(23). We let

γ0 =

∫

d3ke
−

[k2
x+k2

y+(kz−k0)2]

2∆2
k eik·(rk̂0−r0−v0t); (24)

γ1 =

∫

d3k

(

kx + iky
2k0

)

e
−

[k2
x+k2

y+(kz−k0)2]

2∆2
k ×

eik·(rk̂0−r0−v0t);

(25)

γ2 =

∫

d3k

(

−1

8

k2x + k2y
k20

)

e
−

[k2
x+k2

y+(kz−k0)2]

2∆2
k ×

eik·(rk̂0−r0−v0t)

(26)

In order to calculate the above integrals, we use the trick

∫

dk k e
− k2

2∆2
k e−ikx = i

∂

∂x

∫

dk e
− k2

2∆2
k

e−ikx

(27)

∫

dk k2 e
− k2

2∆2
k e−ikx =

∂

∂
(

−1
2∆2

k

)

∫

dk e
− k2

2∆2
k e−ikx.(28)

Then, we can obtain

γ0 =(2π)3/2∆3
ke

−
(r−r0z−v0t)2∆2

k
2 e−

b2∆2
k

2 ×
eik0(r−r0z−v0t);

(29)

γ1 =(2π)3/2∆3
k

[

− 1

2k
(−ir0x∆2

k + r0y∆
2
k)

]

×

e−
(r−r0z−v0t)2∆2

k
2 e−

b2∆2
k

2 eik0(r−r0z−v0t);

(30)

γ2 =(2π)3/2∆3
k

[

− 1

8k20
(2∆2

k −∆4
kb

2)

]

×

e−
(r−r0z−v0t)2∆2

k
2 e−

b2∆2
k

2 eik0(r−r0z−v0t).

(31)

Therefore, the scattered wave can be written as

ψs
g(r) =− ~vk

4π~2v2
1

r

1

(2π)3/2

(

1

π∆2
k

)
3
4
(∫

drV (r)e−iq·r
)

×
(

1 + cosθ sinθe−iφ

sinθeiφ 1− cosθ

) (

γ0 + γ2
γ1

)

=
1

r

(

1 + cosθ sinθe−iφ

sinθeiφ 1− cosθ

) (

M
N

)

,

(32)

where M = − ~vk
4π~2v2M0 ∆

3/2
k π−3/4

[

1− ∆2
k

4k2
0
+

∆4
k

8k2
0
b2
]

×

e−
(r−r0z−v0t)2∆2

k
2 e−

b2∆2
k

2 eik0(r−r0z−v0t) and N =
− ~vk

4π~2v2M0 ∆
3/2
k π−3/4

[

(−ir0x∆2
k + r0y∆

2
k) · 1

2k

]

×
e−

(r−r0z−v0t)2∆2
k

2 e−
b2∆2

k
2 eik0(r−r0z−v0t).

The probability for a detector at r in the time interval
t—t+ dt to detect a particle is

dP = (r2dΩ× v0dt)
∣

∣ψs
g(r)

∣

∣

2
. (33)

Therefore, the total probability to detect a particle in the
infinite time interval can be obtained by integrating on
the time t, i.e.,

P =

∫ ∞

−∞
(r2dΩ× v0dt)|ψs

g |2

=

∫ ∞

−∞
v0dtdΩ

[

2M2(1 + cosθ)+

2|N |2(1 − cosθ) + Msinθ(N∗eiφ +Ne−iφ)
]

=
2
√
π

∆k
M2(1 + cosθ)×

[

1− tan
θ

2

∆2
k

k0
b sin(φ− α)

]

dΩ

≈2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)e−b2∆2

k×

[

1− tan
θ

2

∆2
k

k0
b sin(φ− α) − ∆2

k

2k20

]

dΩ,

(34)

where sinα = by/b. In the derivation of the above for-
mula, we derive up to the order ∆2

k/k
2
0 by assuming

∆k/k0 << 1. Note that this approximation maybe not
reasonable when k0 is very small. But, the main point
is that the full quantum calculation also gives the same
physical results in the limit ∆k/k0 << 1. We can fur-
ther obtain a neat form of the above formula by using

