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Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian
topological states of matter in two spatial dimensions. In many cases, their success has been com-
plemented by the vast arsenal of other theoretical tools available to study such systems. In three
dimensions, however, much less is known about topological phases. Since the theoretical arse-
nal in this case is smaller, it stands to reason that wire constructions, which are based on one-
dimensional physics, could play a useful role in developing a greater microscopic understanding of
three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on
the geometric arrangement of commuting projectors in the toric code, to generate and character-
ize coupled-wire realizations of strongly-interacting three-dimensional topological phases. We show
how this method can be used to construct pointlike and linelike excitations, and to determine the
topological degeneracy. We also point out how, with minor modifications, the machinery already
developed in two dimensions can be naturally applied to study the surface states of these systems,
a fact that has implications for the study of surface topological order. Finally, we show that the
strategy developed for the construction of three-dimensional topological phases generalizes readily to
arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout
the paper, we discuss Zm topological order in three and four dimensions as a concrete example of
this approach, but the approach itself is not limited to this type of topological order.

I. INTRODUCTION

The experimental discovery of the integer and frac-
tional quantum Hall effects excited enormous interest in
the study of topological states of matter in two dimen-
sional space. Strongly interacting states of matter dis-
tinguished by the presence of excitations with fractional
quantum numbers or nontrivial boundary modes have at-
tracted particular attention from theorists. Over time, a
vast arsenal of theoretical tools has been developed to
study such systems, from the microscopic (e.g., numeri-
cal techniques to study lattice models with topologically
ordered ground states) to the macroscopic (e.g., topolog-
ical quantum field theories).

Wire constructions, which were first undertaken for the
integer1–3, and later the fractional4–15, quantum Hall ef-
fect, are conveniently poised midway between these two
extremes. The approach in this case is to model a topo-
logical phase by starting from an anisotropic theory of
decoupled gapless quantum wires, and then introducing
local couplings between the wires to produce a gapped
state of matter with an isotropic low-energy description.
This approach has the virtue of yielding the edge the-
ory, itself that of a Luttinger liquid, directly, and of
providing means to construct the low-lying quasiparti-
cle excitations of the bulk quantum liquid. Furthermore,
because wire constructions make use of well-understood
techniques in one-dimensional physics, such as Abelian
(or non-Abelian) bosonization, one can construct analyt-
ically tractable theories of states of matter that might
not otherwise admit a controlled analytical description.

In recent years, wire constructions have also been used
to study fractional topological insulators (FTIs)10,11,14

and spin liquids16,17, and also to develop an extension11

of the ten-fold way for noninteracting fermions18–21 to
strongly-correlated systems.

Since the prediction22 and discovery23–25 of three-
dimensional Z2 topological insulators (TIs), there has
been a growing interest in understanding topological
states of matter in three spatial dimensions. In addi-
tion to generalizing these time-reversal invariant Z2 topo-
logical insulator to the strongly-interacting regime26–28,
there has been an effort to derive effective field the-
ories describing the bulk of such TIs, and to deter-
mine the bulk-boundary correspondence in such theo-
ries that yields the hallmark single Dirac cone on the
two-dimensional surface29–33. Further work has under-
taken efforts to understand broader features of three-
dimensional topological states of matter, such as the
statistics of pointlike and linelike excitations34,35. For ex-
ample, it has been shown that certain three-dimensional
topological phases can only be distinguished by the mu-
tual statistics among three linelike excitations35.

Another major direction of work concerns three-
dimensional systems whose surfaces are themselves two-
dimensional topological states of matter. The simplest
example of this phenomenon occurs on the surface of
a Z2 TI when time-reversal symmetry is locally bro-
ken by a magnetic field on the surface, in which case
a half-integer surface quantum Hall effect develops36–39.
Further theoretical work has shown that generic three-
dimensional topological phases, including but not limited
to the fermionic Z2 TI, can exhibit more exotic surface
topological phases that cannot exist with the same re-
alization of symmetries for local Hamiltonians in purely
two-dimensional space. This family of surface phenom-
ena is known as surface topological order40–47. Several
recent works47,48 have approached the question of surface
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topological order by applying the quasi-one-dimensional
physics of wire constructions, although it appears that
this approach necessitates the use of an unusual “anti-
ferromagnetic” time-reversal symmetry rather than the
usual (physical) realization of reversal of time, which acts
on-site. It is possible that a fully three-dimensional wire
construction could remedy this peculiarity, although such
a description is still lacking.

Layer constructions, in which planes of two-
dimensional topological liquids are stacked on top of one
another and coupled, were used to construct the single
surface Dirac cone of the three-dimensional Z2 TI49 and
to study surface topological order50. Wire constructions
of three-dimensional topological states of matter have
also recently been undertaken, yielding Weyl semimet-
als51,52 and a class of fractional topological insulators53.
However, in all three cases, different methods are used to
develop the wire constructions themselves, and little ef-
fort has been made to extend these constructions beyond
the specific problem at hand in each example. In order to
attack the most distinctive aspects of topological states
of matter in three dimensions, such as surface topologi-
cal order, it is therefore necessary to develop a framework
that lends itself readily to a variety of approaches with
minimal modifications.

In this paper, we provide a comprehensive strategy to
design wire constructions of strongly-interacting Abelian
topological states of matter in three dimensions. The
strategy that we present is to start with decoupled quan-
tum wires placed on the links of a two-dimensional square
lattice, and then to couple the wires with many-body in-
teractions associated with each star and plaquette of the
lattice. In this way, each interaction term that couples
neighboring wires can be viewed as corresponding to one
of the commuting projectors that enters Kitaev’s toric
code Hamiltonian54. This correspondence simplifies the
application of a criterion, first proposed by Haldane, to
ensure that these interaction terms do not compete, and
are sufficient in number to gap out all gapless modes in
the array of quantum wires when periodic boundary con-
ditions are imposed along all three spatial directions.

When all interaction terms satisfy this criterion, the
Hamiltonian is frustration-free, and taking the strong-
coupling limit produces a gapped three-dimensional state
of matter. With this done, one can proceed to charac-
terize this state of matter in terms of its pointlike and
linelike excitations, as well as their statistics, and cal-
culate the topological degeneracy, if any, of the ground-
state manifold. The class of three-dimensional models
studied in this work features a topological degeneracy
given by |det κ|3, where the integer-valued matrix κ con-
tains information about the mutual statistics of pointlike
and linelike excitations in the theory. This is in close
analogy with the K-matrix formalism developed for two-
dimensional topological states of matter55. When peri-
odic boundary conditions are relaxed by the presence of
two-dimensional terminating surfaces, we further show
that gapless surface states result. One can apply the

coupled-wire techniques already developed in two dimen-
sions to study the various gapped surface states that can
be produced by introducing interwire hoppings or inter-
actions on the surface, provided that the added terms are
compatible with the interactions in the bulk.

In addition, we show that the above strategy for con-
structing three-dimensional Abelian topological states of
matter can be readily extended to arbitrary dimensions,
vastly expanding the existing scope of the coupled-wire
approach. Indeed, much as it is possible to define higher-
dimensional versions of the toric code on hypercubic lat-
tices (see, e.g., Ref.56), one can arrange a set of decoupled
quantum wires on a d-dimensional hypercubic lattice and
couple them with interactions defined on stars and pla-
quettes of this lattice. Applying Haldane’s compatibility
criterion, one can show that these interactions produce
a gapped (d+ 1)-dimensional state of matter, whose ex-
citations and topological properties can be investigated
much as in the three-dimensional case.

The structure of this paper is as follows. In Sec. II, we
develop in detail the strategy discussed above for con-
structing three-dimensional topological phases from cou-
pled wires. In Sec. II A, we establish the basic notation
used to describe the array of decoupled quantum wires.
In Sec. II B, we present Haldane’s compatibility criterion
and a class of many-body interactions between wires that
satisfy it. (This class is mainly chosen for analytical ex-
pedience, and is not the only class of interactions that can
be constructed according to our strategy.) In Sec. II C,
we show how to use the interacting arrays of quantum
wires defined in Secs. II A and II B to study states of
matter with fractionalized excitations. In particular, we
show how to construct pointlike and linelike excitations,
and determine their statistics, as well as the topological
ground state degeneracy. Next, in Sec. II D we exemplify
our strategy with perhaps the simplest type of topological
order in three dimensions, namely Zm topological order.
Furthermore, we investigate the surface states of these
Zm-topologically-ordered states of matter, and find that
they are unstable to interwire hoppings. Additionally, a
surface fractional quantum Hall effect with Hall conduc-
tivity [(2e)2/h] × (1/2m) can develop at the expense of
breaking time-reversal symmetry on the surface. We also
discuss how these observations regarding surface states
can be extended to the more general class of interwire
interactions introduced in Sec. II B.

Next, in Sec. III, we outline the generalization of our
results to arbitrary dimensions. In Sec. III A, we dis-
cuss how to define d-dimensional hypercubic arrays of
quantum wires that are analogous to the square array
of quantum wires used to construct three-dimensional
topological states. Then, in Sec. III B, we generalize the
results of Sec. II B regarding the definitions of appro-
priate interwire couplings and their compatibility in the
strong-coupling limit. Finally, in Sec. III C, we provide
an example of this generalization by constructing Zm-
topologically-ordered states of matter in four dimensions,
and constructing their pointlike, linelike, and membrane-
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like excitations, before concluding in Sec. IV.

II. THREE-DIMENSIONAL WIRE
CONSTRUCTIONS

In this section, a method to construct arrays of cou-
pled wires realizing topological phases of matter in three-
dimensional space is presented. We begin by defining a
class of gapless theories describing decoupled wires, be-
fore moving on to a discussion of interwire couplings.
In particular, we provide a set of algebraic criteria that
are sufficient to determine whether the theory is gapped
when periodic boundary conditions are imposed.

A. Decoupled wires

We consider a two-dimensional array of 2N quantum
wires, labeled by Latin indices j = 1, . . . , 2N , placed on
the links of a two-dimensional square lattice embedded in
three-dimensional Euclidean space. Each quantum wire
is assumed to be gapless and nonchiral, and therefore to
contain 2M gapless degrees of freedom, labeled by Greek
indices α = 1, . . . , 2M . We take the wires (of length
L) to lie along the z-direction, and the square lattice to
lie in the x-y plane. We will impose periodic boundary
conditions in all directions (x, y, and z) until further
notice. The set of decoupled quantum wires is described
by the quadratic Lagrangian

L̂0 =
1

4π

L∫

0

dz

[(
∂tΦ̂

)T
K
(
∂zΦ̂

)
−
(
∂zΦ̂

)T
V
(
∂zΦ̂

)]

(2.1a)

where

Φ̂(t, z) ..=
(
φ̂1,1(t, z) . . . φ̂1,2M (t, z) |

· · · | φ̂2N,1(t, z) . . . φ̂2N,2M (t, z)
)T (2.1b)

is a vector that collects the 2M scalar fields φ̂j,α(t, z) de-
fined in each of the j = 1, . . . , 2N wires. We use vertical
bars as a visual aid to separate degrees of freedom defined
in different wires. The block-diagonal 4MN -dimensional
matrix

K ..= 12N ⊗K, (2.1c)

where 12N is the unit matrix of dimension 2N and K is
a 2M×2M symmetric matrix with integer entries, yields
the equal-time commutation relations
[
∂zφ̂j,α(z), φ̂j′,α′(z

′)
]

= i 2π δjj′ K
−1
αα′ δ(z − z′). (2.1d)

We will omit the explicit time dependence of the fields
from now on. Finally, the block-diagonal 4MN × 4MN
matrix

V ..= 12N ⊗ V, (2.1e)

where the 2M × 2M matrix V is real, symmetric, and
positive-definite. The matrix V is set by microscopics
within each wire, and will usually be taken to be a diag-
onal matrix in this work. However, the matrix K, which
enters the commutation relations (2.1d), contains crucial
data that define the fundamental degrees of freedom in
a wire. The final data necessary to complete the def-
inition of the theory describing the two-dimensional ar-
ray of decoupled quantum wires is the 4MN -dimensional
“charge-vector”

Q ..=
(
Q | Q | . . . | Q

)T
. (2.1f)

The 2M -dimensional integer vector Q collects the U(1)

electric charges associated with the scalar fields φ̂j,α, α =
1, . . . , 2M .

The theory defined by Eqs. (2.1) can be viewed as
an effective low-energy description of a two-dimensional
array of decoupled physical quantum wires containing
fermionic or bosonic degrees of freedom.

For fermions, each wire j = 1, . . . , 2N contains M

flavors of chiral scalar fields φ̂j,αR and φ̂j,αL , where

αR,L = 1, . . . ,M label right- and left-moving degrees of
freedom, respectively. These fields obey the chiral equal-
time commutation relations
[
∂zφ̂j,αR(z), φ̂j′,α′R

(z′)
]

= +i 2π δjj′ δαRα′R
δ(z − z′),

[
∂zφ̂j,αL(z), φ̂j′,α′L

(z′)
]

= −i 2π δjj′ δαLα′L
δ(z − z′),

[
∂zφ̂j,αR(z), φ̂j′,αL(z′)

]
= 0, (2.2a)

and therefore, for fermions, the 2M × 2M matrix K en-
tering Eq. (2.1d) is given by

Kf ..=

M⊕

α=1

(
+1 0
0 −1

)
. (2.2b)

We further adopt the convention that the charge-vector

Qf ..=
(
1 . . . 1

)T
, (2.2c)

in units where the electron charge e is set to unity, for
a fermionic wire with 2M channels. Treating an array
of fermionic quantum wires within Abelian bosonization,
as we do here, further requires the use of Klein factors,
which are needed in order to assure that fermionic vertex
operators (defined below) defined in different wires anti-
commute with one another. These Klein factors can be
subsumed into the equal-time commutation relations for

the scalar fields φ̂j,αR and φ̂j,αL . This can be done by

integrating both sides of Eqs. (2.2a) over all z and fixing
the arbitrary constant of integration to be the Klein fac-
tor necessary to ensure the appropriate anticommutation
of vertex operators. We refer the reader to the Appendix
of Ref.57 for more details on this procedure.

For bosons, each wire j = 1, . . . , 2N instead contains

M flavors of nonchiral scalar fields φ̂j,α1
and φ̂j,α2

, where
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α1,2 = 1, . . . ,M label “charge” and “spin” degrees of
freedom, respectively. These fields obey the equal-time
commutation relations

[
∂zφ̂j,α1

(z), φ̂j′,α′1(z′)
]

= 0,
[
∂zφ̂j,α2

(z), φ̂j′,α′2(z′)
]

= 0, (2.3a)
[
∂zφ̂j,α1

(z), φ̂j′,α2
(z′)
]

= i 2π δjj′ δα1α2
δ(z − z′),

so that the K-matrix for bosons is

Kb ..=

M⊕

α=1

(
0 1
1 0

)
. (2.3b)

We take the bosonic charge vector to be

Qb ..= 2
(
1 0 . . . 1 0

)T
, (2.3c)

in units where the electron charge e is set to unity, so

that the fields φ̂j,α1
carry a U(1) electric charge, while

φ̂j,α2
is neutral. (Of course, one could define a “spin vec-

tor” analogous to Q that encodes the coupling to another
U(1) gauge field for spin, but, for simplicity, we will work
exclusively with electric charges here.)

The fundamental excitations of a fermionic or bosonic
wire can be built out of the vertex operators

ψ̂†f,b;j,α(z) ..= exp
(
−i (Kf,b)αα′ φ̂j,α′(z)

)
, (2.4)

for any j = 1, . . . , 2N and α = 1, . . . , 2M , where we
have adopted the convention of summing over repeated
indices. Any local operator acting within a single wire
can be built from these vertex operators. Similarly, op-
erators spanning multiple wires can be built by taking
products of vertex operators from each constituent wire.
The charges of the excitations created by these vertex
operators are measured by the charge operator

Q̂j,α ..=
Qα
2π

δαα′

L∫

0

dz ∂zφ̂j,α′(z), (2.5)

for any j = 1, . . . , 2N and α = 1, . . . , 2M , where L is
the length of a wire. The normalization of the charge
operator is taken to be such that

[Q̂j,α, ψ̂
†
f,b;j′,α′(z)] = Qα δjj′ δαα′ ψ̂

†
f,b;j′,α′(z) (2.6)

at equal times, indicating that the vertex operator ψ̂†f,b;j,α
carries the charge Qα.

B. Interwire couplings and criteria for producing
gapped states of matter

Given the two-dimensional array of decoupled and
gapless quantum wires defined in Sec. II A, we would

like to devise a systematic way of introducing strong
single-particle or many-body couplings between adjacent
wires in order to yield a variety of gapped topologically-
nontrivial three-dimensional phases of matter. Our strat-
egy will be to extend the approach taken in Ref.11, which
considered one-dimensional chains of wires, to two di-
mensions. We begin by adding to the quadratic La-
grangian L̂0 defined in Eq. (2.1) a set of cosine potentials

L̂{T } :=

L∫

0

dz
∑

T
UT (z) cos

(
T TK Φ̂(t, z) + αT (z)

)
.

(2.7)

Here, the 4MN -dimensional integer vectors T encode
tunneling processes between adjacent wires. This inter-
pretation becomes transparent upon recognizing that, up
to an overall phase,

e−i T T K Φ̂(z) =
2N∏

j=1

2M∏

α=1

[
ψ̂†f,b;j,α(z)

]Tj,α
, (2.8)

where ψ̂†f,b;j,α are the vertex operators defined in

Eq. (2.4). [We follow Ref.11 in using the shorthand no-

tation (ψ̂†f,b;j,α)−1 ≡ ψ̂f,b;j,α and in employing an ap-
propriate point-splitting prescription when multiplying
fermionic operators.] For generic tunneling vectors T ,
Eq. (2.8) describes a many-body or correlated tunneling
that amounts to an interaction term in the Lagrangian

L̂ ..= L̂0 + L̂{T }. (2.9)

The real-valued functions UT (z) ≥ 0 and αT (z) in
Eq. (2.7) encode the effects of disorder on the amplitude
and phase of these interwire couplings.

Distinct states of matter can be realized by restricting
the sum over tunneling vectors T in Eq. (2.7) to ensure
that the interaction terms (2.8) satisfy certain symme-
tries. For all examples considered in this work, we will
assume that either charge or number-parity conservation
holds. The former is imposed by demanding that

QT T = 0 ∀ T , (2.10a)

while the latter is imposed by relaxing the above require-
ment to

QT T = 0 mod 2 ∀ T . (2.10b)

For a detailed discussion of how further symmetry re-
quirements constrain the tunneling vectors T , see Ref.11.

