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We study the interacting bosons in topological Hofstadter bands with Chern number two. Using
exact diagonalization, we demonstrate that bosonic integer quantum Hall (BIQH) state emerges
at integer boson filling factor v = 1 of the lowest Chern band with evidences including a robust
spectrum gap and quantized topological Hall conductance two. Moreover, the robustness of BIQH
state against different interactions and next-nearest neighbor hopping is investigated. The strong
nearest neighbor interaction would favor a charge density wave. When the onsite interaction de-
creases, BIQH state undergoes a continuous transition into a superfluid state. Without next-nearest
neighbor hopping, the ground state is possibly in a metallic Fermi-liquid-like phase.

I. INTRODUCTION

Recent theoretical studies reveal that in two dimen-
sions strongly interacting two-component bosons in a
magnetic field can realize a bosonic integer quantum Hall
(BIQH) state' . The BIQH phase characterized by Hall
conductivity quantized to an even integer®® is protected
by a global U(1)-symmetry and the real-space entangle-
ment spectrum of this state hosts two counter propagat-
ing chiral modes. Recently, two different lattice versions
of BIQH states have been proposed at integer filling v = 1
of the lowest topological flat-band with Chern number
C = 2. The optical flux lattice has been studied by ex-
act diagonalization of the projected Hamiltonian in mo-
mentum space'® and the correlated Haldane-honeycomb
lattice has been studied by infinite density matrix renor-
malization group of hardcore boson in real space''. This
is different from the two dimensional topological C' = 1
band filled by hardcore bosons at v = 1, which is be-
lieved to exhibit the Fermi-liquid-like state'?. Indeed,
for C > 1, a series of color-entangled Abelian topologi-
cal states have been suggested at various filling numbers
under repulsive two-body interaction'®'7. In Harper-
Hofstadter model with topological C' = 2 band, numeri-
cal results suggest the realization of the BIQH phase'®1!?,
and different emergent topological states including the
symmetry protected BIQH state, can be understood by
an insightful approach from Streda formula of composite
fermion theory2. So far, a detailed study on BIQH state
and its competing phases for single component bosons
on topological Hofstadter lattice is still lacking. It is in-
teresting to compare the BIQH in such a system with
other lattice realizations of topological flatbands with
C = 2. More specifically, it is interesting to address the
issue what conditions can make the BIQH stable against
possible competing phases, like charge density wave and
bosonic superfluid. If the system can host other com-
peting phases under certain conditions, it opens a door
to explore quantum phase transition between BIQH and
other phases. In Refs.?"?2, the low energy theory de-
scribing continuous phase transitions between superfluid
and BIQH is constructed based on fermionic parton ap-
proach.

In this paper, we study the generalized Hofstadter
model and address the stability of the BIQH against
other phases, taking into account the effects of interac-
tion strength, band topology and their interplay within
the full real space Hamiltonian. We find that the many-
body ground state is indeed BIQH for hardcore bosons
at integer filling of C' = 2 band with a robust spectrum
gap, due to onsite Hubbard repulsion. Without onsite
Hubbard repulsion, the softcore bosons would undergo a
Bose-condensation into the lowest single particle orbit.
Increasing the nearest neighbor interaction to strong re-
pulsion, a charge density wave state would dominate over
the BIQH state. When tuning the next nearest neighbor
hopping down to zero, the Chern number of the lowest
band becomes C' = —1 and we show that the ground state
would have a transition into a metallic liquid-like phase
in this case. Thus, the emergence of BIQH phase in single
component bosons on lattice model is ultimately related
to the interplay of interaction and band topology. Ex-
perimentally, the bosonic Hofstadter model has been re-
alized by laser-assisted tunneling in cold atoms?*2#, and
a Bose-Einstein condensation (BEC) is observed in this
cold atom setup?®. In relation to current avaiable ex-
periments, we discuss an experimental prospect toward
realization of BIQH state in optical lattices and further
predict that once a stronger next nearest neighbor hop-
ping can be implemented in this setup, one may realize
the many-body BIQH state in such a generalized Hof-
stadter model and study the quantum phase transition
between Bose condensate and BIQH phase by tuning the
onsite interaction between bosons through lattice poten-

tial or Feshbach resonances?S.