the approximation 1 − tan θ
2
∆2

k

k0
b sin(φ − α) − ∆2

k

2k2
0

≈
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exp
{

−
(

tan θ
2
∆2

k

k0
b sin(φ− α) +

∆2
k

2k2
0

)}

. Therefore, the

scattering probability becomes

P =2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)×

exp

[

−b2∆2
k −

(

tan
θ

2

∆2
k

k0
b sin(φ− α) +

∆2
k

2k20

)]

dΩ

=2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)×

exp

{

−∆2
k

[

b2x + b2y + btan
θ

2

1

k0
sin(φ− α) +

1

2k20

]}

dΩ

≈2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)×

exp

{

−∆2
k

[

(

bx +
1

2k0
tan

θ

2
sinφ

)2

+

(

by −
1

2k0
tan

θ

2
cosφ

)2
]}

dΩ

=2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)×

exp
{

−∆2
k

[

(bx +∆ch · sinφ)2 + (by −∆ch · cosφ)2
]}

dΩ,

(35)

where ∆ch = 1
2k0

tan θ
2 is exact the chirality protected

transverse shift as we have shown in the main text. The
full quantum calculation strongly validate the semiclas-
sical argument on how the chirality protected transverse
shift leads to the anomalous scattering probability. By
definition, the plane-wave scattering cross section can be
obtained by integrating the impact parameter b, i.e.,

σ(Ω) =
ΣPi

n

=
1

n

∫

ndbxdby

{

2(
~vk

4π~2v2
)2∆2

kπ
−1|M0|2(1 + cosθ)

× e−∆2
k[(bx+∆ch·sinφ)

2+(by−∆ch·cosφ)
2]
}

dΩ

=2(
~vk

4π~2v2
)2 |M0|2(1 + cosθ) dΩ,

(36)

which is fully consistent with the result obtained by
plane-wave scattering.

Appendix B: The quantum lifetime and

transport lifetime in Weyl Semimetals

In this section, we firstly calculate the lifetime ratio
Rτ0 = τt0/τq0 in the plane-wave scattering process. The
scattering cross section in WSMs reads as

σ(θ, φ) = |f |2 = 2

(

~vk

4π~2v2

)2

|M0|2(1 + cosθ). (37)

In dilute impurities limit, the quantum lifetime can be
obtained from the scattering cross section, i.e. 1/τq0 =
vfni

∫

σ(θ)dθ, where vf is the Fermi velocity, ni is the
impurity concentration. By contrast, the transport life-
time is 1/τt0 = vfni

∫

σ(θ)(1 − cosθ)dθ, where the factor
(1−cosθ) counts for the scattering in one direction. Thus,
the lifetime ratio for plane-wave scattering turns out to
be Rτ0 = 2. As we have obtained from the main text, by
considering wave-packet scattering, the quantum lifetime
τq and transport lifetime τt can be defined as:

1

τq
= vfni

∫ bc

0

db

∫

dθdφP (θ, φ,b) (38)

1

τt
= vfni

∫ bc

0

db

∫

dθdφ(1− cosθ)P (θ, φ,b) (39)

It should be noted that the wave-packet scattering prob-
ability P (θ, φ,b) is the function of the impact parameter
b. bc is the cutoff of the impact parameter, which de-
pends on the density of the impurities. Based on the
analytic expression in Eq.(38) and Eq.(39), we calculate
how the Fermi energy and the cutoff of the impact param-
eter affect the scattering probability. We set the width
of the wave packet (k-space) as ∆k = 2×108m−1. Fig. 3
(a) shows the scattering probability for zero impact pa-
rameter b = 0 for different Fermi energy. Fig. 3 (b)
shows how the scattering probability changes for differ-
ent impact parameters. Fig. 3 (c) shows that the lifetime
ratio versus the Fermi energy for different cutoff bc of the
impact parameters. Notably, we renormalized the scat-
tering probability at the scattering angle θ = 0, which is
the demand of the Klein tunneling. We can see that the
lifetime ratio decreases with the increase of the impact
parameter.