We are now prepared to discuss the strategy we em-
ploy to produce gapped states of matter from the above
construction. We first recall that the array of decoupled
quantum wires consists of 4M N gapless degrees of free-
dom. As noted in Ref.58, and later employed in Refs.11,57,
a single cosine term in the sum in Eq. (2.7) is capable of
removing (i.e., gapping out) at most two of these gap-
less degrees of freedom from the low-energy sector of the
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theory. This occurs in the limit UT →∞, where the ar-
gument of the cosine term becomes pinned to its classical
minimum. Therefore, in principle it takes only 2MN co-
sine terms to gap out all 4M N degrees of freedom in
the bulk of the array of quantum wires when periodic
boundary conditions are imposed. Matters are compli-
cated somewhat by the nontrivial commutation relations
(2.1d), which ensure that cosine terms corresponding to
distinct tunneling vectors T and T ′ do not commute in
general. Consequently, it is possible that quantum fluc-
tuations may lead to competition between the various
cosine terms that frustrates the optimization problem of
simultaneously minimizing all of these terms. However,
in Ref.58, Haldane observed that if the criterion

T TKT ′ = 0 (2.11)

holds, then the cosine terms associated with the tun-
neling vectors T and T ′ can be minimized indepen-
dently, and therefore do not compete with one another.
[Note that each tunneling vector T must also satisfy
Eq. (2.11), i.e., we require that T TKT = 0 for all T .]
Therefore, if one can find a “Haldane set” H of 2MN
linearly-independent tunneling vectors, all of which sat-
isfy Eq. (2.11), then it is possible to gap out all degrees
of freedom in the array of quantum wires by adding suffi-
ciently strong interactions of the form (2.7). If such a set
H is found, then it suffices to restrict the sum in Eq. (2.7)
to T ∈ H, and to posit that all couplings UT are suffi-
ciently large in magnitude to gap out all modes in the
array of quantum wires.

We now present a simple geometric prescription to aid
in the determination of the existence (or lack thereof) of
a Haldane set H for a two-dimensional array of quantum
wires with some set of desired symmetries. This prescrip-
tion capitalizes on the fact that we have chosen all 2N
quantum wires to lie on the links of a square lattice. (In
principle, this is not the only possible choice of lattice ge-
ometry, but it provides a simple way of counting degrees
of freedom in any dimension, as we will see below and
in Sec. III.) On a square lattice with 2N sites, there are
N “stars” (centered on the vertices of the lattice) and N
“plaquettes” (centered on the vertices of the dual lattice),
assuming that periodic boundary conditions are imposed
as in Fig. 1. If we associate the tunneling vectors Ts and
Tp with each star s and plaquette p, respectively, then
we have a set of 2N tunneling vectors. Since there are
4MN gapless degrees of freedom in the array of decou-
pled quantum wires, we can obtain the necessary number
2MN of tunneling vectors by expanding this set to in-

clude M “flavors” of tunneling vectors T (j)
s and T (j)

p for
each star and plaquette, respectively. We label these fla-
vors using a teletype index j = 1, . . . ,M . Imposing the
Haldane criterion (2.11) on this set of tunneling vectors
then yields the set of equations

T (j)T
s K T (j′)

s′ = 0 ∀ s, s′, j, j′, (2.12a)

T (j)T
p K T (j′)

p′ = 0 ∀ p, p′, j, j′, (2.12b)

N

EW

S

s

p

FIG. 1. A single unit cell of the square array of wires,
consisting of a single star s and plaquette p. The dashed
nearest-neigbor links belong to neighboring unit cells. The
midpoint of each link hosts a quantum wire, represented by
the symbol ×, aligned along the z-direction (out of the page).
Any plaquette p is surrounded by four quantum wires located
at the four cardinal points pN , pW , pS , and pE , repectively.
Similarly, any star s is surrounded by four quantum wires
located at the four cardinal points sN , sW , sS , and sE .

T (j)T
s K T (j′)

p = 0 ∀ s, p, j, j′. (2.12c)

If the above equations are satisfied, then the set of 2MN
tunneling vectors is a Haldane set, and therefore capable
of yielding a gapped phase in the strong-coupling limit.

We now turn to the problem of building 2MN tunnel-

ing vectors T (j)
s and T (j)

p . Enumerating all solutions to
this problem for all matrices K is beyond the scope of
the present work. However, we will present below one
way of constructing these tunneling vectors that builds
in the minimal symmetries of charge and/or parity con-
servation [Eqs. (2.10)] and greatly reduces the number
of equations that must be solved [relative to Eqs. (2.12),
which contain an infinite number of linear equations in
the thermodynamic limit N → ∞ if no additional in-
formation is provided]. In particular, if we desire charge
conservation [Eq. (2.10a)] to hold, we may define the tun-
neling vectors by their nonvanishing components

(T (j)
s )j,α ..= v

(j)
1,α

(
δj,sE − δj,sW

)

+ v
(j)
2,α

(
δj,sN − δj,sS

)
,

(2.13a)

(T (j)
p )j,α ..= w

(j)
1,α

(
δj,pW − δj,pE

)

+ w
(j)
2,α

(
δj,pN − δj,pS

)
,

(2.13b)
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(a)

�v
(j)
1 v

(j)
1

v
(j)
2

�v
(j)
2

T (j)
s

(b)

w
(j)
2

�w
(j)
2

w
(j)
1 �w

(j)
1T (j)

p

FIG. 2. Pictorial representation of the tunneling vectors

(2.13). The 2M -dimensional integer-valued vectors v
(j)
1,2 and

w
(j)
1,2 determine the linear combinations of bosonic fields in

each wire that enter the cosine term associated with each star
or plaquette, respectively.

where we recall that j = 1, . . . , 2N labels the quantum
wires and α = 1, . . . , 2M labels the degrees of freedom

within a wire. Here, v
(j)
1 , v

(j)
2 , w

(j)
1 , and w

(j)
2 are ar-

bitrary 2M -dimensional integer vectors. The Kronecker
deltas in the tunneling vector Ts ensure that its nonzero
entries are defined within the quantum wires sN , . . . , sW
to the north, . . . , west of the vertex on which star s is
centered. The Kronecker deltas in Tp select the quantum
wires pN , . . . , pW , which are defined similarly for the pla-
quette p (see Fig. 1). With these definitions, one verifies

that Eq. (2.10a) holds independently of the form of v
(j)
1,2,

w
(j)
1,2, and the charge-vector Q for a single wire.
Similarly, when we wish to impose number-parity con-

servation [Eq. (2.10b)], we may define for any j =
1, . . . , 2N and any α = 1, . . . , 2M

(T (j)
s )j,α ..= v

(j)
1,α

(
δj,sE + δj,sW

)

+ v
(j)
2,α

(
δj,sN + δj,sS

)
,

(2.14a)

(T (j)
p )j,α ..= w

(j)
1,α

(
δj,pE + δj,pW

)

+ w
(j)
2,α

(
δj,pN + δj,pS

)
,

(2.14b)

and verify that Eq. (2.10b) holds independently of the

form of v
(j)
1,2, w

(j)
1,2, and Q.

Henceforth, we will focus on the charge-conserving tun-
neling vectors defined in Eqs. (2.13), as all general criteria
discussed below have analogues for the parity-conserving
tunneling vectors defined in Eqs. (2.14).

The charge-conserving tunneling vectors defined in
Eqs. (2.13) are expressed in a convenient pictorial form in
Fig. 2. From this pictorial representation, it is clear that
any two distinct, adjacent stars (be they of the same fla-
vor or different flavors) share a single wire between them.
The same statement holds for plaquettes. However, adja-
cent stars and plaquettes share two wires between them,
regardless of the flavor. Therefore, one can show that
Eqs. (2.12) are satisfied if and only if

v(j)T
µ K v(j′)

µ = 0, (2.15a)

w(j)T
µ K w(j′)

µ = 0, (2.15b)

v
(j)T
1 K w

(j′)
2 − v(j)T

2 K w
(j′)
1 = 0, (2.15c)

for all j and j′ = 1, . . . ,M and µ = 1, 2. Equations (2.15)
are fundamental to our construction, as each solution to
these equations for a given dimension 2M of the matrix
K may in principle describe a distinct gapped phase of
matter.

Observe that Eqs. (2.15) are symmetric under 1 ↔
2 and j ↔ j′. Therefore, these criteria amount to a
set of 5M(M + 1)/2 linear equations in 8M2 variables.
This is important for two reasons. First, the number of
equations does not scale with the number 2N of quantum
wires in the array. This ensures that a single solution to
these equations holds for any system size when periodic
boundary conditions are imposed. Second, this set of
equations is underconstrained for any M (i.e., there are
always more variables than equations). This means that
for generic matrices K of fixed dimension 2M , there is in
principle more than one solution to Eqs. (2.15).

We aim to construct gapped states of matter that have
an isotropic low-energy description. Consequently, it is
natural to demand that the tunneling vectors defined in
Eqs. (2.13) and depicted in Fig. 2 are independent of di-
rection. This can be achieved by imposing the additional
constraints

v
(j)
1 = v

(j)
2 =.. v(j) (2.16a)

and

w
(j)
1 = w

(j)
2 =..w(j). (2.16b)

Note that Eq. (2.15c) is solved independently of the form

of the 2M -dimensional vectors v
(j)
µ and w

(j)
µ if Eqs. (2.16)

hold. These constraints reduce the total number of vari-
ables contained in the tunneling vectors Ts and Tp from
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8M2 to 4M2, and the number of nontrivial equations to
2M(M + 1)/2, i.e.,

v(j)TK v(j′) = 0, (2.17a)

w(j)TK w(j′) = 0, (2.17b)

which are merely rewritings of Eqs. (2.15a) and (2.15b).
With this, we have arrived at the simplest incarnation
of our construction. We will henceforth assume that
Eqs. (2.17) hold for appropriate choices of the 2M , 2M -
dimensional vectors v(j) and w(j). However, note that
Eqs. (2.16) are sufficient but not necessary in order to
produce a state of matter that has an isotropic low-energy
description. We will therefore comment, as appropri-
ate, on how our results below generalize to cases where

v
(j)
1 6= v

(j)
2 and w

(j)
1 6= w

(j)
2 .

C. Fractionalization

1. Change of basis

In this section, we outline how to use two-dimensional
arrays of coupled quantum wires, like those described
in the previous two sections, to study phases of matter
with fractionalized excitations. To this end, let us as-
sume that we have a Haldane set H containing 2MN

tunneling vectors T (j)
s and T (j)

p with j = 1, . . . ,M de-
fined by Eqs. (2.13) that satisfy (2.16) and the Hal-
dane criterion (2.17). With these assumptions, the two-
dimensional array of coupled quantum wires acquires
a gap in the strong-coupling limit, yielding a three-
dimensional gapped state of matter.

As discussed in the previous section, the phase of
matter obtained in this way is a system of strongly-
interacting fermions or bosons. However, for the pur-
poses of studying fractionalization, it is convenient to
work in a basis where the “fundamental” constituents of
each wire are not fermions or bosons, but (possibly frac-
tionalized) quasiparticles. This is achieved by making
the change of basis

˜̂
Φ(z) ..= W−1 Φ̂(z), (2.18a)

Ṽ :=WT V W, (2.18b)

K̃ ..= WTKW, (2.18c)

Q̃ ..= WTQ, (2.18d)

T̃ ..= W−1 T , (2.18e)

where

W ..= 12N ⊗W, (2.18f)

for some invertible 2M × 2M integer-valued matrix W .
This change of variables has several virtues. First, K̃ re-
mains symmetric and integer valued. Second, Q̃ remains

integer valued. Third, this change of variables leaves the
quantity T TK Φ̂(z), which enters the argument of the
cosine terms in Eq. (2.7), invariant, i.e.,

T̃ T K̃ ˜̂
Φ(z) = T TK Φ̂(z). (2.19)

Thus, the linear transformation (2.18) does not change
the character of the interaction itself, although it alters
the tunneling vector T and the 4MN -dimensional vector
Φ̂ of bosonic fields. Furthermore, one verifies that the lin-
ear transformation (2.18) does not alter the compatibility
criteria (2.15) or the quantity QT T that determines the
presence or absence of charge or number-parity conser-
vation.

Given the possibility of performing a change of basis of
the form (2.18), we may now take a different approach.
Instead of viewing the wire construction as a theory, with
the Lagrangian (2.9), of scalar fields obeying the commu-
tation relations (2.1d) with a K-matrix Kf [Eq. (2.2)] for
fermions or Kb [Eq. (2.3)] for bosons, we may also view
it as a theory, with the Lagrangian

˜̂
L ..=

˜̂
L0 +

˜̂
L{T̃ }, (2.20)

of scalar fields obeying the new equal-time commutation
relations

[
∂z

˜̂
φj,α(z),

˜̂
φj′,α′(z

′)
]

= i 2π δjj′ K̃
−1
αα′ δ(z − z′), (2.21)

for j, j′ = 1, . . . , 2N and α, α′ = 1, · · · , 2M , which are
neither fermionic nor bosonic in nature. We allow K̃ to
be any symmetric, invertible, 2M × 2M integer matrix,
as long as it is related to Kf or Kb by a transformation
of the form (2.18). Interactions between wires that yield
a gapped state of matter can be constructed by following
the procedures of the previous section. The 2M N integer

tunneling vectors T̃ (j)
s and T̃ (j)

p obtained in this way form

a Haldane set H̃ related to the Haldane set H by the
transformation (2.18). For reasons of simplicity that will
become clear momentarily, we will concern ourselves in

this paper primarily with the tunneling vectors T̃ (j)
s and

T̃ (j)
p whose nonzero entries are equal to ±1. (Of course,

nothing prevents us from also considering cases where

this does not hold.) The counterparts T (j)
s and T (j)

p of
these tunneling vectors under the transformation (2.18)
generically have entries with magnitude larger than 1.
This fact will be of importance to us now, as we turn to
the issue of compactification.

2. Compactification, vertex operators, and fractional
charges

Although the transformation (2.18) might appear in-
nocuous, there is a fundamental difference between the

theory with the Lagrangian
˜̂
L defined in Eq. (2.20) and
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the original fermionic or bosonic theory with the La-
grangian L̂ defined in Eq. (2.9) when periodic bound-
ary conditions are imposed in the z-direction (as we have
assumed from the outset). In the latter theory, which
is a theory of interacting electrons or bosons treated
within bosonization, the traditional choice of compact-

ification for the scalar fields φ̂j,α(z) with j = 1, . . . , 2N
and α = 1, · · · , 2M is

φ̂j,α(z + L) ≡ φ̂j,α(z) + 2π nα, (2.22)

for nα ∈ Z2M . This choice ensures the single-valuedness
of the fermionic or bosonic vertex operators (2.4) un-
der z → z + L, and, in turn, that of the Lagrangian
L̂ = L̂0 + L̂{T }, as one can re-write L̂{T } in terms of the

correlated tunnelings (2.8), which reduce to products of
these vertex operators. However, depending on the tun-

neling vectors T (j)
s,p , there may be other, less stringent,

compactifications of these scalar fields that also render
the Lagrangian L̂ single-valued under z → z + L. The
parsimonious course of action is to choose the “minimal”
compactification, i.e., the smallest compactification ra-
dius that still maintains the single-valuedness of L̂ under
z → z + L.

If the tunneling vectors T (j)
s and T (j)

p correspond to the

tunneling vectors T̃ (j)
s and T̃ (j)

p under the transformation
(2.18) whose only nonzero entries are equal to ±1, then
there is a clear choice of minimal compactification. This
choice can be obtained as follows. Working in the tilde
basis, we can rewrite the interactions using the relation
[analogous to (2.8)]

e−i T̃ T K̃ ˜̂
Φ(z) =

2N∏

j=1

2M∏

α=1

[
˜̂
ψ†f,b;j,α(z)

]T̃j,α
, (2.23a)

thereby implicitly defining a new set of fermionic or
bosonic vertex operators,

˜̂
ψ†f,b;j,α(z) ..= exp

(
−i

2M∑

α′=1

K̃αα′
˜̂
φj,α′(z)

)
. (2.23b)

The minimal compactification is then obtained by de-
manding that this new set of vertex operators be single
valued under z → z + L. For any j = 1, . . . , 2N and
α = 1, · · · , 2M , this is achieved by imposing the periodic
boundary conditions

˜̂
φj,α(z + L) ≡ ˜̂

φj,α(z) + 2π K̃−1
αα′ nα′ , (2.24)

for nα ∈ Z2M . Here, there is an important difference with

respect to Eq. (2.22). Because K̃ is an integer-valued

matrix, K̃−1 is generically a rational-valued matrix. The

field
˜̂
φj,α(z) is thus allowed to advance by rational (rather

than integer) multiples of 2π when the coordinate z is ad-
vanced through a full period L. This crucial distinction
is what allows for the existence of fractionally-charged

FIG. 3. (Color online) Pictorial representation of star and
plaquette excitations created by the operators (2.31). The
filled blue circle represents an application of the vertex oper-
ator (2.31a) in the corresponding wire, while the purple and
orange crosses represent defective stars hosting solitons of op-
posite signs. Similarly, the filled green square represents an
application of the vertex operator (2.31b), and the purple and
orange squares represent defective plaquettes hosting solitons
of opposite signs.

operators in the coupled wire array, as we now demon-
strate.

Fractional quantum numbers appear in the wire con-
struction because the compactification condition (2.24)
allows for the existence of “quasiparticle” vertex opera-
tors

q̂†j,α(z) ..= exp
(
−i

˜̂
φj,α(z)

)
(2.25)

for any j = 1, . . . , 2N and α = 1, · · · , 2M that are multi-
valued under the operation z 7→ z+L. The fact that these
vertex operators generically carry fractional charges can
be seen by considering the transformed charge operator

˜̂
Qj,α ..=

Q̃α
2π

2M∑

α′=1

δαα′

L∫

0

dz ∂z
˜̂
φj,α′(z) (2.26)

for any j = 1, . . . , 2N and α = 1, · · · , 2M . Its normal-
ization is here chosen such that the fermionic or bosonic
vertex operators defined in Eq. (2.23b) have charge Q̃α.
Indeed, for any j, j′ = 1, . . . , 2N and α, α′ = 1, · · · , 2M ,
the equal-time commutator

[
˜̂
Qj,α, q̂

†
j′,α′(z)

]
= Q̃α δjj′ K̃

−1
αα′ q̂

†
j′,α′ (2.27)

indicates that, since K̃−1 is generically a rational matrix,

the quasiparticle operator q̂†j′,α′ generically has a rational

charge. In particular, if Q̃ = Q under the transformation
(2.18), and K̃−1 has at least one rational entry with mag-

nitude smaller than 1, the operator q̂†j′,α′ must then carry
a fractional charge.
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(a) (b)

(c) (d)

FIG. 4. (Color online) Deconfinement of star defects within a plane. (a) A single application of the vertex operator (2.31a)
(blue circle) creates a star defect (purple cross) and an anti-star defect (orange cross). (b) Applying a string of vertex operators
(2.31a) moves a star defect by healing one while creating another. Consequently, it costs no extra energy to separate the two
star defects. (c) To turn a corner, it may be necessary to heal a defect with an application of the inverse of the vertex operator
(2.31a) in the appropriate wire (white circle). (d) When two star defects meet, they annihilate one another. A completely
analogous description of plaquette defects also holds starting from the operators Eq. (2.31b).