This paper is organized as follows. In Sec. II, we give
a description of the Bose-Hubbard model on the gener-
alized Hofstadter band with topological invariant C' = 2.
In Sec. III, we explore the many-body ground state at
infinite onsite repulsion (namely, hardcore boson) and
present a detailed proof of BIQH state by exact diago-
nalization at filling v = 1. In Sec. IV, we explore other
possible competing phases like bosonic superfluid, and
discuss their transitions into BIQH state by varying in-
teractions and lattice parameters. Finally, in Sec. V, we
summarize our results and discuss the prospect of inves-



tigating nontrivial topological states in cold atoms sys-
tems.

II. THE BOSE-HUBBARD MODEL

Here, we consider the interacting bosons on the gen-
eralized Hofstadter lattice which describes the motion of
charged particle under a uniform magnetic field B on a
square lattice with lattice constant a = 127. Take the
gauge vector A = B (%, x,0), such that the particle hop-
ping between sites r and r’ has a phase exp(iA4-(r—r’))?%.
In cold atoms, this spatially dependent gauge field can be
artificially engineered in laser-assisted tunneling. When
both nearest neighbor and next nearest neighbor hop-
pings are included, the noninteracting generalized Hofs-
tadter model, is described by the Hamiltonian'”

Hy = — Z txblbr—&-ém =+ tyeimbibwréy + h.c.
r
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where b, is the bosonic annihilating operator at site r =
(z,9), éo the unit vector along the a-direction and the
magnetic flux through each plaquette ¢ = Ba?. Now we
consider that the bosons interact with each other via:

TS I

(r,r’)

where n, is the boson number operator and (r,r’) de-
note nearest neighbor pairs of sites. Here we take lattice
parameters ¢/2r = 1/3,t, = t, = t,t' = —0.5¢, such
that the lowest band has a topological invariant C' = 2.
When t' = 0, the lowest band has a topological invariant
C = —1. We can choose three sites in the x direction
as a magnetic unit cell and the total number of lattice
sites is N = 3Ny, Ny = N, X N, is the number of
unit cells. We explore the many-body ground state of
H = Hy+V;,: by exactly diagonalizing a finite N-particle
system at fixed integer filling v = N/N; = 1. With peri-
odic conditions we identify each many-body state using
its total momentum sectors (2n K, /N,, 27K, /N,) due to
translation symmetry.

III. BOSONIC INTEGER QUANTUM HALL
STATE

We first look at the special case with U = oo and V =
0, where each site can be occupied by one boson at most
(as hardcore boson). The low energy spectrum is plotted
in Figs. 1(a-b), for systems with different aspect ratios
N, /3N,. We find that there always exists a single gapped
ground state with total momentum K = (K., K,) =
(0,0), separated from the excited states by a large gap,
for both even and odd Ng.
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FIG. 1. (Color online) Numerical results for generalized Hofs-
tadter model with infinite two-body interaction U = oco: (a-b)
Low energy spectrum of different system sizes at filling v = 1;
(c) The Berry curvatures for the K = (0,0) ground state of
N =8,N, = 2,N, = 4,t' = —0.5¢t system with 16 X 16 mesh
points; (d) Low energy spectrum of one or two quasiholes by
removing particles. The number of quasihole energy manifold
under the red dashed line matches that of BIQH state.