Appendix C: Wave-packet Scattering for the

Dirac Equation

In this section, we consider both of the plane-wave
scattering and wave-packet scattering for Dirac fermions
in graphene.
Plane-wave scattering— The Hamiltonian of Dirac

fermions is H = kxσx + kyσy . The Green’s function can
be obtained by the Fourier transformation:62,63

G(r) = − 2k

v
√
2πik

eikr√
r

(

1 e−iφ

eiφ 1

)

, (40)

where φ characterizes the outgoing angle of the scattered
wave. Assume the plane wave incident in the direction
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FIG. 4: Quantum lifetime and transport lifetime in WSMs.
(a) The scattering probability versus the scattering angle for
various Fermi energy EF in WSMs. (b) The Scattering prob-
ability versus the scattering angle for various impact param-
eters b. The Fermi energy is fixed at EF = 10 meV, and the
angle φ is fixed at φ = π/2. (c) The lifetime ratio Rτ versus
the Fermi energy for various cutoff of the impact parameters.

φ = φ0. Thus the incident plane wave can be written as

ψin = 1√
2

(

e−iφ0/2

eiφ0/2

)

eik·r. According to the first order

Born approximation, the scattered wave function turns
out to be

ψs(r) =

∫

G(r− r′)V (r′)ψin(r′)dr

=− k

v
√
πik

eikr√
r

(

e−iφ0/2 + e−i(φ−φ0/2)

ei(φ−φ0/2) + eiφ0/2

)

×
∫

dre−iq·rV (r)

=f(k, r̂)
eikr√
r
,

(41)

where f(k, r̂) = − k
v
√
πik

(

e−iφ0/2 + e−i(φ−φ0/2)

ei(φ−φ0/2) + eiφ0/2

)

×
∫

dre−iq·rV (r) represents the scattering amplitude.
Therefore, the differential scattering cross section is

σ(Ω) = |f |2 =
4k

v2~2π
|M0|2[1 + cos(φ − φ0)], (42)

where M0(q) =
∫

dre−iq·rV (r) is the scattering matrix.
At φ − φ0 = π(backscattering), the scattering cross
section vanishes, which can be understood as the Klein
tunneling for Dirac fermions.

Wave-packet scattering— Using the same method as
the wave-packet scattering for Schrödinger equation, one
can obtain the general outgoing wavefunction for Dirac

fermions, i.e.,

ψg(r, t) =

∫

d2k

(2π)
ϕ(k)e−ik·r0−iEt

[

1√
2

(

e−iφ0/2

eiφ0/2

)

−

2k

v
√
2πik

eikr√
r

(

1 e−iφ

eiφ 1

)

1√
2

(

e−iφ0/2

eiφ0/2

)

×

∫

drV (r)e−iq·r
]

≈
∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t)

[

1√
2

(

e−iφ0/2

eiφ0/2

)

eik·r−

2k

v
√
2πik

eikr√
r

(

1 e−iφ

eiφ 1

)

1√
2

(

e−iφ0/2

eiφ0/2

)

×

∫

drV (r)e−iq·r
]

≈
∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t−r)

[

1√
2

(

e−iφ0/2

eiφ0/2

)]

− 2k0

v
√
2πik0

M0√
r

(

e−iφ0/2

eiφ0/2

)∫

d2k

(2π)
ϕ(k)×

ei[kr−k·(r0+v0t)]

[

1√
2

(

e−iφ0/2

eiφ0/2

)]

,

(43)

where ϕ(k) =
(

1
π∆2

k

)
1
2

e
−(k−k0)2

2∆2
k is a 2D Gaussian

distribution function, r0 is the initial position of the
wave packet, v0 is the velocity of the incident wave
packet, M0 =

∫

dr e−iq·rV (r) is the scattering matrix,

and φ0(k) = arcsin
(

ky

k

)

. Notice we have used following

approximations in the derivation of the above formulas:

(1) E = v
√

k2x + k2y + k2z ≈ v
√

k2x0 + k2y0 + k2z0 +

∂E
∂kx

|kx=kx0(kx − kx0) + ∂E
∂ky

|ky=ky0 (ky − ky0) +
∂E
∂kz

|kz=kz0(kz−kz0) = vk0+vk̂0 ·(k−k0) = vk̂0 ·k = v0 ·k.

(2) M0(q) = M0(kr̂ − k) ≈ M0(kr̂ − k0). That’s
why we can take M0 out of the integral. Actually, if we
consider a delta potential, then M0 is a constant. So
we can always take M0 out of the integral for a delta
potential. For a general potential, taking M0 out of the
integral

∫

d3k is actually an approximation.