3. Pointlike and linelike excitations

We now outline the relationship between the quasipar-
ticle vertex operators defined in Eq. (2.25) and (possibly
fractionalized) excitations in the array of coupled quan-
tum wires. In the strong-coupling limit UT̃ (z)→∞, the

compatibility criteria (2.15) ensure that the quantity

T̃ T K̃ ˜̂
Φ(z) + αT̃ (z), (2.28)

where T̃ = T̃ (j)
s or T̃ (j)

p , is pinned to a classical minimum

of the corresponding cosine potential in L̂{T̃ }. Following

Refs.4,5 and subsequent works, we identify excitations
in the coupled-wire theory with solitons that increment

the “pinned field” T̃ K̃ ˜̂
Φ(z) by an integer multiple of 2π.

These excitations can therefore be viewed as living on
either the stars or the plaquettes of the square lattice,
rather than within the wires themselves.

We now demonstrate that products of an appropri-
ate number of quasiparticle vertex operators of the form
(2.25) can be used to move the soliton defects to adja-
cent stars and plaquettes. To see this, we write out the

pinned fields explicitly for all MN tunneling vectors T̃ (j)
s

with j = 1, . . . ,M defined on the stars s = 1, . . . , N ,

T̃ (j)T
s K̃ ˜̂

Φ(z) =

2M∑

α,α′=1

ṽ(j)
α K̃αα′

[
˜̂
φsE ,α′(z)−

˜̂
φsW ,α′(z) +

˜̂
φsN ,α′(z)−

˜̂
φsS ,α′(z)

]
, (2.29a)

and for all MN tunneling vectors T̃ (j)
p with j = 1, . . . ,M defined on the plaquettes p = 1, . . . , N ,

T̃ (j)T
p K̃ ˜̂

Φ(z) =

2M∑

α,α′=1

w̃(j)
α K̃αα′

[
˜̂
φpW ,α′(z)−

˜̂
φpE ,α′(z) +

˜̂
φpN ,α′(z)−

˜̂
φpS ,α′(z)

]
. (2.29b)

For any star s = 1, . . . , N or plaquette p = 1, . . . , N from the square lattice and for any α, β = 1, . . . , 2M , observe
that, by Eq. (2.21), the equal-time commutators

[
2M∑

α′=1

K̃αα′
˜̂
φsC ,α′(z), ∂z′

˜̂
φsC ,β(z′)

]
=

[
2M∑

α′=1

K̃αα′
˜̂
φpC ,α′(z), ∂z′

˜̂
φpC ,β(z′)

]
= −i 2π δαβ δ(z − z′) (2.30)
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hold. Here, the uppercase Latin index C = N,W,S,E labels the four cardinal directions. Equation (2.30) indicates

that the pair of fields ∂z
˜̂
φsC ,α and ∂z

˜̂
φpC ,α can be viewed, up to a multiplicative constant, as canonical conjugates

to the pair of fields (
∑
α′ K̃αα′

˜̂
φsC ,α′

and
∑
α′ K̃αα′

˜̂
φpC ,α′

(z) that enter the pair of pinned fields T̃ (j)T
s K̃ ˜̂

Φ and

T̃ (j)T
p K̃ ˜̂

Φ, respectively. Interpreted this way, Eqs. (2.30) suggest that, for any j = 1, . . . ,M , sC = sN , sW , sS , sE ,
and pC = pN , pW , pS , pE , the operators

Ŝ(j)†
sC

(z) ..= exp

(
−i

2M∑

α=1

ṽ(j)
α

˜̂
φsC ,α(z)

)
(2.31a)

and

P̂ (j)†
pC

(z) ..= exp

(
−i

2M∑

α=1

w̃(j)
α

˜̂
φpC ,α(z)

)
(2.31b)

act on the pinned fields as [|ṽ(j)|2 denotes the magnitude squared of the vector ṽ(j) ∈ Z2M ]

Ŝ(j)
sN

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sN

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.32a)

Ŝ(j)
sW

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sW

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.32b)

Ŝ(j)
sS

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sS

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.32c)

Ŝ(j)
sE

(z′)
[
T̃ (j)T
s K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sE

(z′) = T̃ (j)T
s K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.32d)

and [|w̃(j)|2 denotes the magnitude squared of the vector w̃(j) ∈ Z2M ]

P̂ (j)
pN

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)†
pN

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′) + constant, (2.33a)

P̂ (j)
pW

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)†
pW

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′) + constant, (2.33b)

P̂ (j)
pS

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)†
pS

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′) + constant, (2.33c)

P̂ (j)
pE

(z′)
[
T̃ (j)T
p K̃ ˜̂

Φ(z)
]
P̂ (j)†
pE

(z′) = T̃ (j)T
p K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′) + constant, (2.33d)

respectively. To verify Eqs. (2.32), one integrates both
sides of the equalities entering Eq. (2.30) over the variable
z′ and uses the identity

(
dΘ

dz

)
(z) = δ(z), (2.34)

where Θ(z) is the Heaviside step function. If the un-
derlying quantum wires in the theory are fermionic, the
arbitrary integration constants above are identified with
Klein factors that are necessary in order to ensure the
anticommutation of fermionic vertex operators in differ-

ent wires. If the underlying wires are bosonic, however,
the integration constants can be set to zero.

Evidently, the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

defined in Eqs.

(2.31) create 2π solitons in the pinned fields T̃ (j)T
s K̃ ˜̂

Φ

and T̃ (j)T
p K̃ ˜̂

Φ, respectively. However, the link sC on
star s is shared with the star s′ adjacent to s along the
cardinal direction C = N,W,S,E, and, likewise, the link
pC on plaquette p is shared with the plaquette p′ adja-
cent to p along the cardinal direction C = N,W,S,E.
Therefore,

Ŝ(j)
sN

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sN

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.35a)

Ŝ(j)
sW

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sW

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.35b)

Ŝ(j)
sS

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sS

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z) + 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.35c)
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Ŝ(j)
sE

(z′)
[
T̃ (j)T
s′ K̃ ˜̂

Φ(z)
]
Ŝ(j)†
sE

(z′) = T̃ (j)T
s′ K̃ ˜̂

Φ(z)− 2π |ṽ(j)|2 Θ(z − z′) + constant, (2.35d)

and

P̂ (j)
pN

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)†
pN

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′) + constant, (2.36a)

P̂ (j)
pW

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)†
pW

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z)− 2π |w̃(j)|2 Θ(z − z′) + constant, (2.36b)

P̂ (j)
pS

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)†
pS

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′) + constant, (2.36c)

P̂ (j)
pE

(z′)
[
T̃ (j)T
p′ K̃ ˜̂

Φ(z)
]
P̂ (j)†
pE

(z′) = T̃ (j)T
p′ K̃ ˜̂

Φ(z) + 2π |w̃(j)|2 Θ(z − z′) + constant, (2.36d)

respectively. Note the sign difference with respect to Eqs.
(2.32) and (2.33). This difference also stems from Fig. 2.

Consequently, we interpret the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

as creating a soliton-antisoliton pair straddling the links
sC = sN , sW , sS , sE and pC = pN , pW , pS , pE , respec-
tively (see Fig. 3). By taking the derivative with respect
to z of Eqs. (2.32), (2.33), (2.35), and (2.36), we can in-

terpret the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

as creating a dipole
in the soliton density across the links sC = sN , sW , sS , sE
and pC = pN , pW , pS , pE , respectively. Correspondingly,

the annihilation vertex operators Ŝ
(j)
sC

and P̂
(j)
pC

reverse
the orientations of these dipoles in the soliton density.

The defect and antidefect created by applying one of

the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

can be propagated away
from one another in the x-y plane by subsequent appli-
cations of the same operators on adjacent links, each of
which “heal” one defect while creating another. An ex-
ample of such a process is shown in Fig. 4. In the strong-
coupling limit in which we work, this process does not
generate any additional excitations, indicating that star
and plaquette defects are deconfined in the x-y plane.
Furthermore, one can show that, in the same strong-
coupling limit, these defects are also deconfined in the
z-direction (see Appendix A for more details). Conse-
quently, we conclude that the wire construction supports
deconfined pointlike excitations, namely the star and pla-
quette defects. When these defects are separated from
one another, there is a “string” of vertex operators con-
necting them. These strings are a crucial ingredient for
determining the topological degeneracy, as we will see in
the next section.

The wire construction also supports deconfined line-
like excitations. For any j = 1, . . . ,M , pairs of linelike
defects connecting the points z1 and z2 in a wire labelled
by the link sC = sN , sW , sS , sE or pC = pN , pW , pS , pE
can be created by the bi-local operators

Ŝ(j)†
sC

(z1, z2) ..= Ŝ(j)†
sC

(z2) Ŝ(j)
sC

(z1)

= exp

(
− i

2M∑

α=1

ṽ(j)
α

z2∫

z1

dz ∂z
˜̂
φsC ,α(z)

)
,

(2.37a)

P̂ (j)†
pC

(z1, z2) ..= P̂ (j)†
pC

(z2) P̂ (j)
pC

(z1)

= exp

(
− i

2M∑

α=1

w̃(j)
α

z2∫

z1

dz ∂z
˜̂
φpC ,α(z)

)
,

(2.37b)

a pictorial example of which is depicted in Fig. 5(a). Sim-
ilarly to the propagation of star and plaquette defects
outlined in the previous paragraph, applying a string of
the above operators creates a membrane with linelike de-
fects at its boundaries in the z-x and y-z planes as is
illustrated Fig. 5(b).

The membranes created by applying strings of the op-
erators defined in Eqs. (2.37) necessarily extend in the
x-z or y-z planes. Membranes extending in the x-y plane
can also be created by applying the operators defined in
Eqs. (2.31) over a membrane as opposed to a string, as
in Fig. 5(c-d). As with the x-z and y-z membranes, the
boundary of an x-y membrane supports linelike defects.

It is important to note that the strings and membranes
connecting pairs of pointlike and linelike defects, respec-
tively, may fluctuate in all directions. The origin of these
fluctuations lies in the existence of a discrete gauge sym-
metry that can be formulated explicitly in the strong
coupling limit |UT̃ | → ∞. (We elaborate on the physical

meaning of this limit in the next section.) We carry out
this formulation in Appendix B. Strings and membranes
that fluctuate in this way are familiar from the toric code
and other string-net models.

4. Energetics of pointlike and linelike defects

At this stage, a brief comment is in order regarding the
energetics of the pointlike and linelike defects defined in
Sec. II C 3. It is misleading to compute the energy cost of
such a defect in the strong-coupling limit |UT̃ | → ∞, as
in this limit, the perfectly sharp solitons created by the

operators Ŝ
(j)†
sC

and P̂
(j)†
pC

[recall Eqs. (2.32) and (2.33)]
cost no energy from the point of view of the cosine terms
(2.7). This is simply because these solitons increment
the argument of a cosine term abruptly at some z by an
integer multiple of 2π, which amounts to a discontinu-
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(a) (b)

(c) (d)

FIG. 5. (color online) (a) A pair of linelike defects along the z direction created by the operators (2.37). (b) Propagating
one linelike defect away from the other using the operators (2.37) creates a membrane in the x-z plane. (c) Growing a star
membrane in the x-y plane from the product of the operators (2.31a). (d) Membrane in the x-y plane with defect lines on its
boundaries. Darker purple or orange crosses indicate defective stars with a “double-strength” soliton, where two kinks of the
same sign coexist in the same star.

ous jump between exact minima of the cosine potential.
However, the presence of an infinitesimal kinetic term of
the form (2.1a) gives a finite stiffness κ to the pinned
field. In this case, the optimal soliton profile is no longer

the perfectly sharp one generated by the operators Ŝ
(j)†
sC

and P̂
(j)†
pC

, but a slightly deformed one where the interpo-
lation between minima of the cosine potential is smeared
over a length scale ξ.

Suppose that this optimal soliton profile is known.

Then, it is possible to redefine the operators Ŝ
(j)†
sC

and

P̂
(j)†
pC

in such a way that they act on the pinned fields as in
Eqs. (2.32) and (2.33), but now with the perfectly sharp
soliton profile replaced by the optimal one. [Note that
this redefinition can be done without altering the fun-
damental commutation relations (2.21) on length scales
longer than ξ.] The energy cost of such an optimal soli-
ton is composed of two contributions: one from the cosine
potential (assumed to be large) and one from the stiffness
(assumed to be small but finite).

Once the finite energy cost of a single soliton has been
determined, it is readily seen that the stringlike and
membranelike operators defined in Sec. II C 3 cannot dis-
sociate into smaller pointlike or linelike operators with-

out an energy cost that is extensive in the number of
vertex operators used to build the string or membrane.
For example, if one tries to pull apart the string of vertex
operators shown in Fig. 4(b) so that all operators in the
string are disconnected, one necessarily increases the en-
ergy by an amount proportional to the number of vertex
operators in the chain. This is because each application
of a vertex operator in the latter scenario costs energy
due to two cosine terms (in addition to the stiffness). In
contrast, when the vertex operators form a string, the
only energy cost due to the cosine terms occurs at the
two ends of the string.

Finally, one might be concerned that the energetic ef-
fects discussed above could lead to confinement of star
and plaquette defects. Indeed, if the stiffness κ is finite,
then strings of vertex operators like the ones depicted
in Fig. 4 necessarily cost an energy proportional to their
length. In fact, there is a direct parallel here with the
confinement-deconfinement transition in the toric code54.
In that case, two star defects (say) are connected by a
string of flipped spins. Thus, there is a measurable trail
of magnetization that connects the two defects. However,
in the absence of an external magnetic field, there is no
energy cost associated with such a string. The presence
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of a sufficiently large external field leads to confinement,
but, below a critical field strength, entropic effects are
sufficient to deconfine the defects. In our system, the
role of the external magnetic field is played by the ki-
netic term, which is the origin of the stiffness κ.

Thus, provided that the stiffness κ� |UT̃ |, we expect
that defects in our model are deconfined because entropic
effects favor deconfinement, as is the case in the toric
code. When κ reaches some critical value, however, the
defects become confined.

5. Statistics of pointlike and linelike defects

We have enumerated the pointlike and linelike exci-
tations for a class of two-dimensional arrays of coupled
quantum wires by showing how to use vertex operators
to build open stringlike and open membranelike opera-
tors supporting these defects on their boundaries. The
statistics of these excitations are readily accessible within
the wire formalism, as we now explain.

In principle, there are several types of statistics to con-
sider. The first type, that of different types of pointlike
excitations, must be trivial in three dimensions by ho-
motopy arguments.59 (Essentially, such arguments hinge
on the fact that any loop that one particle makes around
another in three dimensions can be deformed to a point
without passing through the other particle.)

The second type, that of pointlike and linelike excita-
tions, can be nontrivial in three dimensions, and will be
computed below for the class of models defined here.

The third type of statistics, that between linelike ex-
citations, can also be nontrivial in three dimensions, but
can be shown to be trivial in the present class of models.

Let us first examine the mutual statistics between
pointlike and linelike defects. Using the identity

eÂ eB̂ = eB̂ eÂ e[Â,B̂] (2.38)

which follows from the Baker-Campbell-Hausdorff lemma
whenever [Â, B̂] is a c-number, one can show from
Eq. (2.21) that, for any j, j′ = 1, . . . , N and for any
sC , sC′ = sN , sW , sS , sE or pC , pC′ = pN , pW , pS , pE ,

Ŝ(j)†
sC

(z) P̂ (j′)†
p
C′

(z′1, z
′
2)

= P̂ (j′)†
p
C′

(z′1, z
′
2) Ŝ(j)†

sC
(z) e

+i 2π ṽ(j)T K̃−1 w̃(j′) δs
C
,p
C′ ,

(2.39a)

Ŝ(j)†
sC

(z′1, z
′
2) P̂ (j′)†

p
C′

(z)

= P̂ (j′)†
p
C′

(z) Ŝ(j)†
sC

(z′1, z
′
2) e
−i 2π ṽ(j)T K̃−1 w̃(j′) δs

C
,p
C′ ,

(2.39b)

whenever z′1 < z < z′2.
With these relations in hand, one can readily compute

the algebra of the membrane and string operators that
are used to create and propagate pointlike and linelike

FIG. 6. (Color online) Pictorial representation for braiding
a pointlike plaquette defect [defined in Eq. (2.31b)] around
a linelike star defect along the z-direction [defined in Eq.
(2.37a)]. The green colored loop represents the worldline dur-
ing adiabatic braiding of one end of an open plaquette string,
say the plaquette counterpart to the open string depicted in
Fig. 4(c). By choice, the world line encloses the rightmost
boundary of the star membrane in Fig. 5(b).

defect-antidefect pairs. As discussed in Ref.35, this alge-
bra determines the phase obtained by winding a pointlike
excitation around a linelike excitation. The computation
of this phase is cumbersome to write down, but neverthe-
less quite straightforward—a convenient way to see this
comes from the pictorial representation of such a braiding
process (see Fig. 6 for an example). From this pictorial
representation, one sees immediately that the membrane
and string operators associated with stars commute with
one another (and likewise for plaquettes), as they never
intersect in a wire. However, membranes associated with
star defects and strings associated with plaquette defects
(and vice versa) always intersect with one another during
a braiding process. The total phase arising from commut-
ing one operator past the other can then be read off from
the picture using Eqs. (2.39). We find that the statistical
phase obtained by braiding a pointlike plaquette defect
around a linelike star defect is given by

θjj′

2π
= ṽ(j)T K̃−1 w̃(j′) = w̃(j′)T K̃−1ṽ(j) (2.40)

for any j, j′ = 1, . . . ,M , where the second equality fol-
lows from the fact that K̃−1 is a symmetric matrix.

At this point, we remark that, although the construc-
tion of operators undertaken in this section and in the

previous section has assumed that ṽ
(j)
1 = ṽ

(j)
2 = ṽ(j) and

w̃
(j)
1 = w̃

(j)
2 = w̃(j), this construction proceeds with only

minor modifications in the more general case ṽ
(j)
1 6= ṽ

(j)
2

and w̃
(j)
1 6= w̃

(j)
2 . However, in the latter case, one finds
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that the statistical angle must obey

θjj′

2π
= ṽ

(j)T
1 K̃−1 w̃

(j′)
2

!
= ṽ

(j)T
2 K̃−1 w̃

(j′)
1 (2.41)

for any j, j′ = 1, . . . ,M . The second equality in Eq.
(2.41) must be imposed as a consistency condition. Oth-
erwise, the statistical angle θjj′ would depend on whether
the string and membrane operators used to compute
the statistics intersected on vertical or horizontal bonds.

(See, e.g., Fig. 6, where the string and membrane inter-
sect on a horizontal bond.) Thus, we must demand that
Eq. (2.41) holds, as otherwise the low-energy description
of the theory would be anisotropic.