The BIQH state is characterized by a finite spec-
trum gap. To explore the stability of this phase, we
use the twisted boundary conditions ¥(r + Nné,) =
e’a1)(r),a = x,y, and inspect the spectrum gap. The
energy gap A is defined as the minimum value of the dif-
ference of the ground state energy and the first excited
energy on the full (6,,6,) parameter plane in order to
explore the stability of the phase. If the ground state
mixes with other levels during the change of the bound-
ary phases, we take A = 0. Our calculations confirm that
the obtained ground state does not mix with the higher
energy levels, demonstrating itself as the unique ground
state under the insertion of the flux #,. The many-body
Chern number of the ground state wavefunction v at
K =(0,0) is given by

1
Cm —

2 27
b= 5o | d@m/o d0,F(0,0,), (3)

where F(0,,0,) = Im((0y,|0p, ) — (0, %0y, 1)) is the
Berry curvature. By numerically calculating the Berry
curvatures using m x m mesh squares in boundary phase
space with m > 9 as shown in Fig. 1(c), we find that
the many-body Chern number C,,; indeed converges to
a quantized value 2, with deviation less than one per-
cent. In such calculations, the total Berry phase is the
sum of the Berry phases from each square obtained from
the wavefunction overlaps surrounding each square. In



addition, we calculate the density structure factor

S(q) = Ni S0 () — (ne) (nar)q0)  (4)

r,r’

for the ground state, and we find no evidence of strong
momentum Bragg peaks in S(q). Thus we can rule out
the possibility of charge density wave (CDW) as the com-
peting ground state.

To distinguish the BIQH phase from the usual topo-
logical ordered phase, we investigate the quasiparticle
excitations in the bulk. In a topological ordered phase
such as fractional quantum Hall states, the existence of
quasihole excitations carrying fractional charge is the
key evidence for the nontrivial nature of the topologi-
cal state. Here, we utilize two different methods. First,
we generate a quasihole by inserting a single flux quan-
tum, namely we change the flux quanta of the lattice to
Ny = N + 1. Here as shown in Fig. 1(d), the counting
number of low energy states of IV particles in N, orbits
is simply given by N,!/(Ns — N)!/N!. Second, by intro-
ducing an onsite impurity potential Vi, = Zr Op roMr at
site vy of a given unit cell?, one can pin the quasihole
near the impurity location, and define the excess charge
Q= Z|r—r0|<2(”r —n) as the quasihole charge, where 7
is the uniform density of BIQH state. For example, we
add a d-impurity potential to the original periodic sys-
tem N = 9,N, = 1, N, = 10 and obtain ¢ ~ 1, thus
we obtain the excitations carrying integer charge unit, in
contrast to the fractional value as expected for topolog-
ical ordered phases. These numerical results match the
theoretical predictions of BIQH state without any bulk
topological order.

IV. COMPETING PHASES AND PHASE
TRANSITIONS

Having established BIQH phase in the conditions of
U = o and V = 0, we continue to discuss the com-
peting phases in the nearby parameter space by varying
interaction strength U, V' and the band parameter ', re-
spectively. The corresponding phase transitions will also
be addressed.

A. Superfluid phase

Following the last section, we further consider the ef-
fect of a finite repulsion U and small ¢ on possible
competing phases with zero nearest neighbor interaction
V = 0. As it is well-known, without onsite interaction,
the free bosons would undergo a condensation into the
lowest single-particle energy orbit for unfrustrated energy
bands. The emergence of BIQH state in the strongly in-
teracting regime signifies the important role of the band
topology and interaction. In Fig. 2(a), we plot the en-
ergy variation of N = 5, N, = 5,t' = —0.5¢ against U
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FIG. 2. (Color online) Numerical results for generalized Hof-
stadter model with softcore two-body interaction U: (a) the
evolutions of the energy difference between the K = (0,0)
ground energy and the excited levels at (0,60,) = (0,0); (b)
The low energy spectra under the insertion of 6, at fixed
U/t = 0.06 and 6, = 0; (c) the diffraction peak of the visi-
bility P. — P, and the related superfluid phase stiffness ps.
For N = 5, the peak k = (0,0); For N = 6, the peaks
ki = (0,2(¢s — 1)7/3),i = 1,2,3; (d) The energy gap A and
many-body Chern number of the groundstate at K = (0,0)
calculated using 9 X 9 and 15 x 15 mesh points in boundary
phase space for Berry curvature. The red dashed line in (d)
panel is the quantized value C = 2. The inset panel shows
the one-particle occupancy entropy.

at (05,6,) = (0,0). The K = (0,0) ground state evolves
adiabatically with U. At small U/t < 1, the low en-
ergy spectrum is shown in Fig. 2(b), and the K = (0,0)
ground state mixes with excited levels under the insertion
of ,,, demonstrating its metallic (gapless) nature.