(3) Since f(k, r̂) = − k
v
√
πik

(

e−iφ0/2 + e−i(φ−φ0/2)

ei(φ−φ0/2) + eiφ0/2

)

×
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∫

dre−iq·rV (r), we expand f(k, r̂) around k0.

Since f(k) ∝
√
k, we expand

√
k around

k0 first. By Taylor expansion, we find that√
k = (k2x + k2y + k2z)

1
4 ≈ k2

0+k0(k̂0·k)

2k
3
2
0

≈
√
k0 (to

the first order approximation). φ0 is the incident
angle of the plane wave, and we can expand φ0 near

φ0 = 0 (x-axis). Thus, eiφ0/2 ≈ 1 + iφ0 ≈ 1 + i
ky

2k0
and

e−iφ0/2 ≈ 1− iφ0 ≈ 1− i
ky

2k0
.

The scattered wavefunction then can be inferred from
Eq.(43):

ψs
g =− 2k0

v
√
2πik0

M0√
r

(

1 e−iφ

eiφ 1

)

×
∫

d2k

(2π)
ϕ(k)ei[kr−k·(r0+v0t)]

[

1√
2

(

e−iφ0/2

eiφ0/2

)]

=

(

1 e−iφ

eiφ 1

)(

M −N/2
M +N/2

)

1√
r
,

(44)

where M = − k0

v
√
πik0

M0

∫

d2k
(2π)ϕ(k)e

i[kr−k·(r0+v0t)], and

N = − k0

v
√
πik0

M0

∫

d2k
(2π)ϕ(k)(i

ky

k )ei[kr−k·(r0+v0t)]. In-

deed, we can use the relation N = − 1
k

∂M
∂r0y

to obtain N .

The probability for a detector at r in the time interval
t—t+ dt to detect a particle is

dP = (r2dΩ× v0dt)
∣

∣ψs
g(r)

∣

∣

2
. (45)

Thus, the total probability to detect a particle in the
infinite time interval can be obtained by integrating on
the time t, i.e.,

P =

∫ ∞

−∞
(r dΩ× v0dt)|ψs

g |2

=

∫ ∞

−∞
(dΩ× v0dt)

[

4M2 (1 + cosφ) +

N2 (1− cosφ)
]

≈ 4k0
πv2~2

|M0|2 (1 + cosφ)
∆k√
π
e−b2∆2

k dΩ,

(46)

where b is the impact parameter of the wave packet. In
the derivation of the above formula, we derive up to
the first order of N by ignoring the term N2, because
N2 ≈ (∆2

k/k0)
2 << 1. This result also shows that the

scattering probability is exponentially decay with the in-
creasing of the impact parameter. The plane-wave scat-
tering cross section then can be obtained from the wave-
packet scattering probability:

σ(Ω) =
ΣPi

n

=

∫∞
−∞ db

[

n · 4k0

πv2~2 |M0|2 e−∆2
kb

2

(1 + cosφ)
]

n

=
4k0
v2~2π

|M0|2(1 + cosφ) dΩ.

(47)

Appendix D: Calculation on the center of the

incident wave packet

Since the eigenfunction for Dirac equation and Weyl
equation is in the spinor form, we need to identify the
center of the incident wave-packet in graphene and Weyl
semimetals.

Center of the incident wave packet in graphene.— The
incident wave packet in graphene is

ψin
g =

∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t−r)

[

1√
2

(

e−iφ0/2

eiφ0/2

)]

=

(

C1

C2

) (48)

Now, we obtain the first spinor and the second spinor,
respectively.

The first spinor is:

C1 =
1√
2

∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t−r)e−iφ0/2

=
1√
2

∫

d2k

(2π)

(

1

π∆2
k

)
1
2

e
− (k−k0)2

2∆2
k e−ik·(r0+v0t−r)e−iφ0/2

=
1√
2

d2k

(2π)

(

1

π∆2
k

)
1
2
∫

dkxdky e
− (k−k0)2

2∆2
k ×

e−ik·(r0+v0t−r)(1− i
ky
2k0

)

=C − C∆,

(49)

where

C =
1√
2

∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t−r)

=
1√
2

∫

d2k

(2π)

(

1

π∆2
k

)
1
2

e
− (k−k0)2

2∆2
k e−ik·(r0+v0t−r)