We close this section by outlining the reason why the
line-line statistics in this class of models is trivial. The
statistical phase describing the line-line statistics is com-
puted using membrane surfaces arranged as in Fig. 7.
From this, it is clear that the relevant operator product
to consider is of the form

Ŝ(j)†
sC

(z1, z2) P̂ (j′)†
p
C′

(z′1, z
′
2) = Ŝ(j)†

sC
(z1, z2) P̂ (j′)†

p
C′

(z′1, z
′
2) exp


−i

2M∑

α,β=1

ṽ(j)
α w̃

(j′)
β

z2∫

z1

dz

z′2∫

z′1

dz′
[
∂z

˜̂
φsC ,α(z), ∂z′

˜̂
φp

C′ ,β
(z′)
]



(2.42)

for any j = 1, . . . ,M , sC = sN , sW , sS , sE , and pC′ =
pN , pW , pS , pE , where it is assumed that the interval
[z1, z2] ⊂ [z′1, z

′
2] or vice versa. However, by differen-

tiating Eq. (2.21) with respect to z′, one sees that the
commutator in the exponential is proportional to the
derivative of a delta function. Integrated over both z
and z′, this yields zero for the statistical angle between
two lines. In a similar manner, one can show that the
three-line statistics (c.f. Ref.35) is trivial in this class of
models.

This discussion of the excitations of the coupled-wire
construction provides sufficient information to determine
the minimal topological ground-state degeneracy of the
theory, as we now show.

6. Topological ground-state degeneracy

The theory defined in Eq. (2.20) by the Lagrangian
˜̂
L =

˜̂
L0 +

˜̂
L{T̃ } generically exhibits a ground-state de-

generacy when defined on the three-torus obtained by
imposing periodic boundary conditions in the x-, y-, and
z-directions. We present an argument as to why this is
the case.

First, recall that, when periodic boundary conditions
are imposed in the x- and y-directions, for a square lattice
with 2N links, there are 4M N degrees of freedom (2M
per wire). There are also M N star and M N plaquette

terms entering the interaction
˜̂
Hint ≡ −

˜̂
L{T̃ } defined in

Eq. (2.20), each of which gaps out two of these degrees
of freedom. The number of star and plaquette operators

in
˜̂
L{T̃ } is therefore sufficient to gap out the bulk of the

wire array, as mentioned above.
It is shown in Appendix B for M = 1 with the choice

made in Sec. II D for the integer-valued vectors ṽ and w̃

FIG. 7. (Color online) Pictorial representation of braiding
a star line and a plaquette line. Because periodic boundary
conditions are imposed in all directions and because we choose
to represent the worldsheet induced by the adiabatic evolu-
tion of plaquette linelike defects by the green membrane that
extends across the width of the lattice in the y direction, this
world sheet forms a cylinder with its symmetry axis paral-
lel to the z direction. By choice, this cylinder encircles the
star-type line that defines the rightmost boundary of the blue
membrane. The algebra encoded by Eq. (2.42) implies that
such a braiding yields no overall statistical phase.

that there are 4N local vertex operators, namely two per
star s and two per plaquette p, that commute with the in-

teraction
˜̂
Hint ≡ −

˜̂
L{T̃ }. The proof in Appendix B read-

ily generalizes to arbitrary M = 1, 2, . . . and the integer-
valued vectors ṽ(j) and w̃(j) with j = 1, . . . ,M entering
Fig. 2. This local gauge symmetry implies that all the

cosines entering the interaction
˜̂
Hint ≡ −

˜̂
L{T̃ } commute
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pairwise. This local gauge symmetry also implies that
deconfining the pointlike and stringlike defects costs no
energy in the strong coupling limit where the full Hamil-

tonian
˜̂
H defined by Eq. (2.20) reduces to

˜̂
Hint ≡ −

˜̂
L{T̃ }.

Hence, the strong coupling limit
˜̂
H =

˜̂
Hint is very singu-

lar since the gap induced by the cosines from the Hal-
dane set H̃ collapses. (As argued in Sec. II C 4, including
an infinitesimal kinetic term rectifies this singularity and
yields a finite energy cost for the creation of star and
plaquette defects.)

Now, for any given coordinate 0 ≤ z < L along a wire,
there are 2M global constraints obeyed by the generators
of this local gauge symmetry. Indeed,

∏

p∈P
ei T̃ (j)T

p K̃ ˜̂
Φ(z) = 1 (2.43a)

and
∏

s∈S
ei T̃ (j)T

s K̃ ˜̂
Φ(z) = 1, (2.43b)

hold for all j = 1, . . .M and all z ∈ [0, L). Here, P and
S are the sets of all plaquettes and stars in the square
lattice, respectively. These constraints result from the
fact that

∑

p∈P
T̃ (j)
p =

∑

s∈S
T̃ (j)
s = 0 (2.44)

for each j = 1, . . .M .
The 2M constraints (2.43) are inherently nonlocal.

Removing any of the T̃ (j)
s or T̃ (j)

p for fixed j from the

set H̃ invalidates the constraints (2.43). If the number
of independent commuting operators that commute with
˜̂
Hint ≡ −

˜̂
L{T̃ } defined in Eq. (2.20) is to match the num-

ber of degrees of freedom, the constraints (2.43) necessi-
tate the existence of additional nonlocal operators that

commute with
˜̂
Hint. It turns out that such operators

exist and that the ground-state degeneracy is related to
the representation of the algebra of these nonlocal oper-
ators that has the smallest dimensionality. We will now
enumerate these operators, compute their algebra, and
deduce from this algebra the ground state degeneracy
of the wire construction. One important result will be
that there is a unique (i.e., non-degenerate) ground state

if |det K̃| = 1, a result that is familiar from Abelian
Chern-Simons theories in (2+1) dimensions55,60–62 and
reappears in the present (3+1)-dimensional context.

We are going to define two types of non-local oper-
ators out of the local operators (2.31) and the bi-local
operators (2.37).

First, for any j = 1, · · · ,M , any cardinal directions
C,C ′ = N,W,S,E, and any 0 ≤ z < L, we define the
non-local string operators

Ô(j)
S,Γx

(z) ..=
∏

sC∈Γx

Ŝ(j)†
sC

(z), (2.45a)

Ô(j)
P,�ẑ

Ô(j)
P,�x̂

Ô(j)
P,�ŷ

FIG. 8. (Color online) Pictorial representation of the
plaquette-type string operators defined in Eqs. (2.45). The
star-type string operators are defined similarly.

Ô(j)
S,Γy

(z) ..=
∏

sC∈Γy

Ŝ(j)†
sC

(z), (2.45b)

Ô(j)
S,Γz

..= Ŝ(j)†
sC

(0, L), (2.45c)

and

Ô(j)
P,Γx̂

(z) ..=
∏

pC∈Γx̂

P̂ (j)†
pC

(z), (2.45d)

Ô(j)
P,Γŷ

(z) ..=
∏

pC∈Γŷ

P̂ (j)†
pC

(z), (2.45e)

Ô(j)
P,Γẑ

..= P̂ (j)†
p
C′

(0, L). (2.45f)

Here, Γx is a non-contractible, directed, closed path
traversing the entire square lattice along the direction
x, while Γx̂ is a non-contractible, directed, closed path
traversing the entire dual lattice along the direction x̂. [A
directed path consists of the set of links, either sC ∈ Γx
or pC ∈ Γx̂, to be traversed according to the ordering in
the product of vertex operators on the right-hand sides
of Eqs. (2.45a) and (2.45b), respectively.] Similarly, the
non-contractible, directed, closed paths Γy and Γŷ tra-
verse the square lattice along the y- and ŷ-directions,
respectively. Finally, Γz and Γẑ are non-contractible
closed paths traversing a wire in the z and ẑ directions,
respectively. On the right-hand sides of Eqs. (2.45c)
and (2.45f), the choice of the link sC = sN , sW , sS , sE
and pC′ = pN , pW , pS , pE , respectively, is of no conse-
quence for the purposes of computing the topological de-
generacy (see below). For a pictorial representation of
these string operators, see Fig. 8. These operators can
be interpreted as describing processes in which particle-
antiparticle pairs of different types of star or plaquette
defects are created, and where the particle propagates
along a non-contractible loop that encircles the entire
torus before annihilating with its antiparticle.
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(a)

Ô(j)
S,⌦xz

(b)

Ô(j)
S,⌦xy

FIG. 9. (Color online) Pictorial representations of the star-
type membrane operators defined in Eqs. (2.46). In (a), the
membrane is parallel to the x-z plane (there is also a similarly-
defined membrane parallel to the y-z plane). In (b), the mem-
brane is parallel to the x-y plane. Plaquette-type membrane
operators are represented similarly.

Second, for any j = 1, · · · ,M and any 0 ≤ z < L, we
define the non-local membrane operators

Ô(j)
S,Ωxy

(z) ..=
∏

sC∈Ωxy

Ŝ(j)†
sC

(z), (2.46a)

Ô(j)
S,Ωxz

..=
∏

sC∈Γx

Ŝ(j)†
sC

(0, L), (2.46b)

Ô(j)
S,Ωyz

..=
∏

sC∈Γy

Ŝ(j)†
sC

(0, L), (2.46c)

and

Ô(j)
P,Ωx̂ŷ

(z) ..=
∏

pC∈Ωx̂ŷ

P̂ (j)†
pC

(z), (2.46d)

Ô(j)
P,Ωx̂ẑ

..=
∏

pC∈Γx̂

P̂ (j)†
pC

(0, L), (2.46e)

Ô(j)
P,Ωŷẑ

..=
∏

pC∈Γŷ

P̂ (j)†
pC

(0, L). (2.46f)

Here, Ωxy is a membrane covering all links of the square
lattice in the x-y plane at a constant z, while Ωx̂ŷ is a
membrane covering all links of the dual lattice in the
x̂-ŷ plane at a constant z. The membranes Ωxz (Ωx̂ẑ)
and Ωyz (Ωŷẑ) contain the non-contractible closed paths

Γx (Γx̂) and Γy (Γŷ). Similarly to the string operators,
these membrane operators can be interpreted as describ-
ing processes in which a linelike defect and its anti-defect
are created as a pair, before one of the defects propagates
along a non-contractible loop on the torus and annihi-
lates with its partner. For pictorial representations of
these membrane operators, see Fig. 9.

Neither the string operators (2.45) nor the membrane
operators (2.46) create excitations, as understood in Sec.
II C 3, as the strings and membranes on which these op-
erators act are always closed by virtue of the periodic
boundary conditions we have imposed. Consequently,
the string operators (2.45) and the membrane operators

(2.46) commute with the Hamiltonian
˜̂
Hint ≡ −

˜̂
L{T̃ } de-

fined in Eq. (2.20).
For any 0 ≤ z < L, the set of 12M string operators

(2.45) and membrane operators (2.46) can be divided into
two sets of 6M , with the equivalent algebras

Ô(j)
S,Γz
Ô(j′)
P,Ωx̂ŷ

= Ô(j′)
P,Ωx̂ŷ

Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.47a)

Ô(j)
S,Γy
Ô(j′)
P,Ωẑx̂

= Ô(j′)
P,Ωẑx̂

Ô(j)
S,Γy

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.47b)

Ô(j)
S,Γx
Ô(j′)
P,Ωŷẑ

= Ô(j′)
P,Ωŷẑ

Ô(j)
S,Γx

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.47c)

and

Ô(j)
S,Ωxy

Ô(j′)
P,Γẑ

= Ô(j′)
P,Γẑ
Ô(j)
S,Ωxy

e+i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.48a)

Ô(j)
S,Ωzx

Ô(j′)
P,Γŷ

= Ô(j′)
P,Γŷ
Ô(j)
S,Ωzx

e−i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.48b)

Ô(j)
S,Ωyz

Ô(j′)
P,Γx̂

= Ô(j′)
P,Γx̂
Ô(j)
S,Ωyz

e−i 2π ṽ(j)TK̃−1w̃(j′)
,

(2.48c)

respectively. Note that all string and membrane oper-
ators associated with stars commute with one another,
as do all string and membrane operators associated with
plaquettes. Note also that there are, in principle, four
equivalent copies of Eqs. (2.47a) and (2.48a), one for
each choice of cardinal direction C or C ′ in Eqs. (2.45c)
and (2.45f), respectively. However, because we have

chosen the vectors ṽ(j) and w̃(j′) in an isotropic way
[i.e., by imposing the criterion (2.16)], these four copies
of Eqs. (2.47a) and (2.48a) are redundant. We will
henceforth work with fixed cardinalities C and C ′ in
Eqs. (2.45c) and (2.45f), respectively.

We are after the minimal topological ground-state de-
generacy that is consistent with Eqs. (2.47) and (2.48).
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There are redundancies among the 12M operators de-
fined in Eqs. (2.45) and (2.46) that reduce the total num-
ber of independent relations in Eqs. (2.47) and (2.48) to
3M . For example, observe that

Ô(j)
S,Γx
Ô(j′)
P,Γẑ

= Ô(j′)
P,Γẑ
Ô(j)
S,Γx

e+i 2π ṽ(j)TK̃−1w̃(j′)
. (2.49a)

It is consistent with Eqs. (2.47c) and (2.48a), to make

either the identification Ô(j)
S,Γx

≡ Ô(j)
S,Ωxy

or the identi-

fication Ô(j′)
P,Γẑ

≡ Ô(j′)
P,Ωŷẑ

for all j, j′ = 1, . . . ,M when

acting on the ground-state subspace. This indicates that
one can remove either Eq. (2.47c) or Eq. (2.48a) from the
algebra without changing the number of independent de-
grees of freedom. For concreteness, suppose we do away
with Eq. (2.48a). Then, similarly, using the relations

Ô(j)
S,Γz
Ô(j′)
P,Γx̂

= Ô(j′)
P,Γx̂
Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
, (2.49b)

Ô(j)
S,Γz
Ô(j′)
P,Γŷ

= Ô(j′)
P,Γŷ
Ô(j)
S,Γz

e−i 2π ṽ(j)TK̃−1w̃(j′)
, (2.49c)

we can remove Eqs. (2.48b) and (2.48c) from the algebra.
With the redundant operators removed, we are left with
a set of 6M nonlocal operators obeying the algebra of
Eqs. (2.47).

The ground-state degeneracy on the three-torus

T3 ≡ S1 × S1 × S1 (2.50)

in the strong coupling limit where the kinetic contribu-

tion to the Hamiltonian
˜̂
H defined in Eq. (2.20) is much

smaller than the contribution from
˜̂
Hint ≡ −

˜̂
L{T̃ } can

be deduced from the algebra (2.47) as follows. Close

to the limit
˜̂
H =

˜̂
Hint, the ground-state manifold must

transform as a representation of the algebra (2.47). If so,
the representation of the algebra (2.47) with the smallest
dimension determines the minimal topological ground-
state degeneracy. Equations (2.47) consist of three in-
dependent copies of the generalized “magnetic algebra,”
which is ubiquitous in studies of the ground-state de-
generacy of abelian topological states of matter55,62,63.
The minimum-dimensional representation of any one of
the three algebras in Eqs. (2.47) has dimension |detκ|,
where

κ−1
jj′

..= ṽ(j)T K̃−1 w̃(j′) =
θjj′

2π
(2.51)

is an M ×M -dimensional symmetric matrix64. We con-
clude that the class of coupled wires considered in this
work has a ground-state degeneracy DT3 on the three-
torus given by

DT3 = |detκ|3. (2.52)

Combining Eq. (2.52) with the definition of the matrix
κ provided in Eq. (2.51), one can verify the claim made

earlier in this section, namely that DT3 = 1 if |det K̃ =

1|. To see this, recall that the inverse of the matrix K̃ is
given by

K̃−1 =
1

det K̃
C
K̃
, (2.53)

where C
K̃

is the cofactor matrix associated with K̃. Since

K̃ is an integer-valued matrix, it follows that C
K̃

is also

integer valued, and that det K̃ is an integer. Combining
these facts with our assumptions that ṽ(j) and w̃(j) are
integer-valued and that det K̃ = ±1, one concludes that
κ−1
jj′ is an integer for all j and j′ = 1, . . . ,M . Conse-

quently, each line of Eqs. (2.47) becomes a trivial com-
mutation relation for all j and j′, and we conclude that
D
T3 = 1.
Nontrivial states of matter for which detDT3 = 1 are

examples of short-range entangled (SRE) or symmetry-
protected topological (SPT) states of matter65,66. Al-
though such states of matter do not yield quasiparticle
excitations with fractionalized charges or statistics, and
are therefore not of primary interest to us here, they are
nevertheless readily treated within the formalism devel-
oped in this paper.

7. Topological field theory

We close the discussion of the general class of three-
dimensional wire constructions considered in this work
by commenting on the topological field theory charac-
terizing the low-energy behavior of these theories. In
the study of the braiding statistics of quasiparticle ex-
citations undertaken in Sec. II C 5, we found that these
wire constructions host both pointlike and stringlike ex-
citations of M types, labeled by j = 1, . . . ,M . We also
observed that winding a pointlike defect of type j around
a stringlike defect of type j′ yields a statistical phase θjj′ ,
and that all other statistical phases were trivial.

We wish to capture this statistical “interaction” be-
tween quasiparticles with a topological field theory, in
a manner similar to the way in which Chern-Simons
(CS) theories in (2+1) dimensions can be used to en-
code the statistics of pointlike quasiparticles. Studies
of topologically-ordered superconductors67 and (3+1)-
dimensional topological insulators29,30 have shown that
the statistics of theories where pointlike excitations ac-
quire a nontrivial phase when encircling vortex lines can
be encoded in so-called BF theories. For example, in
a (3+1)-dimensional topolgical insulator, the statistical
phase of π that a quasiparticle acquires when it cir-
cles a vortex line is encoded in the BF Lagrangian den-
sity29,31,67

LBF ..=
1

2π
εµνρλ aµ ∂ν bρλ, (2.54)

where µ = t, x, y, z runs over all spacetime indices, εµνρλ

is the fully antisymmetric Levi-Civita symbol, and sum-
mation over repeated Greek indices is implied. Here, the
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one-form aµ is an emergent gauge field that couples to
the quasiparticle current density, and bµν is an antisym-
metric two-form that couples to the vortex-line density.
The natural generalization of this BF Lagrangian to our
setting is obtained by introducing M species of one-forms

a
(j)
µ and M species of two-forms b

(j)
µν , one for each type

of pointlike and stringlike excitation, respectively. This
results in the multicomponent BF Lagrangian density

LBF ..=
κjj′

4π
εµνρλ a(j)

µ ∂ν b
(j′)
ρλ , (2.55)

where the M × M matrix κ is defined in Eq. (2.51)
and summation over repeated Greek and teletype in-
dices is implied. This discussion indicates that the
class of coupled wires considered so far falls into the
same equivalence class of topological states of matter
as the (3+1)-dimensional fractional topological insula-
tors26–28,31,53. This is consistent with the example of Zm
topological order in three spatial dimensions that we dis-
cuss in the next section.

Before moving on, we address the question of how this
discussion would have been different if we had instead
considered the more general case ṽ

(j)
1 6= ṽ

(j)
2 and w̃

(j)
1 6=

w̃
(j)
2 [recall Eqs. (2.15) and (2.17)]. As we observed after

Eq. (2.40), this more general case requires us to impose
the consistency condition (2.41) in order for the statistics
of pointlike and linelike excitations to be well-defined.
However, because, in this case, there is a well-defined
statistical angle θjj′ , one may define the matrix κ−1

jj′ in

terms of θjj′ by making use of the relation (2.51), leading
again to the multicomponent BF theory defined in Eq.
(2.55). This observation can be taken as a justification a
posteriori for considering from the outset, as we did, the

simpler class of models in which ṽ
(j)
1 = ṽ

(j)
2 = ṽ(j) and

w̃
(j)
1 = w̃

(j)
2 = w̃(j).