On one hand, Bose condensate can be character-
ized by the off-diagonal long range correlations py, =
(|biby 1), such that the condensation momentum can
be identified by the peak position of the diffraction pat-
tern P(k)?3% which is defined as:

P(]) 12 § : r’r/eik(!‘—r'). (5)
N
L

r,r’

For g-fold degenerate lowest single-particle orbitals
ki, ,kg|, we take P. = 7 | P(k;)/q. The refer-
ence background signal is the average of P(k) over entire
Brillouin zone P, = ), P(k)/N,, and the condensed vis-
ibility is defined by the difference P, — P,. As shown in
Fig. 2(c), at U/t <« 1, P(k) has sharp peaks at mo-
menta [Ky,--- ,kq], while it vanishes at other momenta,
and g X P, is almost a constant. Otherwise, we also diag-
onalize the Ny, x Np-matrix p, »» and obtain one particle
eigenstates p|dn) = na|da) where |¢q) (@ = 1,...,Np)
are the natural orbitals and n, (n; > ... > ny, ) are in-



terpreted as occupations. For U/t < 1, we find that the
occupations n, ~ N/q for a < ¢, while n,, < 1 for a > ¢,
namely, a Bose condensate occurs®'. By increasing the
interaction, py » at maximum value of |r — r’| gradually
decreases to a small value. For strong interaction U >> t,
ne >~ 1 for @« < N, while n, < 1 for @« > N. This is
consistent with our observation that |P. — P,| should be
vanishingly small.

On the other hand, to evaluate its phase coherence,
we impose a phase gradient 6 through twisted bound-
ary conditions®?, and define the bosonic superfluid phase
stiffness as

(6)

As illustrated in Fig. 2(c), for weak interaction U < ¢,
ps has a finite large value indicating the superfluidity of
the ground state, and begins to drop with the increase
of U. Finally consistent with the diffraction peak, p, de-
creases to a small value for U > t. By finite-size scaling
with increasing particle numbers up to ten for U = oo,
exact diagonalization confirms that ps; becomes vanish-
ingly small.

In Fig. 2(d), the energy gap and many-body Chern
number is plotted. For small U < ¢, A is zero. A is quite
small for U ~ t, while it saturates to a value of the order
of the band gap for strong interaction U > t. Meanwhile,
the many-body Chern number of the ground state is
quantized to Cyp = 2 for U 2 ¢ (using m > 9 for calcula-
tions). However, for small U, we find that the many-body
Chern number is not well-defined due to the level cross-
ing, and we do not plot it. For U = 0, the many-body
wave function for Bose condensate is a product of single
particle orbits in the lowest C' = 2 band, [¥(0,,6,)) =

Yy PG D TT X (B2, 6,), where xag; (6, 6)) is the
single-particle Bloch state in the lowest band and k; €
[ki,- -, kg]. Thus its many-body Chern number C,, =

T, $d%0Vg x (Xltj Voxx,)/2mi, such that Cp,, usu-
ally does not exhibit a quantized behavior (for instance,
Cyp ~ 2.2 for N = Ny = 5,;m > 24) and may change
with the interaction. In recent experiments, the non-
quantized Hall response of a Bose condensate is observed
in transport properties®® and charge pumping®*. In or-
der to identify the fluctuations in the crossover regime
between different phases, we consider the one-particle oc-
cupation entropy S = — ) naIn(ng). In the inset of
Fig. 2(d), we show the variance of the one-particle occu-
pancy entropy as a function of interaction. In the limit
U = 0, the one-particle occupancy entropy approaches
the negative value —NIn(N/q). In contrast, the one-
particle occupancy entropy in the BIQH phase is a much
smaller positive value.