=
1√
2

1

(2π)

(

1

π∆2
k

)
1
2
∫

dkxdky e
− (k−k0)2

2∆2
k e−ik·(r0+v0t−r)

=
1√
2

1

(2π)

(

1

π∆2
k

)
1
2

(

∫

dkxe
− (kx−kx0)2

2∆2
k

e−ikx(x0+v0t−x)

)

×
(

∫

dky e
−

(ky−ky0)2

2∆2
k

e−iky(y0−y)

)

=
1√
2

1

(2π)

(

1

π∆2
k

)
1
2
(

√

2π∆2
ke

−
(x−x0−v0t)2∆2

k
2

)

×
(

√

2π∆2
ke

−
(y−y0)2∆2

k
2

)

e−ikx0(x−x0−v0t)

=
∆k√
2π
e−

(x−x0−v0t)2∆2
k

2 e−
(y−y0)2∆2

k
2 e−ikx0(x−x0−v0t)

(50)
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and

C∆ =
1√
2

d2k

(2π)

(

1

π∆2
k

)
1
2
∫

dkxdky e
− (k−k0)2

2∆2
k ×

e−ik·(r0+v0t−r)(i
ky
2k0

)

=
1√
2

d2k

(2π)

(

1

π∆2
k

)
1
2 i

2k0
×

(

∫

dkxe
− (kx−kx0)2

2∆2
k

e−ikx(x0+v0t−x)

)

×
(

∫

dky e
−

(ky−ky0)2

2∆2
k

e−iky(y0−y)

ky

)

=
1√
2

d2k

(2π)

(

1

π∆2
k

)
1
2 i

2k0

(

√

2π∆2
ke

−
(x−x0−v0t)2∆2

k
2 ×

e−ikx0(x−x0−v0t)
)

(

i
∂

∂y0

)(

√

2π∆2
ke

−
(y−y0)2∆2

k
2

)

=
∆k√
2π

(

− (y − y0)∆
2
k

2k0

)

e−
(x−x0−v0t)2∆2

k
2 e−

(y−y0)2∆2
k

2 ×

e−ikx0(x−x0−v0t)

(51)

Therefore, C1 =
(

1 +
(y−y0)∆

2
k

2k0

)

C. In the same way, we

can obtain the second spinor, which is

C2 =
1√
2

∫

d2k

(2π)
ϕ(k)e−ik·(r0+v0t−r)eiφ0/2

=
1√
2

∫

d2k

(2π)

(

1

π∆2
k

)
1
2

e
− (k−k0)2

2∆2
k e−ik·(r0+v0t−r)eiφ0/2

=
1√
2

d2k

(2π)

(

1

π∆2
k

)
1
2
∫

dkxdky e
− (k−k0)2

2∆2
k ×

e−ik·(r0+v0t−r)(1 + i
ky
2k0

)

=C + C∆.

(52)

Therefore, the center of the wave packet is

ȳ =〈ψin
g |y|ψin

g 〉

=

∫

dydx
(

C∗
1 C∗

2

)

y

(

C1

C2

)

=

∫

dydx
(

C2
1y + C2

2y
)

=
1

2

(

y0 +
1

2k0

)

+
1

2

(

y0 −
1

2k0

)

=y0

(53)

Therefore, the impact parameter in graphene is b = y0.

Hence, the scattering probability P ∝ e−b2 , which in-
dicates that the scattering probability is exponentially
decay with the increasing of the impact parameter.

Center of the incident wave packet in WSMs.— The
incident wave packet is

ψin
g =

∫

d3k

(2π)3/2
ϕ(k)e−ik·(r0+v0t−r)

(

cos θ02
sin θ0

2 e
iφ0

)

=

(

S1

S2

) (54)

We calculate the first spinor S1 and the second spinor S2

in the following, respectively.