D. Example: Zm topological order in
three-dimensional space from coupled wires

Having developed a toolbox for the construction of
a class of two-dimensional arrays of coupled quantum
wires, we now turn to an illustration of this framework in
action. In this section, we show how to realize the sim-
plest type of three-dimensional topological order, namely
Zm topological order, within the wire formalism devel-
oped in the previous sections. This class of examples
includes the three-dimensional toric code, which is an
example of Z2 topological order.

1. Definitions and interwire couplings

Our starting point is a set of 2N decoupled two-
component bosonic quantum wires placed on the links of
a square lattice. (We will also discuss momentarily how
one can arrive at a class of Z2m-topologically-ordered

states starting from fermions, although it turns out to be
simpler to focus on the bosonic case.) We take the decou-
pled quantum wires to be described by the Lagrangian
(2.1) with

K ..= 12N ⊗Kb, (2.56a)

where Kb was defined in Eq. (2.3b), and we take M = 1
so that Kb is a 2 × 2 matrix. With the K-matrix de-
fined in this way, the canonical equal-time commutation
relation for the theory of decoupled wires is given by
[
∂zφ̂j,1(z), φ̂j′,2(z′)

]
= i 2π δjj′ δ(z − z′)

=
[
∂zφ̂j,2(z), φ̂j′,1(z′)

]
.

(2.56b)

The charge vector that fixes the coupling of the two

bosonic fields φ̂j,1 and φ̂j,2 to external gauge potentials
is given by

Qb ..= 2
(
1 0

)T
, (2.56c)

so that φ̂j,1 can be interpreted as the “charge” mode and

φ̂j,2 can be interpreted as the “spin” mode.
It is convenient to write down the interwire couplings

for this model in the new basis defined by the transfor-
mation (2.18) with

W ..= diag(1,m), (2.57a)

so that the transformed K-matrix and charge-vector are
given by

K̃m ..=

(
0 m
m 0

)
, (2.57b)

Q̃ ..= Qb. (2.57c)

In this example, we will impose time-reversal symmetry
(TRS), which constrains the allowed interwire couplings.
TRS acts on the bosonic fields as

˜̂
φj,α(t, z) 7→ (−1)α−1 ˜̂

φj,α(−t, z) (2.58)

for all j = 1, . . . 2N and α = 1, 2. Note that this is not
the only possible choice for the action of TRS (see, e.g.,
Ref.57), but that this representation of TRS squares to
unity, as expected for bosons.

Before proceeding to write down the interwire cou-
plings, we first point out that a theory similar to the one
defined by the universal data (2.57) can also be reached
starting from wires supporting spinless fermions defined
by the data

Kf ..=

(
+1 0
0 −1

)
, (2.59a)

Qf ..=
(
1 1

)T
, (2.59b)

using the transformation

W ′ ..=

(
−1 −m
−1 +m

)
. (2.60)
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FIG. 10. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p built using the vectors ṽ and w̃ defined in
Eqs. (2.62). The signs ± indicate whether a ±1 appears in
the tunneling vector associated with that link.

In this alternative interpretation of Eqs. (2.57), we view
the original bosons as being composite objects consisting
of paired fermions, since the transformed K-matrix and
charge vector read

K̃ ′m ..= W ′TKf W
′ = 2 K̃m, (2.61a)

Q̃′m ..= W ′TQf = −Qb. (2.61b)

The additional multiplicative factors of 2 on the right-
hand sides of the above equations can be seen as evidence
of this pairing. Furthermore, the action of TRS on the
bosonic fields after performing the transformation (2.60)
is still given by (2.58), indicating that the theory defined
by the data (2.61) and the theory defined by the data
(2.57) transform in the same way under TRS.

Hence, although we choose to focus here on the bosonic
case, with universal data given by Eqs. (2.57), all results
that follow could be interpreted as arising from paired
fermions, so long as m is taken to be even.

We couple the 2N quantum wires with a Lagrangian
˜̂
L{T̃ }, defined as in Eq. (2.7), for tunneling vectors T̃

defined as in Eqs. (2.13) with (see Fig. 10)

ṽ1 ≡ ṽ2 ≡ ṽ ..=
(
0 +1

)T
, (2.62a)

w̃1 ≡ w̃2 ≡ w̃ ..=
(
−1 0

)T
. (2.62b)

It is readily verified that these tunneling vectors sat-
isfy the criteria (2.17), which ensure that the interac-

tion terms in
˜̂
L{T̃ } are sufficient to gap out the array of

quantum wires when periodic boundary conditions are
imposed. Furthermore, the cosine terms associated with
the tunneling vectors (2.62) are even under TRS, as de-
sired.

2. Excitations

Excitations of the array of coupled wires can be con-
structed using the procedure outlined in Sec. II C 3.

First, we define the local vertex operators

Ŝ†sC (z) ..= exp
(
−i

˜̂
φsC ,2(z)

)
(2.63a)

and

P̂ †pC (z) ..= exp
(

+i
˜̂
φpC ,1(z)

)
. (2.63b)

These vertex operators are eigenstates of the charge oper-

ator
˜̂
Qj,α defined in Eq. (2.26) with the K̃ matrix (2.61a)

and the charge vector (2.61b), respectively. Indeed, fol-
lowing the derivation of Eq. (2.27), we find the equal-time
commutators

[
˜̂
Qj,α, Ŝ

†
sC

(z)
]

= +
2

m
δj,sC δα,1 Ŝ

†
sC

(z), (2.64a)
[

˜̂
Qj,α, P̂

†
pC

(z)
]

= 0. (2.64b)

The meaning of Eq. (2.64a) is that the vertex operator

Ŝ†sC (z) creates along the wire j piercing the midpoint of

the bond sC (C = N,W,S,E) belonging to the star s
an excitation with charge 2/m for the flavor α = 1. The

meaning of Eq. (2.64b) is that P̂ †sC (z) creates a charge-

neutral excitation.
A second attribute of these quasi-particle operators is

that they create fractional kinks in the charge-neutral
operators

T̂s(z) ..=
1

m
T̃ T
s K̃m ˜̂

Φ(z)

=
˜̂
φsE ,1(z)− ˜̂

φsW ,1(z) +
˜̂
φsN ,1(z)− ˜̂

φsS ,1(z)

(2.65a)

and

T̂p(z) ..=
1

m
T̃ T
p K̃m ˜̂

Φ(z)

=
˜̂
φpE ,2(z)− ˜̂

φpW ,2(z) +
˜̂
φpS ,2(z)− ˜̂

φpN ,2(z),

(2.65b)
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respectively. Indeed, application of Eqs. (2.32) and (2.35)
in combination with Eq. (2.62) delivers

ŜsC (z′) T̂s′(z) Ŝ
†
sC

(z′) = T̂s′(z) + σs,s′;C
2π

m
Θ(z − z′),

(2.66a)
where we have introduced the function σs,s′;C that re-
turns the signs multiplying the Heaviside step functions
on the right-hand side of Eq. (2.32) if s = s′, the signs
multiplying the Heaviside step functions on the right-
hand side of Eq. (2.35) if s and s′ share sC , and zero oth-
erwise. Similarly, application of Eqs. (2.33) and (2.36),
in combination with Eq. (2.62) delivers

P̂pC (z′) T̂p′(z) P̂
†
pC

(z′) = T̂p′(z) + σp,p′;C
2π

m
Θ(z − z′),

(2.66b)
where we have introduced the function σp,p′;C that re-
turns the signs multiplying the Heaviside step functions
on the right-hand side of Eq. (2.33) if p = p′, the signs
multiplying the Heaviside step functions on the right-
hand side of Eq. (2.36) if p and p′ share pC , and zero
otherwise.

If we define the soliton density operator for any star s
in the square lattice by

ρ̂sol
s (z) ..=

1

2π

(
∂zT̂s

)
(z) (2.67a)

and do the same with

ρ̂sol
p (z) ..=

1

2π

(
∂zT̂p

)
(z) (2.67b)

for any plaquette p in the square lattice, we can then
make the substitutions T̂s′ → ρ̂sol

s′ , T̂p′ → ρ̂sol
p′ , and

2πΘ(z − z′) → δ(z − z′) in Eqs. (2.66a) and (2.66b),
respectively. The resulting pair of equations is inter-
preted as the fact that any one of the pair of operators
Ŝ†sC (z) and P̂ †pC (z) creates a dipole with a soliton charge

of magnitude 1/m straddling the link sC or pC with the
cardinality C = N,W,S,E belonging to the star s and
plaquette p, respectively. Upon multiplying ρ̂sol

s and ρ̂sol
p

by the electric charges Q̃1 = 2 and Q̃2 = 0, respectively,

we conclude that Ŝ†sC (z) creates an electric dipole with a

charge of magnitude 2/m straddling the linksC with the
cardinality C = N,W,S,E belonging to the star s. On
the other hand, the operator P̂ †pC (z) creates an electri-

cally neutral dipole. Hence, anticipating a connection to
3D toric code models that we will demonstrate shortly,
we refer to the charged constituents of the electric dipole
created by the operator Ŝ†sC (z) as “electric” excitations,

and to the constituents of the neutral dipole greated by
the operator P̂ †pC (z) as “magnetic” excitations.

Second, the bilocal operators

Ŝ†sC (z1, z2) ..= Ŝ†sC (z2) ŜsC (z1)

= exp

(
− i

z2∫

z1

dz ∂z
˜̂
φsC ,2(z)

)
,

(2.68a)

and

P̂ †pC (z1, z2) ..= P̂ †pC (z2) P̂pC (z1)

= exp

(
+ i

z2∫

z1

dz ∂z
˜̂
φpC ,1(z)

)
,

(2.68b)

can be used to create and propagate linelike defects that
extend in the z-direction, as in Fig. 5(a) and (b). Linelike
defects lying in the x-y plane can be created and propa-
gated by repeated application of the vertex operators in
Eqs. (2.63), as in the example of Fig. 5(c) and (d).

The statistical angle θ obtained upon winding of the
pointlike and linelike excitations created by these opera-
tors can be computed from Eq. (2.40), which gives

θ = −2π/m. (2.69)

The case m = 2 produces the expected statistical phase
of π between “electric” quasiparticles and “magnetic”
strings in the 3D toric code. We will see this resem-
blance borne out in the next section, where we compute
the ground state degeneracy.

3. Ground state degeneracy on the three-torus

The nonlocal string and membrane operators used to
obtain the ground state degeneracy on the three-torus
T3 for this example can be assembled from the vertex
operators defined in Eqs. (2.63) and the bilocal opera-
tors defined in Eqs. (2.68), as outlined in Sec. II C 6. As
discussed in Sec. II C 6, it is sufficient to consider the
algebra of star-type string operators and plaquette-type
membrane operators to deduce the degeneracy. This is
given by

ÔS,Γz ÔP,Ωx̂ŷ = ÔP,Ωx̂ŷ ÔS,Γz e
+i 2π/m, (2.70a)

ÔS,Γy ÔP,Ωẑx̂ = ÔP,Ωẑx̂ ÔS,Γy e
−i 2π/m, (2.70b)

ÔS,Γx ÔP,Ωŷẑ = ÔP,Ωŷẑ ÔS,Γx e
−i 2π/m. (2.70c)

[See Eqs. (2.45) and (2.46) for definitions of these opera-
tors.] Each line of Eqs. (2.70) contributes an m-fold topo-
logical degeneracy, for a total degeneracy on the three-
torus

DT3 = m3. (2.71)

Note that for m = 2, which corresponds to the case of Z2

topological order, the ground-state degeneracy is 8-fold.
This is the expected topological degeneracy of the three-
dimensional toric code56,68, which is an important sanity
check.

4. Surface states

All properties that we have discussed so far pertain to
the bulk of the array of coupled wires, as we have always
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FIG. 11. (Color online) Example of an array of quantum
wires with open boundary conditions in the y-direction and
periodic boundary conditions along all other directions. The
dashed links indicate the presence of periodic boundary condi-
tions in the x-direction. The crosses represent quantum wires
on the links of the square lattice that are inequivalent modulo
the periodic boundary conditions. In this example, Nx = 3
and Ny = 2. Consequently, there are 2Nx Ny + Nx = 15
wires in the array, and 2Nx Ny − Nx = 9 wires are gapped
by the allowed tunneling vectors. Consequently, there are 6
wires in the array that remain gapless when these tunneling
vectors are included (3 on the top face and 3 on the bottom
face, represented by the purple crosses).

imposed periodic boundary conditions in all spatial di-
rections. However, the wire formalism provides means
to address the surface states as well. We first illustrate
this fact with the example of the Zm theories discussed
in this section, before commenting on surface states in
more generality.

Let us begin by relaxing the constraint of periodic
boundary conditions that we have imposed until now.
We choose open boundary conditions in the y-direction,
while leaving periodic boundary conditions in the x and
z-directions. In this case, the surface of the system has
the same topology as the two-torus

T2 ..= S1 × S1. (2.72)

The latter can be viewed as a plane parallel to the x-z
plane whose adjacent sides have been identified. There
are two types of surface terminations of the square lat-
tice whose links host the constituent quantum wires in
the array. These are “rough” boundaries, which consist of
stars, and “smooth” boundaries, which consist of plaque-
ttes. For the sake of specificity, we will focus on “smooth”
boundaries, as in Fig. 11, for the time being. All state-
ments that we make about “smooth” boundaries below
have analogs for the case of rough boundaries. However,
the differences between the two types of boundary are not
always physically insignificant, as we will provide shortly
an example of a difference between rough and smooth
boundaries.

The effects of imposing these semi-open boundary con-
ditions are twofold. First, they increase the number of
gapless degrees of freedom in the array of coupled wires,
as the wires along the terminating surfaces of the wire ar-
ray are no longer identified with each other. Second, they

decrease the number of tunneling vectors in the Haldane
set H, as any stars or plaquettes that were formerly com-
pleted by virtue of the periodicity of the array of wires
are now nonlocal, and therefore cannot be included. This
results in a number, which we will determine momentar-
ily, of “extra” gapless modes on the terminating surfaces
of the array of coupled wires.

We can determine the existence of gapless surface
states for the coupled-wire theory defined in Sec. II D 1 by
the following counting argument. First, recall that, when
periodic boundary conditions are imposed, the square
lattice contains 2N quantum wires, placed on its links.
Let us write N ≡ Nx × Ny, where Nx counts either the
number of stars or the number of plaquettes along the
x-direction. The number Ny does the same along the
y-direction. When periodic boundary conditions are re-
laxed along the y-direction, the wires along the bottom
and top faces of the array of wires (see Fig. 11) are no
longer identified with one another, which adds Nx wires
to the array. The total number of wires in the array with
the topology (2.72) is therefore

2NxNy + Nx, (2.73a)

and the associated number of gapless degrees of freedom
is

4NxNy + 2Nx. (2.73b)

Next, we count the number of available tunneling vec-
tors in the array of wires when the topology (2.72) is
imposed. Before relaxing periodic boundary conditions,
there are 2NxNy tunneling vectors in the Haldane set
H, which is sufficient to gap out all 4NxNy degrees of
freedom when periodic boundary conditions are imposed.
However, when periodic boundary conditions are relaxed
in the y-direction, Nx tunneling vectors must be removed
from the set H. Consequently, the total number of de-
grees of freedom left once all allowed tunneling vectors
are included is given by

4NxNy + 2Nx − (4NxNy − 2Nx) = 4Nx. (2.74)

Since the remaining degrees of freedom must live on the
boundary, where we have deleted tunneling vectors from
the set H, we can split the remaining 4Nx degrees of
freedom evenly among the top and bottom edges of the
array of wires. This simply leaves Nx gapless quantum
wires on each exposed surface, i.e., 2Nx gapless degrees
of freedom on each of the top and bottom surfaces, re-
spectively. (An example of this counting procedure is
shown in Fig. 11.)

It is a nontrivial task to determine the exact surface La-
grangian governing the remaining 2Nx gapless degrees of
freedom on each terminating surface of the array of wires.
For example, in the case of Fig. 11, it is tempting to de-
duce that the surface Lagrangian describes a theory of

decoupled quantum wires built out of the fields
˜̂
φi,1 that

no longer enter any cosine terms due to the removal of
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the “three-legged” stars that lie on the terminating sur-

faces, and their conjugate fields
˜̂
φi,2. However, the latter

fields couple to the bulk of the array of quantum wires
via cosine terms associated with the plaquettes that lie
along the terminating surfaces. Consequently, the fields
˜̂
φi,1 and

˜̂
φi,2 do not provide the right basis for the gapless

surface states.
However, despite the difficulty of determining a La-

grangian description of these gapless surface states, the
determination of the stability of these surface states and
the characterization of any proximal gapped phases are
readily feasible with the tools already developed in this
work.

The stability of the gapless surfaces can be addressed
by seeking out a set of 2Nx tunneling vectors, i.e., Nx
tunneling vectors for each terminating surface, to com-
plete the Haldane set H. These surface tunneling vectors
must be chosen to comply with all symmetries of the
problem, in this case TRS and charge conservation, and
must be compatible with the bulk tunneling vectors in
the sense of the Haldane criterion (2.11). If any num-
ber less than Nx tunneling vectors for each terminating
surface is found, then the gapless surface states are sta-
ble, since it is impossible to localize all gapless degrees of
freedom in the array of quantum wires with the topology
(2.72), while simultaneously preserving all symmetries.
If, instead, the necessary number of compatible tunnel-
ing vectors is found, then the gapless surface states are
unstable.

Each distinct set of tunneling vectors that completes
the Haldane set H realizes a two-dimensional gapped
state of matter on each exposed surface of the array of
quantum wires. The resulting gapped surface states can
be characterized, as in Sec. II C, by the set of deconfined
quasiparticle excitations defined on the surface.

In the remainder of this discussion, we will show that
the class of Zm-topologically-ordered states realized by
the wire construction defined in Sec. II D 1 has unstable
surface states that can be gapped while maintaining TRS
and charge conservation. We will further show that, if
the surface termination is “rough” (i.e., if it consists of
stars), one can obtain a charge-conserving gapped surface
state with Laughlin topological order, at the expense of
explicit TRS-breaking at the surface.

We first show that the gapless surface states are unsta-
ble in the present example of a Zm-topologically-ordered
bulk. To do this, consider the following two sets of tun-
neling vectors,

T1,j ..=
(
· · · | 0 0 | + 1 0 | − 1 0 | 0 0 | · · ·

)T
, (2.75a)

and

T2,j ..=
(
· · · | 0 0 | 0 +1 | 0 −1 | 0 0 | · · ·

)T
, (2.75b)

where j = 1, . . . , Nx indexes the gapless wires on the
top surface of the wire array (there is a similar set of
tunneling vectors that can be defined for the other sur-
face to complete each set). Each set of tunneling vectors

generates terms that allow bosons to hop between wires
on the surface. These two sets of tunneling vectors each
satisfy the Haldane criterion (2.11) with the K-matrix
(2.56a), both among themselves and with the plaquettes
lining each smooth surface. (One can verify that this
is equally true for rough boundaries, where the lattice
terminates with stars rather than plaquettes.) Further-
more, the cosine terms that they generate preserve TRS,
defined as in Eq. (2.58), and charge conservation, defined
as in Eq. (2.10a) with the charge vector (2.56c). They
therefore generate two distinct two-dimensional gapped
states of matter that preserve all symmetries of the bulk:
{T1,j} generates one with deconfined “magnetic” exci-
tations, while {T2,j} and one with deconfined “electric”
excitations.