B. Fermi-liquid-like phase

Similarly, in Fig. 3(a), we plot the evolution of the
K = (0,0) ground state for hardcore boson against
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FIG. 3. (Color online) Numerical results for generalized Hofs-
tadter model versus next nearest hopping ¢’ at infinite U: (a)
the evolutions of the energy difference between the K = (0, 0)
ground energy and the excited levels at (0.,6,) = (0,0); (b)
The low energy spectra flux under the insertion of 8, at fixed
t" =0 and 6, = 0; (c) the diffraction peak of the visibility
P. — P, and the related superfluid phase stiffness ps; (d) The
energy gap A and many-body Chern number of the ground
wavefunction at K = (0,0) for 15 x 15 mesh points of Berry
curvature. The red dashed line in (d) panel is the quantized
value C = 2.
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FIG. 4. (Color online) Numerical results for generalized Hof-
stadter model on the (U,t')-plane: (a) the intensity plot of
the energy gap of N = 5, N, = 5 system; (b) the diffraction
peak of the visibility P. — P, at t' = 0.

next nearest hopping #. For small ¢’ near ¢ = 0, the
K = (0,0) ground state no longer maintain its robust-
ness under the insertion of flux quantum, as indicated in
Fig. 3(b). Meanwhile, its superfluid stiffness and diffrac-
tion pattern show featureless behavior, implying no pos-
sible superfluid phase. In Fig. 3(d), one can see that the
energy gap gradually drops to zero as t’ goes to zero, and
the many-body Chern number changes rapidly for small
t" where the band topology structure is altered, and then
drops to a negative value around C,, = —1.

A typical picture of energy spectrum gap A in the
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FIG. 5. (Color online) Numerical results for hardcore

bosons on two different topological lattices at filling v =
N/(NzNy) =1 of the lowest Chern band C' = 1: (a) the low
energy spectrum and (b) the low energy spectrum vs. flux
for checkerboard lattice; (c) the low energy spectrum and
(d) the low energy spectrum vs.flux for honeycomb lattice.
The checkerboard lattice hopping parameters are the same as
Ref.*3, while the honeycomb lattice hopping parameters are
the same as Refs.*+45

(U, t')-plane is shown in Fig. 4(a). The BIQH phase char-
acterized by a finite gap is located at the right lower re-
gion where U 2 t,C = 2. The diffraction peak P. of the
ground state at (6,,6,) = (0,0) is shown in Fig. 4(b).
The left region where U < t is characterized by a finite
near constant condensation in single-particle orbits, re-
gardless of the band topology, which is a superfluid phase.
The right region where U > t shows no off-diagonal long
range order. All these phases do not host any Bragg
peak. Moreover, upon changing twisted boundary angles,
except for BIQH, the ground state evolves into higher en-
ergy levels, indicating its metallic nature. For strongly
interacting case shown in the right upper region where
the lowest band topology changes to a band with C = —1,
the many-body Chern number of its ground state usually
does not host integer quantized value once the disorder
is introduced®®. One possible competing phase in the
right upper region (for instance t' = 0,U/t = 1 ~ 3)
is the v = 1 bosonic Moore-Read phase which is the
zero-energy ground state of the hardcore three-body in-
teractionsS. In finite system size (like N = 6), we do not
obtain nontrivial three-fold degeneracy according to the
root configuration 202020---,020202--- ,111111--- of
Moore-Read states under finite onsite interaction. Thus
we exclude the possibility of Moore-Read states.