The first spinor is:

S1 =

∫

d3k

(2π)3/2
ϕ(k)e−ik·(r0+v0t−r)

(

1−
k2x + k2y
8k20

)

=∆
3
2

k π
− 3

4

{

1 +
∆4

k

8k20

[

(x− x0)
2 + (y − y0)

2
]

}

×

e−
(z−z0−v0t)2∆2

k
2 e−

(y−y0)2∆2
k

2 e−
(x−x0)2∆2

k
2 ×

e−ikz0(z−z0−v0t)

≈∆
3
2

k π
− 3

4 e−
(z−z0−v0t)2∆2

k
2 e−

(y−y0)2∆2
k

2 e−
(x−x0)2∆2

k
2

×e−ikz0(z−z0−v0t)

(55)

The second spinor is:

S2 =

∫

d3k

(2π)3/2
ϕ(k)e−ik·(r0+v0t−r)

(

kr
2kz

)

eiφ0

≈
∫

d3k

(2π)3/2
ϕ(k)e−ik·(r0+v0t−r)

(

kx + iky
2k0

)

=∆
3
2

k π
− 3

4 e−
(z−z0−v0t)2∆2

k
2 e−ikz0(z−z0−v0t)×

(

i
∂

∂x0
− ∂

∂y0

)

1

2k

[

e−
(y−y0)2∆2

k
2 e−

(x−x0)2∆2
k

2

]

=∆
3
2

k π
− 3

4 e−
(z−z0−v0t)2∆2

k
2 e−ikz0(z−z0−v0t)×

[i(x− x0)− (y − y0)]×
∆2

k

2k0

[

e−
(y−y0)2∆2

k
2 e−

(x−x0)2∆2
k

2

]

(56)

The center of the wave packet is at (x̄, ȳ), where

ȳ =〈ψin
g |y|ψin

g 〉

=

∫

dxdydz
(

S∗
1 S∗

2

)

y

(

S1

S2

)

=y0 +
∆2

k

4k20
y0

≈y0

(57)



12

and

x̄ =〈ψin
g |x|ψin

g 〉

=

∫

dxdydz
(

S∗
1 S∗

2

)

x

(

S1

S2

)

=x0 +
∆2

k

4k20
x0

≈x0.

(58)

Therefore, the incident wave packet center is still at
(x0, y0), which means the impact parameter is b =
√

x20 + y20 . However, the chirality protected transverse
shift can further modify the impact parameter, which

leads to the anomalous scattering probability in WSMs.
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Photonics 7, 294 (2013).
16 S. A. Yang, H. Pan, and F. Zhang, Phys. Rev. Lett. 113,

046401 (2014).
17 P. Hosur and X.-L. Qi, Comptes Rendus Physique 14, 857

(2013).
18 S. M. Huang, et al., Nature Commun. 6, 7373 (2015).
19 H. Weng, C. Fang, Z. Fang, A. Bernevig, X. Dai, Phys.

Rev. X 5, 011029 (2015).
20 D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

109 (2010).

21 M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
22 H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 185, 20 (1981).;

H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130 389
(1983).

23 G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys.
Rev. Lett. 107, 186806 (2011).

24 D. T. Son and B. Z. Spivak, Phys. Rev. B 88 104412 (2012).
25 J.-Y. Chen, D.T. Son, and M.A. Stephanov, Phys. Rev.

Lett. 115, 021601 (2015).
26 J.-Y. Chen, D.T. Son, M.A. Stephanov, H.-U. Yee, and Y.

Yin, Phys. Rev. Lett. 113, 182302 (2014).
27 M. Stone, V. Dwivedi, and T. Zhou, Phys. Rev. Lett. 114,

210402 (2015).
28 C. Duval, M. Elbistan, P. A. Horvathy, and P.-M. Zhang,

Phys. Lett. B 742, 322 (2015).
29 A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133

(2013).
30 C.-X. Liu, P. Ye, and X.-L. Qi, Phys. Rev. B 87, 235306

(2013).
31 Q.-D. Jiang, H. jiang, H. Liu, Q.-F. Sun, and X.C. Xie,

Phys. Rev. Lett. 115, 156602 (2015).
32 S. A. Yang, H. Pan, and F. Zhang, Phys. Rev. Lett. 115,

156603 (2015).
33 Y. Baum, E.Berg, S. A. Parameswaran, and A. Stern,

Phys. Rev. X 5, 041046 (2015).
34 S.-Y. Xu et al., Science 349 613 (2015).
35 B. Q. Lv et al., Phys. Rev. X 5, 031013; B. Q. Lv et al.,

Nat. Phys. 11, 724 (2015). (2015).
36 L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos,
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