We now demonstrate that, in the presence of a set of
surface tunneling vectors that break TRS, a rough ter-
minating surface can be made into a fractional-quantum-
Hall-like state of matter with Laughlin topological order,
while preserving charge conservation. In this case, we
can use another set of Nx tunneling vectors, given by
(for any j = 1, . . . , Nx)

T3,j ..=
(
· · · | 0 0 | + 1 +1 | − 1 +1 | 0 0 | · · ·

)T
, (2.76)

which both conserve charge and satisfy the Haldane cri-
terion among themselves and with the stars lying along
the terminating surface, to gap the surface. Observe
that these tunneling vectors pin the fields (for any j =
1, . . . , Nx)

T T
3,j K̃m ˜̂

Φ = m
(

˜̂
φj,1 +

˜̂
φj,2

)
+m

(
˜̂
φj+1,1 − ˜̂

φj+1,2

)
,

(2.77)

which are neither even nor odd under the definition of
TRS given in Eq. (2.58). Therefore, the associated cosine
potentials break TRS explicitly. We will now show that
the gapless surface in the presence of the cosine terms
generated by the tunneling vectors of the form (2.76), in
addition to being gapped, supports pointlike excitations
with fractional statistics, consistent with a (fractional)
quantum Hall effect on each two-dimensional surface.

The excitations of the surface theory are defined, as
they are in the bulk, to be solitons in the pinned field

T T
3,j K̃m

˜̂
Φ for any j = 1, . . . , Nx. Define

˜̂
φj,± ..=

˜̂
φj,1 ± ˜̂

φj,2. (2.78)

We begin by observing that the equal-time commutators

[
∂z

˜̂
φj,±(z),

˜̂
φj′,±(z′)

]
= ±i

4π

m
δjj′ δ(z − z′),

[
∂z

˜̂
φj,±(z),

˜̂
φj′,∓(z′)

]
= 0,

(2.79)

hold for any j, j′ = 1, . . . , Nx. One deduces from this
algebra [recall Eqs. (2.32) and (2.33)] that the local op-
erator

q̂†j−1,j(z) ..= e
−i

[
˜̂
φj,+(z)+

˜̂
φj,−(z)

]/
2

= e−i
˜̂
φj,1(z) (2.80)
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creates a −2π-soliton in T T
3,j−1 K̃m

˜̂
Φ and a +2π-soliton in

T T
3,j K̃

˜̂
Φ for any j = 1, . . . , Nx. Consequently, the opera-

tor q†j−1,j can be interpreted as hopping a quasiparticle
from the link connecting wires j − 1 and j to the link
connecting wires j and j + 1. We will see below that
this quasiparticle has fractional statistics. Repeated ap-
plication of this operator on successive wires hops the
fractionalized quasiparticle along the x-direction, per-
pendicular to the wires. (Note that the vertex opera-
tor associated with the other independent linear combi-

nation of the fields
˜̂
φj,±, namely

˜̂
φj,+ −

˜̂
φj,−, does not

create a deconfined quasiparticle because repeated appli-
cation of this vertex operator generates additional defects
with each application. We therefore choose to ignore this
quasiparticle, as it is confined.)

A fractionalized quasiparticle can be moved along the
z-direction, parallel to the wires, by applying the bilocal
operator

q̂†j (z1, z2) ..= e−i
˜̂
φj,+(z2)/2 e+i

˜̂
φj,+(z1)/2

= e
− i

2

z2∫
z1

dz ∂z
˜̂
φj,+(z)

.

(2.81)

for any j = 1, . . . , Nx. Acting with q†j (z1, z2) on a ground
state transfers a quasiparticle from point z1 to point z2

along wire j = 1, . . . , Nx.
This (pointlike) surface quasiparticle is an anyon whose

self-statistics is defined by the statistical angle θ =
π/m = 2π/2m, which is half the statistical angle ac-
quired when a pointlike excitation winds around a line-
like excitation in the bulk. This quasiparticle is therefore
only supported on the surface. The statistical angle can
be determined, as it was in Sec. II C 5, by the algebra
between the vertex operators (2.80) and (2.81) that al-
low for the propagation of this quasiparticle along any
non-contractible loop of the toroidal terminating surface.
This algebra is given by

q̂†j−1,j(z) q̂
†
j (z1, z2) = q̂†j (z1, z2) q̂†j−1,j(z) e

−iπ/m, (2.82)

where it is assumed that z1 < z < z2 and j = 1, . . . , Nx.
Accordingly, the excitation spectrum of the surface in the
presence of the correlated tunneling processes generated
by the tunneling vectors (2.76) consists of a single quasi-
particle type with statistics π/m. Combining Eq. (2.82)
with the fact that TRS is broken on the surface while
charge is conserved, we conclude that the gapped surface
state selected by the many-body interaction encoded by
the tunneling vectors (2.76) is a fractional quantum Hall
liquid with Laughlin topological order. The Hall con-
ductivity of this surface fractional quantum Hall liquid is
given by [(2e)2/h] × (1/2m), consistent with the 2π/2m
self-statistics of the surface quasiparticle and the fun-
damental charge 2e of the underlying bosonic quantum
wires.

Finally, let us point out that the above discussion
of TRS breaking on the surface applies also to smooth

boundaries, although one must use the surface tunneling
vectors

T̃4,j ..=
(
· · · | 0 0 | + 1 +1 | + 1 −1 | 0 0 | · · ·

)T
, (2.83)

instead of the ones defined in Eq. (2.76). This is neces-
sary in order to ensure Haldane-compatibility with the
plaquettes lining the smooth surface. However, observe
that this choice of surface tunneling vectors breaks charge
conservation as well as TRS on the smooth surface. The
only remaining symmetry of the smooth surface is then
number-parity conservation, as defined in Eq. (2.10b).
However, the analysis of the excitations of the surface
theory in this case proceeds similarly to the case of the
rough surface, and the conclusion that the surface sup-
ports a single deconfined quasiparticle with self-statistics
π/m remains.

The methods used in this section to address the surface
physics of the array of coupled quantum wires generalizes
readily from the example discussed here to any array of
coupled quantum wires constructed in Sec. II. One can
determine the existence of gapless surface states using the
counting argument presented at the beginning of this sec-
tion, with slight modifications to account for the M “fla-
vors” of stars and plaquettes that are allowed in the gen-
eral case. One can then determine the stability of these
gapless surfaces by searching for a set of M Nx tunneling
vectors for each terminating surface that are compatible
with the bulk couplings. The process of characterizing
any symmetry-preserving or symmetry-breaking gapped
surface states that descend from these gapless states is
also the same. For every admissible set of tunneling vec-
tors satisfying the necessary compatibility requirements,
there is an associated gapped surface. The excitation
spectrum of each gapped surface can be studied using
the methods of Sec. II C.

III. HIGHER-DIMENSIONAL WIRE
CONSTRUCTIONS

The strategy developed in Sec. II for constructing fully
gapped three-dimensional Abelian topological states of
matter from coupled quantum wires owes its success to
several factors. First, placing quantum wires on the links
of a square lattice in two spatial dimensions allows for a
simple enumeration of the number of gapless degrees of
freedom in the system. Second, the ability to encode
many-body interactions in tunneling vectors associated
with stars and plaquettes makes straightforward the de-
termination, via the Haldane criterion (2.11), of the num-
ber of gapless degrees of freedom that can be gapped out
by these interactions. Third, the fact that stars and pla-
quettes can share at most two wires allows one to derive
simple conditions, like those of Eqs. (2.15), to determine
whether the Haldane criterion is satisfied. Finally, the ex-
istence of a subextensive number of nonlocal constraints,
given in Eqs. (2.43), allows for the existence of nonlocal
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operators that can encode topological ground-state de-
generacy, if such a degeneracy is allowed by the chosen
many-body interactions.

These four advantageous properties all arose because
we chose to arrange the wires and their couplings in a
manner reminiscent of the qubits and commuting pro-
jectors of the toric code. While the toric code is an
archetypal example of topological order in two spatial
dimensions, it can also be defined on hypercubic lattices
of dimension greater than two. In fact, in spatial di-
mensions four and higher, there are multiple toric codes
that are distinguished from one another by the number
of nonlocal constraints that give rise to the topological
degeneracy. It is therefore natural to ask the question of
whether or not it is possible to build Abelian topological
phases in spatial dimension D ≥ 3 by arranging quantum
wires on a hypercubic lattice of dimension

d ..= D − 1 (3.1)

and coupling them in a manner reminiscent of a d-
dimensional toric code.

We will answer this question affirmatively. In Sec.
III A, we describe a family of hypercubic arrays of quan-
tum wires, and review some basic geometric facts about
such arrays. In light of these facts, we generalize in
Sec. III B the prescriptions of Sec. II B for defining
compatible interwire couplings for a d-dimensional hy-
percubic lattice of quantum wires that yield gapped
D-dimensional phases of matter in the strong-coupling
limit. Finally, in Sec. III C, we provide explicit examples
of four-dimensional phases of matter constructed accord-
ing to these prescriptions.

A. Hypercubic arrays of quantum wires

Consider a d-dimensional hypercubic lattice. We will
view this lattice as being composed of elementary objects
called k-cells, where k = 0, . . . , d is an integer. For exam-
ple, a 3-dimensional cubic lattice can be decomposed as
a set of 0-cells (sites), 1-cells (bonds with sites at either
end), 2-cells (square plaquettes with four sites at their
corners), or 3-cells (cubic plaquettes with eight sites at
their corners). Any of these decompositions of the lattice
covers all sites of the lattice at least once.

We now consider hypercubic arrays of quantum wires
labeled by a pair of integers (d, k0). Such an array con-
sists of a d-dimensional hypercubic lattice, embedded in
d+1 = D-dimensional space, with quantum wires placed
on the centers of the elementary k0-cells of the lattice,
for 1 ≤ k0 ≤ d− 1. For example, the arrays of quantum
wires considered in Sec. II are all of type (2, 1), since the
array consists of quantum wires placed on the links of
a square lattice. (Notice that this pair is the only one
allowed for d = 2.) We take the wires to extend along a
direction orthogonal to the d-dimensional subspace occu-
pied by the hypercubic lattice. In the array of quantum
wires labeled by the pair (2, 1), for example, the square
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FIG. 12. Examples of hypercubic stars and plaquettes for
arrays of quantum wires of types (a) (2,1), (b) (3,1), and (c)
(3,2). Black crosses represent wires extending perpendicular
to all principal directions of the respective hypercubic lattices.
The numbers label generalized cardinal directions Cs and Cp

defined in Eqs. (3.3b) and (3.4b).

lattice can be chosen to lie in a plane parallel to the x-y
plane, and the wires can be chosen to extend along the
z-direction. A hypercubic array of type (d, k0) contains

Nw =

(
d

k0

)
N (3.2)

quantum wires, where N is the number of vertices (i.e.
0-cells) in the hypercubic lattice that hosts the array of
wires.

With the hypercubic array of quantum wires defined
in this way, we now define hypercubic analogs of stars
and plaquettes. Examples of these hypercubic stars and
plaquettes are shown in Fig. 12.

Hypercubic “stars” s are centered on each ks-cell of the
d-dimensional lattice with

ks ..= k0 − 1. (3.3a)
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They consist of the 2[d−(k0−1)] nearest-neighbor k0-cells
(and the wires centered on these cells) that border the
(k0 − 1)-cell s. (See Fig. 12 for examples.) We label the
2[d− (k0 − 1)] quantum wires belonging to a hypercubic
star s by the generalized cardinal direction

Cs ..= 1, . . . , 2[d− (k0 − 1)]. (3.3b)

There are

Ns =

(
d

k0 − 1

)
N (3.3c)

such hypercubic stars in the array of wires labeled by
(d, k0).

Hypercubic “plaquettes” p are centered on each kp-cell
of the d-dimensional lattice with

kp ..= k0 + 1. (3.4a)

They consist of the 2(k0 + 1) nearest-neighbor k0-cells
that border the (k0 + 1)-cell p. (See Fig. 12 for exam-
ples.) We label the 2(k0 + 1) quantum wires belonging
to a hypercubic plaquette p by the generalized cardinal
direction

Cp ..= 1, . . . , 2(k0 + 1). (3.4b)

There are

Np =

(
d

k0 + 1

)
N (3.4c)

such hypercubic plaquettes in the array of wires labeled
by (d, k0).

For the square array of quantum wires studied in
Sec. II, which has d = 2 and k0 = 1, the general-
ized cardinalities Cs and Cp each take values 1, . . . , 4.
We identify these with the traditional cardinal directions
C = N,W,S,E used in Sec. II.

Note that the substitution k0 → d− k0 exchanges d−
(k0−1)↔ k0 + 1. Consequently, the hypercubic array of
quantum wires labeled by the pair (d, k0) is dual to the
array labeled by the pair (d, d−k0), in the sense that the
stars of the former are the plaquettes of the latter, and
the plaquettes of the former are the stars of the latter. In
even dimensions d, the hypercubic array of wires labeled
by (d, d/2) is therefore self-dual. Consequently, modulo
dualities, there is only one such array for d = 3, as the
pairs labeled by (3, 1) and (3, 2) are dual to one another.
The first case where there are multiple hypercubic arrays
of quantum wires is therefore d = 4, which has the dual
arrays (4, 1) and (4, 3), and one self-dual array (4, 2).

B. Generalizing the results of Sec. II B

We now turn to the problem of choosing a compatible
set of tunneling vectors to gap the bulk of an array of Nw

quantum wires like those defined in Sec. III A. As in Sec.

II B, the starting point is an array of decoupled quantum
wires described by the quadratic Lagrangian L̂0 defined
in Eq. (2.1), except that the matrices K and V are now
of dimension 2MNw, and the vector of scalar fields

Φ̂(t, z) ..=
(
φ̂1,1(t, z) . . . φ̂1,2M (t, z) |

· · · | φ̂Nw,1
(t, z) . . . φ̂Nw,2M

(t, z)
)T
.

(3.5)

This reflects that the quantum wires are now placed on
the elementary k0 cells of a d-dimensional hypercubic lat-
tice embedded in D = d+1-dimensional Euclidean space.
We then add to the free theory the interaction terms
L̂{T } given in Eq. (2.7), and set ourselves the challenge

of finding a set of MNw tunneling vectors T satisfying
the Haldane criterion (2.11). We also demand that these
tunneling vectors respect some set of symmetries—here,
we will enforce only charge conservation [Eq. (2.10a)],
but others, such as TRS or particle-hole symmetry (see
Ref. 11), may also be relevant. If we can find such a set
of tunneling vectors, then, in the strong-coupling limit,
UT →∞ for all T , the array of wires acquires a gap.

As in Sec. II, we reserve the Greek index α = 1, . . . , 2M
for labeling the bosonic fields within each wire. We re-
serve the Latin index j = 1, . . . , Nw for labeling the wires.

A component of the vector of scalar fields Φ̂(t, z) is then

φ̂j,α(t, z).
We claim that the following set of M Ns integer-valued

vectors of dimension 2MNw,

(T (j)
s )j,α ..= v(j)

α

d−(k0−1)∑

Cs=1

(
δj,sCs

− δj,s
Cs+d−(k0−1)

)
,

(3.6a)

and the following set of M Np integer-valued vectors of
dimension 2MNw,

(T (j)
p )j,α ..= −w(j)

α

k0∑

Cp=1

(
δj,pCp

− δj,pCp+k0+1

)

+ w(j)
α

(
δj,pk0+1

− δj,p
2(k0+1)

)
,

(3.6b)

does the job, so long as the criteria (2.17) are satisfied.
Here, v(j) and w(j) are 2M -dimensional vectors that spec-

ify the linear combinations of the fields φ̂j,α in each wire
j that enter the cosine terms associated with the tunnel-

ing vectors T (j)
s and T (j)

p , respectively. (Their meaning
is thus identical to the vectors of the same names pre-
sented in Sec. II B.) Stars and plaquettes are themselves
labeled by the indices s = 1, . . . , Ns and p = 1, . . . , Np,
respectively. The teletype index j = 1, . . . ,M labels M
“flavors” of stars and plaquettes. These flavors are nec-
essary, as they were in Sec. II B, to produce a number of
tunneling vectors that is sufficient to gap out all 2M gap-
less degrees of freedom in each wire. (More on counting
gapless degrees of freedom in a moment.)
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The tunneling vectors defined in Eqs. (3.6) conserve
charge in the sense of Eq. (2.10a) for any 2M Nw-
dimensional charge vector Q = (Q | Q | · · · | Q)T [recall
Eq. (2.1f)]. To see that this is the case, it suffices to note
that the vectors v(j) and w(j) each enter their respec-
tive tunneling vectors with an equal number of + and −
signs. Consequently, no matter the values of QTv(j) and
QTw(j), this value is added and subtracted an equal num-
ber of times. This fact provides a direct parallel with the
construction of Sec. II B, where the tunneling vectors de-
fined in Eqs. (2.13) conserve charge independently of the
form of the 2M -dimensional charge vector Q of a single
wire.

One can verify that the tunneling vectors (3.6) satisfy
the Haldane criterion (2.11), as expressed in Eqs. (2.12),
if Eqs. (2.17) hold, with the help of the following obser-
vations. First, note that these tunneling vectors coincide
with the tunneling vectors (2.13) defined in Sec. II B in
the case (d, k0) = (2, 1), which was studied there. Sec-
ond, note that Eqs. (2.12a) and (2.12b) hold if Eqs. (2.17)
hold. Third, recall that if a hypercubic star s and a hy-
percubic plaquette p overlap with one another, then they
share two wires (see Ref.56). With this in mind, we can
see that Eq. (2.12c) holds for the tunneling vectors (3.6)
by focusing on the case where the star s and plaquette p
overlap [since Eq. (2.12c) holds trivially otherwise]. This
can be seen by looking only at the parts of the tunneling
vectors (3.6) that lie in the crystal plane that contains
the two wires in the union of s and p. The projection of
the tunneling vectors (3.6) into this plane is, by construc-
tion, precisely the set of tunneling vectors (2.13) defined
in Sec. II B (but specialized from the outset to the case

v
(j)
1 = v

(j)
2 = v(j) and w

(j)
1 = w

(j)
2 = w(j)). Equation

(2.12c) then follows.
Having seen that the tunneling vectors (3.6) en-

code charge-conserving many-body interactions and are
Haldane-compatible, one must next determine that these
tunneling vectors are sufficient in number to gap out all
2M Nw gapless degrees of freedom in the array of quan-
tum wires.