In comparison, we also present numerical results of
hardcore bosons at ¥ = 1 on the topological checker-
board and honeycomb lattice models whose lowest band
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FIG. 6. (Color online) Numerical results for generalized Hofs-
tadter model at U = o0,(04,0y) = (0,0) and ¢'/t = —0.45: (a)
The evolutions of low energy states, (b) the energy gap A and
fidelity susceptibility xv and (c) the peaks of density struc-
ture factor S(q) and diffraction pattern versus nearest neigh-
bor interaction V for N = 8, N, = 2, Ny = 4; (d) The density
structure factor at V/t = 10 for N = 10, N, = 2, N, = 5.

possesses topological invariant C' = 13745, As shown
in Fig. 5, the low energy states in the same K(0,0)
sector evolve into each other under the insertion of a
flux quantum. We find that the Berry curvatures are
vanishing small and the many-body Chern number of
the ground state C,,;, ~ 0. Both the intra-sublattice
and inter-sublattice structure functions of density cor-
relations S*%(q) = >, ., eiq'(‘"*r/)nﬁ‘nf,/NS have only a
zero-momentum peak. One conjecture is that this phase
would be a metallic Fermi-liquid like phase at v = 1. We
leave more details of this phase to be addressed in future
studies.

C. Charge density wave phase

Finally, when the nearest neighbor repulsion is taken
into account, we plot the variations of low energy states
with V in Fig. 6(a) from V = 0 to V' > t. The depen-
dence of A on small V' is quite complicated, and it does
not show a monotonic behavior. However for large V,
the energy gap would collapse to zero indeed, as shown
in Fig. 6(b). We calculate the fidelity susceptibility xv
of the ground K = (0,0) state, defined by

L= [V + )]
. . (7)

xy exhibits a peak near the point where A collapses,

which serves as a signal of quantum phase transition®®.

In order to identify this transition, we plot the evolution

v =2



of the peaks of its density structure factor and diffraction
pattern in Fig. 6(c). For strong repulsion V' >> ¢, the peak
of density structure factor S(q) emerges at finite vector
q = q., while the diffraction peak does not exhibit any
upward jump behavior. By comparing S(q) for larger
sizes, e.g., exact diagonalization of up to ten particles
shown in Fig. 6(d) and density matrix renormalization
group of up to 18 particles, we confirm the existence of
the Bragg peak. Thus the phase for V' > t is found to
be a charge density wave phase, instead of a superfluid
or supersolid phase.

V. SUMMARY AND DISCUSSION

In summary, we have studied the Bose-Hubbard model
in two dimensional generalized Hofstadter band with C' =
2, and demonstrated that strongly interacting bosons at
filling ¥ = 1 can host BIQH state with Hall conductivity
exactly quantized to 2 for strong onsite repulsion. The
phase transition from bosonic superfluid to BIQH state
driven by tuning the onsite Hubbard repulsive interac-
tion is revealed by calculating superfluid phase stiffness
and the diffraction pattern of the off-diagonal long range
order. Tuning next nearest neighbor hopping down to
zero changes the band topology, and we find the possi-
ble Fermi-liquid-like phase at at filling v = 1 of |C]| =1

Chern band. This phase is characterized by no phase co-
herence or well-defined many-body Chern number, gap-
less spectrum under flux insertion and featureless struc-
ture factors. Strong nearest neighbor repulsion would
lead to a charge density wave.

In current 87Rb experiments?*2°, magnetic flux ¢ can
be tunable over the range of 0 < ¢ < 7, while the onsite
Hubbard interaction U can be adjusted from zero up to
450Hz by varying lattice potential depth and the near-
est neighbor hopping is t ~ 75Hz, but the next nearest
neighbor hopping is much smaller than nearest neighbor
hopping. Experimental observations of these topological
phases may be possible by further enhancement of next
nearest neighbor hopping in the future, or using ¢ = 47/5
with only small next nearest neighbor hopping where the
lowest band also hosts Chern number two'”. In our cal-
culation, the energy gap A can be of the order of ¢, which
is close to the cooling temperature limit. We believe that
this Hofstadter model should provide a good platform for
future study of topological phases.
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