Recall from the discussion in Sec. II B that, in order to
produce a gapped array of quantum wires, one requires
M Nw admissible tunneling vectors (since each admissi-
ble tunneling vector gaps out two gapless modes). It is
therefore necessary to compare the number of tunneling
vectors in the set defined in Eqs. (3.6) with the number
of wires in the array. From Eqs. (3.2), (3.3c), and (3.4c),
we see that

Ns +Np ≥ Nw, (3.7)

with strict equality occurring in arrays of type (2, 1),
which were studied in Sec. II.

In cases where Eq. (3.7) is an inequality, the question
arises of how one can account for the extra gapless de-
grees of freedom. In this case, we can appeal to intuition
developed from the study of toric codes in arbitrary di-
mensions (see, e.g., Ref.56). In a toric code on a hypercu-
bic lattice of type (d, k0) (with spin-1/2 degrees of free-

dom, rather than quantum wires, placed on the centers of
elementary k0-cells of the d-dimensional hypercubic lat-
tice), the same inequality shown in Eq. (3.7) holds (with
the number of spins now given by Nw). However, in the
toric code of type (d, k0), there are precisely Ns+Np−Nw

local constraints that account for the discrepancy be-
tween the number of spin-1/2 degrees of freedom and
the total number of stars and plaquettes. For example,
in the three-dimensional toric code labeled by (3, 1), the
product of all two-dimensional plaquettes on the surface
of a cubic unit cell of the lattice is equal to 1. This intro-
duces N local constraints, since there are N such cubes
in the lattice. From Eqs. (3.2), (3.3c), and (3.4c), we
have Nw = 3N , Ns = N , and Np = 3N . The N local
constraints thus account for the Ns +Np−Nw = N miss-
ing degrees of freedom. (Note that, similarly to the toric
code, there are also further nonlocal constraints among
the tunneling vectors. These are important for determin-
ing the topological ground-state degeneracy.)

In the corresponding array of coupled quantum wires,
the local constraints described above translate into lin-
ear dependencies within the sets {T (j)

s } and {T (j)
p } for

each flavor j = 1, . . . ,M . In other words, if there are
Ns + Np > Nw tunneling vectors for each of the M fla-
vors of hypercubic stars and plaquettes, then precisely
Ns +Np −Nw of these tunneling vectors are linearly de-
pendent. This ensures that an array of quantum wires
with 2M Nw gapless degrees of freedom has precisely
MNw linearly independent tunneling vectors of the form
(3.6). We will provide an example of this linear depen-
dence in the next section, where we present an array of
coupled wires of type (3, 1).

Once an appropriate set of interactions encoded by the

tunneling vectors T (j)
s and T (j)

p has been chosen, for ex-
ample by the construction outlined in this section, the
d-dimensional array of quantum wires becomes a gapped
D ≡ (d + 1)-dimensional state of matter. The excita-
tions of this state of matter, as well as their (possibly)
fractional quantum numbers and any associated topolog-
ical degeneracy on the D-torus, can be studied using the
methods of Sec. II C. As in that section, one identifies

excitations with solitons in the pinned fields T (j)T
s KΦ

and T (j)T
p KΦ. Depending on the values of d and k0 that

characterize the underlying hypercubic lattice, these de-
fects will be pointlike, stringlike, or membranelike in na-
ture. When periodic boundary conditions are imposed,
propagating these pointlike, stringlike, or membranelike
defects across the entire system defines nonlocal string
and/or membrane operators, whose algebra can be used
to determine the presence or absence of topological order
in the strongly-interacting, D-dimensional, gapped phase
of matter.
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FIG. 13. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p, defined in Eqs. (3.6), for the array of quan-
tum wires of type (3, 1). As in Fig. 10, they are built using
the vectors ṽ and w̃ defined in Eqs. (2.62).

C. Example: Zm topological order in
four-dimensional space from coupled wires

In this section, we provide a concrete example of how
the construction of Abelian topological states of mat-
ter outlined in Sec. II can be generalized to higher di-
mensions. In particular, we construct four-dimensional
analogs of the Zm topological states of matter explored
in Sec. II D.

Our starting point is a cubic array of quantum wires of
type (3, 1), with periodic boundary conditions imposed in
all four spatial directions from the outset. [We will also
consider in parallel a related realization of Zm topological
order that starts from the dual array of type (3, 2).] This
array has the stars and plaquettes shown in Fig. 12(b).
We use the coordinates x, y, and z to label directions
within the cubic array, and w to label the coordinate
along each wire.

The initial Lagrangian of the system of decoupled wires
is precisely the one described in Sec. II D 1 for a system

(a)
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(0, +)(0,�)

(0,�)

eTs

(b)
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(+, 0)

(+, 0)

(�, 0)

(�, 0)

(+, 0)

(�, 0)

FIG. 14. Pictorial representations of the tunneling vectors
(a) T̃s and (b) T̃p, defined in Eqs. (3.6), for the array of quan-
tum wires of type (3, 2). As in Figs. 10 and 13, they are built
using the vectors ṽ and w̃ defined in Eqs. (2.62).

with Nw = 3N quantum wires, each containing 2M = 2
gapless degrees of freedom. In particular, starting from
the free Lagrangian (2.1) with

K ..= 13N ⊗Kb, (3.8)

where the bosonic K-matrix Kb is defined in Eq. (2.3b),
we perform the change of basis (2.18) with the 2 × 2
matrix W given by Eq. (2.57a). In this way, we obtain a

theory of decoupled wires with the K-matrix K̃m given
in Eq. (2.57b). (It is worth pointing out here that this
initial phase of the construction is, as we have seen in
this paragraph, independent of the dimensionality of the
array of quantum wires.)

Next, we couple the wires with the many-body interac-

tions
˜̂
L{T̃ }, defined as in Eq. (2.7), for tunneling vectors

T̃ given by Eqs. (3.6) with the two-dimensional vectors ṽ
and w̃ defined in Eqs. (2.62). These tunneling vectors are
shown in Fig. 13 for the array of type (3,1), and in Fig. 14
for the array of type (3,2). Using these pictorial represen-
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tations of the tunneling vectors, one can verify that both
sets of tunneling vectors satisfy the Haldane criterion
(2.11) with the K-matrix (2.57b), as desired. Further-
more, it is straightforward to check that these tunneling
vectors are charge-conserving. They satisfy Eq. (2.10a)
for any charge vector Q of the form (2.1f).

We now verify that the tunneling vectors depicted in
Figs. 13 and 14 are sufficient in number to produce a
gapped four-dimensional state of matter. We will focus
here on the array of coupled wires of type (3, 1), since
the counting is identical for the array of type (3, 2). To
do this, we recall from Sec. III B that the total number
of tunneling vectors is given by Ns +Np = 4N , while the
total number of gapless degrees of freedom in the array
of decoupled quantum wires is 2Nw = 6N . Since only
3N linearly independent tunneling vectors are necessary
to produce a fully gapped state of matter, there must be
a set of local constraints that removes N tunneling vec-
tors from the Haldane set H. One can check that this is
indeed the case, as the set of six tunneling vectors Tp lin-
ing the surface of any cubic cell of the three-dimensional
cubic lattice are linearly dependent. One can verify this
statement by computing the Gram matrix with elements

Gpp′ .
.= T T

p Tp′ , (3.9)

where the plaquettes p and p′ border such a cubic cell.
One finds (see Fig. 15 for guidance) that

G =




4 −1 −1 +1 +1 0
−1 4 −1 0 +1 +1
−1 −1 4 +1 0 +1
+1 0 +1 4 −1 −1
+1 +1 0 −1 4 −1
0 +1 +1 −1 −1 4



, (3.10)

which has vanishing determinant, indicating that this set
of six tunneling vectors is linearly dependent. Since the
cubic lattice contains exactly N such cubes when periodic
boundary conditions are imposed, there are N linearly
dependent vectors that can be removed from the Haldane
set H. [Note that a similar set of local constraints for
stars holds in the case of the array of wires of type (3,2).
This is due to the duality between hypercubic arrays of
types (d, k0) and (d, d− k0) mentioned in Sec. III A.]

On the basis of the above arguments, we conclude that
the cubic arrays of types (3, 1) and (3, 2) both yield fully
gapped, four-dimensional states of matter when periodic
boundary conditions are imposed. The excitations of
both states of matter can be studied according to the
methodology laid out in Sec. II C, and by example in
Sec. II D 2. As in that section, the building blocks of
excitations in the array of coupled wires are the local
operators

Ŝ†sCs

(w) ..= exp
(
−i

˜̂
φsCs

,2(w)
)

(3.11a)

and

P̂ †pCp

(w) ..= exp

(
+i

˜̂
φpCp

,1(w)

)
, (3.11b)
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FIG. 15. Pictorial representation of the six plaquette-
centered tunneling vectors Tp surrounding a cubic cell of
the array of quantum wires labeled by (3,1). (Folding sides
2, . . . , 5 upwards out of the page and placing side 6 on top
constructs the cubic cell.) The numbers 1, . . . , 6 label these
tunneling vectors in the order in which they appear in the
Gram matrix G in Eq. (3.10). The signs ± indicate whether
a ±1 appears in the tunneling vector associated with that
link.

and the bilocal operators

Ŝ†sCs

(w1, w2) ..= Ŝ†sCs

(w2) ŜsCs

(w1)

= exp

(
− i

w2∫

w1

dw ∂w
˜̂
φsCs

,2(w)

)
,

(3.12a)

and

P̂ †pCp

(w1, w2) ..= P̂ †pCp

(w2) P̂pCp

(w1)

= exp

(
+ i

w2∫

w1

dw ∂w
˜̂
φpCp

,1(w)

)
.

(3.12b)

Here, we recall that the coordinate along each wire is
now labeled by w, and that the indices Cs = 1, . . . , 2[d−
(k0 − 1)] and Cp ..= 1, . . . , 2(k0 + 1) label the generalized
cardinal directions associated with each star or plaquette.

The effects of the operators defined in Eqs. (3.11) and

(3.12) on the pinned fields T T
s K̃ Φ̃ and T T

p K̃ Φ̃ can be
computed analogously to Eqs. (2.32), (2.35), (2.33), and
(2.36). As shown there, these operators give rise to the
excitations of the array of coupled wires. One can de-
duce whether the excitations created and propagated by
these operators are pointlike, stringlike, or membrane-
like by first acting with one of these operators on a single
link. This creates some number of defective stars or pla-
quettes (depending on the coordination number of that
link and whether or not the operator acts along the di-
rection of the wire). From there, one can grow a surface
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with excitations on its boundary by attempting to heal
all defects created in this way with further applications of
the operators defined in Eqs. (3.11) or (3.12). Processes
analogous to this one are shown in Figs. 4 and 5 for the
array of type (2, 1) studied in Sec. II. As in Sec. II D 2,
the electric charge associated with these defects can be
computed as in Eq. (2.64). The excitations of the array
of type (3, 1) differ in character from those of the array
of type (3, 2), as we shall now see.

The excitations of the array of type (3, 1) can be point-
like, linelike, or membranelike in nature. To see this,
note that applying the operator Ŝ†sCs

(w) in the wire la-

beled by sCs
creates two defective stars, as there are two

stars bordering each link in the array of wires. These de-
fective stars can be propagated away from one another,
much as in Fig. 4, by further applications of the operator
Ŝ†sCs

(w). Consequently, we may view the defective stars

as pointlike excitations with electric charge ±2/m [recall
Eq. (2.64)], connected by a “string” of vertex operators.
One can also construct linelike excitations, for example
by acting instead with the bilocal operator Ŝ†sCs

(w1, w2),

similarly to Fig. 5(a)-(b).

On the other hand, suppose that one applies the oper-
ator P̂ †pCp

(w) in the wire labeled by pCp
. In this case, one

creates four defective plaquettes, as each link is shared
by four plaquettes. Attempting to heal these defects by
subsequent applications of the operator P̂ †pCp

(w) leads

to a two-dimensional membrane of vertex operators with
linelike defects on its boundary, much like in Fig. 5(c)-
(d). Furthermore, one can also create a 3-brane of ver-
tex operators with two-dimensional membranelike exci-
tations on its terminating surfaces, by applying the op-
erator P̂ †pCp

(w1, w2) instead of P̂ †pCp

(w).

A similar set of excitations can be constructed for the
case of the array of type (3, 2). The only difference is
that, in this case, the vertex operators associated with
stars naturally form membranes, similarly to the plaque-
ttes in the array of type (3, 1). This makes sense in light
of the duality between these two arrays of quantum wires,
which exchanges stars and plaquettes, and therefore also
necessarily exchanges star and plaquette defects.

We now demonstrate that the gapped four-dimensional
phases of matter associated with the cubic arrays of types
(3, 1) and (3, 2) are topologically ordered. calculating the
minimal topological ground-state degeneracy on the four-
torus,

T4 ≡ S1 × S1 × S1 × S1, (3.13)

by generalizing the analysis of Sec. II C 6, i.e., by pre-
senting the algebra of nonlocal operators from which the
degeneracy is derived. We focus on the array of type
(3, 1), as the degeneracy of the array of type (3, 2) is the
same by the duality discussed in Sec. III A. In both cases,
the origin of the multidimensionality of the ground-state

manifold is the nontrivial (for m > 1) equal-time algebra

Ŝ†j (w) P̂ †j (0, L) = P̂ †j (0, L) Ŝ†j (w) e−i 2π/m,

P̂ †j (w) Ŝ†j (0, L) = Ŝ†j (0, L) P̂ †j (w) e+i 2π/m,
(3.14)

which holds independently of dimensionality or lattice ge-
ometry as it is a property of operators defined in a single
wire. Consequently, there is no obstruction to repeating
this analysis for any hypercubic array of type (d, k0).

The ground state degeneracy on T4 of the array of type
(3, 1) is encoded in the algebra of the nonlocal operators

ÔP,Ωx̂ŷẑ (w) ..=
∏

pCp
∈Ωx̂ŷẑ

P †pCp

(w), (3.15a)

ÔP,Ωx̂ŷŵ ..=
∏

pCp
∈Ωx̂ŷ

P †pCp

(0, L), (3.15b)

ÔP,Ωx̂ẑŵ ..=
∏

pCp
∈Ωx̂ẑ

P †pCp

(0, L), (3.15c)

ÔP,Ωŷẑŵ ..=
∏

pCp
∈Ωŷẑ

P †pCp

(0, L), (3.15d)

which act along 3-branes, and

ÔS,Γx(w) ..=
∏

sCs
∈Γx

Ŝ†sCs

(w), (3.15e)

ÔS,Γy (w) ..=
∏

sCs
∈Γy

Ŝ†sCs

(w), (3.15f)

ÔS,Γz (w) ..=
∏

sCs
∈Γz

Ŝ†sCs

(w), (3.15g)

ÔS,Γw ..= Ŝ†s0(0, L), (3.15h)

which act along strings. The volume Ωx̂ŷẑ, the surface
Ωx̂ŷ, the line Γx, etc. are defined analogously to their
counterparts in Sec. II C 6. Their algebra is found to be

ÔP,Ωx̂ŷẑ (w) ÔS,Γw = ÔS,Γw ÔP,Ωx̂ŷẑ (w) e+i 2π/m,

(3.16a)

ÔP,Ωx̂ŷŵ ÔS,Γz (w) = ÔS,Γz (w) ÔP,Ωx̂ŷŵ e
−i 2π/m,

(3.16b)

ÔP,Ωx̂ẑŵ ÔS,Γy (w) = ÔS,Γy (w) ÔP,Ωx̂ẑŵ e
−i 2π/m,

(3.16c)

ÔP,Ωŷẑŵ ÔS,Γx(w) = ÔS,Γx(w) ÔP,Ωŷẑŵ e
−i 2π/m,

(3.16d)

where we have made extensive use of Eq. (3.14). Simi-
larly to what was found in Sec. II D 3, each line of the
above algebra is independent from (i.e., commutes with)
the others, and contributes an m-fold topological degen-
eracy. We conclude that the total topological degeneracy
on the four-torus of this state of matter is

DT4 = m4. (3.17)
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For m = 2, the 16-fold degeneracy coincides with the
ground-state degeneracy of the four-dimensional toric
code defined on the hypercubic lattice of type (4, 1)56.
For m > 1, we have therefore arrived at a state of matter
whose low-lying excitations and topological ground-state
degeneracy on the four-torus are consistent with a Zm-
topologically-ordered phase in four spatial dimensions.

From here, one could further generalize the discussion
of Sec. II D 4 in order to enumerate the possible gapped or
gapless states of matter on the three-dimensional bound-
ary of the four-dimensional bulk topological phase. Ter-
minating the cubic lattice of type (3, 1) in the y-direction,
say, leads to a surface lattice of type (2, 1), i.e., a square
lattice with wires on the links. One is then free to impose
any single-particle tunneling or many-body interactions
one wishes on the surface, so long as these surface terms
are Haldane-compatible with the bulk. For example, one
could search the space of tunneling vectors like those
defined in Sec. II B to generate a set of allowed many-
body interactions. This method of studying the surface
states can be readily generalized to any hypercubic ar-
ray of quantum wires of type (d, k0), like those studied
in Sec. III, to answer questions about higher-dimensional
generalizations of the concept of surface topological or-
der, for example.

The discussion of this section can be generalized to
arrays of quantum wires of type (d, k0) to produce
Zm-topologically-ordered phases in higher dimensions.
Many of these higher-dimensional topological states of
matter are particularly interesting in that they exhibit
topological order at finite temperature56. The lowest-
dimensional Zm-topologically-ordered phase exhibiting
topological order at finite temperature is the toric code
of type (4,2). The discussion of this section demonstrates
that one cannot realize a topological state of matter in
the universality class of the toric code of type (4,2) start-
ing from an array of quantum wires of type (3,1) or
(3,2). This is because both of these arrays yield topo-
logical states of matter whose degeneracy is consistent
with the toric code of type (4,1) [recall Eq. (3.17)]. How-
ever, this does not preclude the possibility of designing
arrays of quantum wires to yield topological states of
matter in D = 5 or greater that have topological order
at finite temperature. The detailed study of such phases
is beyond the scope of this work, but nevertheless a very
interesting problem for future study.

IV. CONCLUSION

In this paper, we have outlined a general strategy for
designing Abelian topological phases of matter in D spa-
tial dimensions by coupling an array of quantum wires
in d = D − 1 dimensions. This strategy hinges on the
use of counting arguments introduced by Haldane58 to
search for a set of compatible many-body interactions
that yields a gapped state of matter when the couplings
associated with these interactions are taken to infinity.

The enumeration of the set of possible interactions, and
the determination of their compatibility, is aided by asso-
ciating each interaction term with one of the generalized
stars and plaquettes of a d-dimensional hypercubic lat-
tice embedded in D-dimensional space. In this sense,
the interactions that produce a gapped state of matter
are arranged in a manner reminiscent of the commuting
projectors in a d-dimensional toric code.

We found that many simplifications arise due to this
similarity, making these theories analytically tractable
much as their forebears in two dimensions. In partic-
ular, the excitations of the arrays of coupled wires can
be studied thanks in part to analogies with similar ex-
citations in the d-dimensional toric code. The fractional
charge and statistics of these excitations is readily ac-
cessible with standard tools from Abelian bosonization.
Furthermore, when periodic boundary conditions are im-
posed, the topological degeneracy (if any) of the strongly-
interacting, gapped, D-dimensional state of matter can
be determined with these tools. Finally, when the array
of coupled wires is defined on a manifold with bound-
ary, the stability of gapless surface states on the d-
dimensional boundary of the D-dimensional topologi-
cal phase can be addressed conveniently with the same
formalism in one less spatial dimension, provided that
any single-particle tunnelings or many-body interactions
added to the surface are compatible with those in the
bulk.

There are many directions for future work in light of
these findings. First, it is important to note that the
class of many-body interactions introduced in Secs. II B
and III B are not the only ones possible, even when mak-
ing use of the analogy to d-dimensional toric codes; there
are many other sets of compatible tunneling vectors that
can be associated with the stars and plaquettes of hyper-
cubic lattices. Consequently, it would be instructive to
map out the set of all Abelian topological phases pos-
sible in three and higher dimensions that are accessi-
ble with this approach. Even in three spatial dimen-
sions, there are many possible topological field theories
beyond the BF-type theories explored in Sec. II C 7, such
as those studied in Refs.32,69, and33. It would also be
interesting to determine whether other exactly solvable
commuting-projector Hamiltonians, besides toric codes,
could be used as bases for wire constructions like the ones
undertaken in this work, resulting in different classes of
topological phases. Second, it would be interesting to
study the surface states of these coupled-wire arrays in
more detail. In particular, finding a useful way to char-
acterize gapless surfaces by extending the formalism pre-
sented in this paper would be a very useful pursuit, as one
might ask the question of whether it is possible to find
novel non-Fermi liquids or conformal field theories on in-
teracting surfaces of topological phases in three or more
dimensions. In this pursuit, it would also be crucial to
make contact with existing work on the bulk-boundary
correspondence in three dimensions29,30,33. Third, it is
natural to ask how to extend this formalism to describe
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non-Abelian topological states of matter. This could
be done by investigating the possibility of using non-
Abelian, rather than Abelian, bosonization to describe
the gapless wires and their couplings to one another, as
has been done in Refs.5 and70. Fourth, as was hinted at
in this work, wire constructions of topological phases in
spatial dimensions greater than two could prove useful in
the study of surface topological order40–47. In particular,
it may be possible to use non-Abelian bosonization tech-
niques on the surfaces of Abelian topological phases to

study non-Abelian surface topological orders in a manner
that treats the surface and bulk physics simultaneously.
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Appendix A: Deconfinement of defects along the direction of a wire

In this Appendix, we demonstrate that a pair of star defects in three dimensions, like the one shown in Fig. 4(b),
are deconfined from one another along the z-direction, despite the string of vertex operators connecting them. This
is because a link in the string, which consists of two vertex operators applied on two legs of a star (see Fig. 4), costs
no additional energy if the vertex operators are displaced relative to one another along the z-axes of their respective
wires. While we focus here on the specfic example of star defects in the Zm-topologically-ordered state of matter
constructed in Sec. II D, the same analysis can be adapted to demonstrate that pointlike star and plaquette defects
are deconfined in any dimension.

To see that this is the case, let us consider a star s with two 2π/m solitons on the eastern and western legs. We
parameterize these solitons by decomposing the bosonic fields as

˜̂
φsE ,1(z) = fsol(z − zE) +

˜̂
φ′sE ,1(z),

˜̂
φsW ,1(z) = fsol(z − zW ) +

˜̂
φ′sW ,1(z),

(A1a)

where the real-valued function

fsol(z − z0) ..=
π

m

[
tanh

(
z − z0

ξ

)
+ 1

]
(A1b)

is a fixed soliton profile centered at z0, while it is the primed fields
˜̂
φ′sC ,1(z) (C = N,S,E,W ) that encode the quantum

fluctuations. On the one hand, if zE = zW , Eq. (2.65a) dictates that

T̃ T
s K̃m ˜̂

Φ(z) = m
[

˜̂
φsN ,1(z)− ˜̂

φsS ,1(z) +
˜̂
φ′sE ,1(z)− ˜̂

φ′sW ,1(z)
]
≡ T̃ T

s K̃m ˜̂
Φ′(z). (A2a)

On the other hand, if zE 6= zW , Eq. (2.65a) dictates that

T̃ T
s K̃m ˜̂

Φ(z) = m
[

˜̂
φsN ,1(z)− ˜̂

φsS ,1(z) +
˜̂
φ′sE ,1(z)− ˜̂

φ′sW ,1(z) + δφ̃s(z)
]
, (A2b)

where

δφ̃s(z) =
π

m

[
tanh

(
z − zE
ξ

)
− tanh

(
z − zW

ξ

)]
. (A2c)

In the limit ξ → 0 (i.e., the limit of perfectly sharp solitons),

δφ̃s(z) −→
2π

m
[Θ(z − zE)−Θ(z − zW )] . (A3)

Hence, the difference in energy between the case with zE 6= zW and the case with zE = zW is given by

δEs = −Us
∫

dz
[
cos
(
T̃ T
s K̃m ˜̂

Φ′(z) +mδφ̃s(z)
)
− cos

(
T̃ T
s K̃m ˜̂

Φ′(z)
)]

= −Us
zE∫

zW

dz
[
cos
(
T̃ T
s K̃m ˜̂

Φ′(z) + 2π
)
− cos

(
T̃ T
s K̃m ˜̂

Φ′(z)
)]

= 0.

(A4)



32

Consequently, it costs no extra energy to move each vertex operator in a string up and down along each wire, as long
as the solitons are sufficiently sharp.

Appendix B: Discrete gauge symmetry and ground state in the limit of vanishing kinetic energy

The goal of this Appendix is to make more explicit the connection between the class of wire constructions considered
in this paper and well-known realizations of discrete lattice gauge theories, like the toric code. As in the previous
Appendix, we will restrict ourselves for the sake of concreteness to the case of the Zm-topologically-ordered theories
constructed in Sec. II D. We further focus on the limit of infinitesimal kinetic energy, which is discussed in Sec. II C 4.

In this limit, the Hamiltonian of the coupled-wire theory (without disorder) is given by

˜̂
H ≈ ˜̂

H{T̃ } ..= − Us

L∫

0

dz
∑

s

cos
(
T̃ T
s K̃m ˜̂

Φ(z)
)
− Up

L∫

0

dz
∑

p

cos
(
T̃ T
p K̃m ˜̂

Φ(z)
)
, (B1a)

with

T̃ T
s K̃m ˜̂

Φ(z) ..= m
[

˜̂
φsE ,1(z)− ˜̂

φsW ,1(z) +
˜̂
φsN ,1(z)− ˜̂

φsS ,1(z)
]

(B1b)

and

T̃ T
p K̃m ˜̂

Φ(z) ..= m
[

˜̂
φpE ,2(z)− ˜̂

φpW ,2(z) +
˜̂
φpS ,2(z)− ˜̂

φpN ,2(z)
]
. (B1c)

The theory defined in Eq. (B1) possesses a set of discrete local symmetries, which we will call “gauge symmetries.”
This set of gauge symmetries is generated by the unitary operators

Âs(zsN , zsS , zsE , zsW ) ≡ Âs({zsC}) ..= exp

(
i
[

˜̂
φsE ,1(zsE )− ˜̂

φsW ,1(zsW ) +
˜̂
φsN ,1(zsN )− ˜̂

φsS ,1(zsS )
])

(B2a)

and

B̂p(zpN , zpS , zpE , zpW ) ≡ B̂p({zpC}) ..= exp

(
i
[

˜̂
φpE ,2(zpE )− ˜̂

φpW ,2(zpW ) +
˜̂
φpS ,2(zpS )− ˜̂

φpN ,2(zpN )
])

. (B2b)

The operators Âs and B̂p have the physical interpretation of creating the smallest possible closed loop of vertex
operators containing the star s or plaquette p. When {zsC} = z for all cardinal directions C = N,W,S,E, the loop

created by Âs({zsC}) ≡ Âs(z) is defined in a plane of constant z. A completely analogous statement is true of the

operator B̂p({zpC}) ≡ B̂p(z) when {zpC} = z for all C = N,W,S,E. Within this physical picture, the closed loop

of vertex operators depicted in Fig. 4(d) can be viewed as being created by the product of all operators B̂p(z) for
plaquettes p contained within the perimeter of the loop. When all z-points within the set {zsC} or {zpC} are different,

the operators Âs({zsC}) and B̂p({zpC}) can be viewed as creating “wavy” loops that are not confined to a single

constant-z plane. By the arguments of Appendix A, such a “wavy” loop is energetically equivalent to a loop confined
to a plane of constant z in the limit of vanishing kinetic energy.

To check that Âs and B̂p are indeed symmetries of the Hamiltonian (B1), first note that

Âs({zsC}) cos
(
T̃ T
s′ K̃m ˜̂

Φ (z′)
)
Â†s({zsC}) = cos

(
T̃ T
s′ K̃m ˜̂

Φ (z′)
)

(B3a)

and

B̂p({zpC}) cos
(
T̃ T
p′ K̃m ˜̂

Φ (z′)
)
B̂†p({zpC}) = cos

(
T̃ T
p′ K̃m ˜̂

Φ (z′)
)

(B3b)

can be seen to hold for all s, s′, p, and p′ if one observes that the bosonic fields entering the right-hand sides of
Eqs. (2.65a) and Eqs. (2.65b) are labeled exclusively by α = 1 (the charge 2 bosonic mode) and α = 2 (the charge

neutral bosonic mode), respectively, whereas the 2× 2 matrix K̃m defined in Eq. (2.57b) is off diagonal, i.e., any pair
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of bosonic fields carrying the same charge from Eq. (2.57c) commute. According to Eq. (2.65a) and Eq. (2.65b), it is
only when a star s overlaps with a plaquette p (sN = pW and sE = pS , say) that either

Âs({zsC}) cos
(
T̃ T
p K̃m ˜̂

Φ (z′)
)
Â†s({zsC}) (B4a)

or

B̂p({zpC}) cos
(
T̃ T
s K̃m ˜̂

Φ (z′)
)
B̂†p({zpC}) (B4b)

might transform nontrivially.
In order of increasing difficulty, we shall assume first that all {zsC} and all {zpC}, respectively, lie in the same

constant-z plane and show that both Eqs. (B4a) and (B4b) transform trivially. To this end, we combine Eqs. (2.56)
and (2.57) into the identities

e+i
˜̂
φj,1(z) ˜̂

φj′,2(z′) e−i
˜̂
φj,1(z) =

˜̂
φj′,2(z′) + i

[
˜̂
φj,1(z),

˜̂
φj′,2(z′)

]

=
˜̂
φj′,2(z′)− δj,j′

2π

m
Θ(z − z′) (B5a)

and

e+i
˜̂
φj,2(z) ˜̂

φj′,1(z′) e−i
˜̂
φj,2(z) =

˜̂
φj′,1(z′) + i

[
˜̂
φj,2(z),

˜̂
φj′,1(z′)

]

=
˜̂
φj′,1(z′)− δj,j′

2π

m
Θ(z − z′). (B5b)

When all {zsC} lie in the same constant-z plane

Âs({zsC})
[
T̃ T
p K̃m ˜̂

Φ (z′)
]
Â†s({zsC}) ≡ Âs(z)

[
T̃ T
p K̃m ˜̂

Φ (z′)
]
Â†s(z) (B6a)

becomes

m

[
˜̂
φpE ,2(z′)− ei

˜̂
φs
N
,1(z) ˜̂

φpW ,2(z′) e
−i

˜̂
φs
N
,1(z)

+ e
i

˜̂
φs
E
,1(z) ˜̂

φpS ,2(z′) e
−i

˜̂
φs
E
,1(z) − ˜̂

φpN ,2(z′)

]
. (B6b)

From Eqs. (2.56) and (B5a), we then conclude that

Âs(z)
[
T̃ T
p K̃m ˜̂

Φ (z′)
]
Â†s(z) =m

[
˜̂
φpE ,2(z′)− ˜̂

φpW ,2(z′) +
˜̂
φpS ,2(z′)− ˜̂

φpN ,2(z′)
]

= T̃ T
p K̃m ˜̂

Φ (z′)

(B6c)

transforms trivially. Similarly, when all {zpC} lie in the same constant-z plane,

B̂p({zpC})
[
T̃ T
s K̃m ˜̂

Φ (z′)
]
B̂†p({zpC}) ≡ B̂p(z)

[
T̃ T
s K̃m ˜̂

Φ (z′)
]
B̂†p(z) (B7a)

becomes

m

[
e

+i
˜̂
φp
S
,2(z) ˜̂

φsE ,1(z′) e
−i

˜̂
φp
S
,2(z) − ˜̂

φsW ,1(z′) + e
−i

˜̂
φp
W
,2(z) ˜̂

φsN ,1(z′) e
+i

˜̂
φp
W
,2(z) − ˜̂

φsS ,1(z′)

]
. (B7b)

From Eqs. (2.56) and (B5b), we then conclude that

B̂p(z)
[
T̃ T
s K̃m ˜̂

Φ (z′)
]
B̂†p(z) =m

[
˜̂
φsE ,1(z′)− ˜̂

φsW ,1(z′) +
˜̂
φsN ,1(z′)− ˜̂

φsS ,1(z′)
]

= T̃ T
p K̃m ˜̂

Φ (z′) (B7c)

also transforms trivially.

Repeating the above calculation for the case of general {zsC} and {zpC}, one finds that the pinned fields T̃ T
p K̃m ˜̂

Φ (z′)

and T̃ T
s K̃m ˜̂

Φ (z′) are not strictly invariant under the action of Âs and B̂p, but that they change by a difference of
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soliton profiles as in Eq. (A3). In Appendix A, it was shown that such a change in the pinned fields does not affect

the total energy in the limit of vanishing kinetic energy, and we thus conclude that Âs and B̂p commute with the
Hamiltonian (B1) in this limit, for any pair {zsC} and {zpC}.

Having established that the Hamiltonian defined by Eqs. (B1) displays a local Zm gauge symmetry, we want to
study its ground states. According to Elitzur’s theorem71, each ground state must be invariant under the local Zm
gauge symmetry. Our goal is to verify this consequence of Elitzur’s theorem explicitly. To this end, we observe that
any argument (B1b) or (B1c) that appears in a cosine term from the Hamiltonian (B1a) is related to the generators
(B2a) or (B2b) of the local Zm symmetry through

cos
(
T̃ T
s K̃m ˜̂

Φ (z)
)

=

[
Âs(z)

]m
+
[
Â†s(z)

]m

2
(B8a)

or

cos
(
T̃ T
p K̃m ˜̂

Φ (z)
)

=

[
B̂p(z)

]m
+
[
B̂†p(z)

]m

2
, (B8b)

respectively.
We shall ignore the issue of topological degeneracy by assuming a unique ground state when the lattice of wires

spans a manifold of vanishing genus, or by restricting to one topological sector of the theory defined on the torus. We
demand that the ground state satisfy two properties.

First, in order to be a ground state, a state must consist of a superposition of field configurations that minimize both
cosine terms in Eq. (B1) simultaneously. (This is possible because these two sets of terms are Haldane compatible, and
because we work in the strong-coupling limit Us, Up →∞.) Since the charge-2 bosonic fields do not commute with the
charge-neutral bosonic fields, we can use either set of bosonic fields to label the full set of classical field configurations

minimizing both sets of cosine terms. We denote the eigenfunctionals of the fields
˜̂
φj,1(z) by |{φ̃j,1(z)}〉, i.e.,

˜̂
φj,1(z) |{φ̃j,1(z)}〉 = φ̃j,1(z) |{φ̃j,1(z)}〉 . (B9)

Among all these eigenfunctionals, we select the eigenfunctionals for which

cos
(
T̃ T
s K̃m Φ̃ (z)

)
= 1 (B10)

holds for all s. We now define (up to normalization) a “reference state”

|ϕ〉 ..=

L∫

0

dz′
∑

{nj∈Z}

∣∣∣
{
φ̃j,1(z) + 2π nj Θ(z − z′)

}〉
, (B11)

where j = 1, . . . , 2N . The sum over the integers nj ∈ Z accounts for the fact that classical field configurations differing
from one another by a soliton with an integer charge are equivalent from the point of view of the cosines. According
to Eq. (B5b), we must have

[
B̂p({zpC})

]n ˆ̃
φj,1(z′)

[
B̂†p({zpC})

]n
=

ˆ̃
φj,1(z′)− δj∈p

2π n

m
Θ(zj − z′), (B12a)

[
B̂†p({zpC})

]n ˆ̃
φj,1(z′)

[
B̂p({zpC})

]n
=

ˆ̃
φj,1(z′) + δj∈p

2π n

m
Θ(zj − z′), (B12b)

where δj∈p is a function that returns 1 if j ∈ p and 0 otherwise, for any n ∈ Z. Thus, one concludes that

cos
(
T̃ T
p K̃m ˜̂

Φ (z)
)
|ϕ〉 =





[
B̂p(z)

]m
+
[
B̂†p(z)

]m

2



 |ϕ〉 = |ϕ〉 . (B13)

Therefore, the state |ϕ〉 minimizes both cosine terms simultaneously.
The second constraint to be imposed on the ground state of Hamiltonian (B1) is that it is also invariant under the

symmetry group generated by the operators B̂p({zpC}). The state |ϕ〉 is not up to the task, as Eq. (B12) demonstrates
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that |ϕ〉 is not invariant under applications of the operator
[
B̂p({zpC})

]n
for 1 ≤ n < m. For a single plaquette p at

fixed {zpC}, however, one can check using Eq. (B12) and the fact that
[
B̂p({zpC})

]m
|ϕ〉 = |ϕ〉 that the state

{
1 +

m−1∑

n=1

[
B̂p({zpC})

]n
}
|ϕ〉 (B14)

is. We must therefore extend the construction (B14) to all plaquettes p and all points {zpC} along the wires. This is

accomplished by the (unnormalized) state

|GS〉 ..= exp


∑

p

L∫

0

d{zpC} log

(
1 +

m−1∑

n=1

[
B̂p({zpC})

]n
)
 |ϕ〉 . (B15)

The operator exp(. . . ) on the right-hand side applies all possible products of operators
[
B̂p({zpC})

]n
over all plaquettes

p and all points {zpC}.
The ground state |GS〉 is a phase-coherent and equal-amplitude superposition of all possible configurations of closed

loops of vertex operators. These closed loops can be like the one depicted in Fig. 4(d), i.e., restricted to a single plane
of constant z, or more general configurations involving “wavy” closed loops. Thus, the ground state |GS〉 can be
viewed as a quasi-two-dimensional “soup of loops” in which the closed loops are further allowed to fluctuate in the z-
direction. This is a direct generalization of the ground state of Kitaev’s toric code54 to the context of the coupled-wire
systems considered in this work. Furthermore, it explicitly demonstrates in the limit of vanishing kinetic energy that
the string and membrane operators built using the vertex operators defined in Eqs. (2.63) and the bilocal operators
defined in Eqs. (2.68), respectively, do not lead to an observable change in the ground states except at their ends and
edges.
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