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Quantum entanglement effects between the electronic spin and charge degrees of freedom are examined in an

organic molecular solid, termed a dimer-Mott insulating system, in which molecular dimers are arranged in a

crystal as fundamental units. A low energy effective model includes an antisymmetric exchange interaction, as

one of the dominant magnetic interactions. This interaction favors a 90 degree spin configuration, and competes

with the Heisenberg-type exchange interaction. Stabilities of the magnetic ordered phases are examined by

using the spin-wave theory, as well as the Schwinger-boson theory. It is found that the spin-charge interaction

promotes an instability of the long-range magnetic ordered state around a parameter region where two spin-

spiral phases are merged. Implication for the quantum spin liquid state observed in κ-(BEDT-TTF)2Cu2(CN)3
is discussed.

PACS numbers: 75.10.Kt, 75.25.Dk, 75.30.Ds, 75.30.Et

I. INTRODUCTION

Quantum entanglements between electronic spin and other

degrees of freedom in solids give rise to a number of exotic

phenomena in correlated electron materials. Prototypical ex-

amples are seen in a strong coupling between the magnetic

and electric polarizations in multiferroic materials,1,2 and in

a spin-charge coupling in magnetoresistive materials.3,4 They

do not only induce new cross-correlated phenomena, but also

trigger reexaminations of magnetic phenomena, which has

been examined so far in proper magnets without other de-

grees of freedom.5–8 Most of the target materials have been

searched in transition-metal compounds where robust spin po-

larizations emerge due to the strong electron correlation.

Another class of the candidate materials, in which quan-

tum entanglements between spin and other degrees of free-

dom are expected, is the organic molecular solids. Instead

of the atomic d- and f -orbitals in transition-metal ions, mag-

netism is responsible for the molecular orbitals (MO). Al-

though the electron-electron interaction is smaller than that

in the transition-metal ions, some series of organic molecular

solids are identified as strong correlated magnets due to the

small overlap integral between MOs, and show a rich variety

of exotic phenomena.9

A dimer-Mott (DM) insulating system is one of the exam-

ples. A paired molecule is a unit of a crystal lattice, and two

outermost MOs in each dimer unit build the bonding and anti-

bonding orbitals. When one hole/electron per dimer occupies

these MOs in most of the materials, these are the Mott insu-

lators in a case of strong electron-electron interaction.10 Low

dimensional organic solids, κ- and β′-(BEDT-TTF)2X, and

(TMTTF)2Y (X and Y are anion molecules), are known as ex-

ample materials. Several exotic magnetic phenomena, such as

quantum spin liquid state, superconductivity related to mag-

netic fluctuation, have been found in these materials.11–16 In

addition to the spin degree of freedom, the electronic charge

degree of freedom inside of the molecular dimer is recently

enlightened; the dielectric anomalies are experimentally ob-

served,17–21 and are attributable to the local electric dipole

moments inside of the dimer units.22–26 It is now the stage

where the magnetic phenomena observed in the DM insulat-

ing materials should be reexamined by taking the spin-charge
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FIG. 1: (Color online) (a) A 90 degree spin configuration induced by

the spin-charge coupling interaction. The thick and thin arrows rep-

resent directions of the spin moment (S) and the spin-charge moment

(SQx), respectively. The circles and ellipses represent the BEDT-

TTF molecules and dimers, respectively. (b) A schematic lattice

structure and the dominant hopping integrals for κ-(BEDT-TTF)2X

in units of molecules. Inequivalent molecules are denoted by a and

b.

entanglement into account.

In this paper, we examine entanglement effects between

the spin and charge degrees of freedom in a DM insulating

system. A model Hamiltonian for the κ-(BEDT-TTF) type

crystal lattice includes a novel spin-charge coupling, which

gives rise to an antisymmetric exchange interaction. This

interaction favors the 90 degree spin configuration between

the nearest-neighboring (NN) BEDT-TTF dimers as shown

in Fig. 1(a), and compete with the conventional Heisenberg

exchange interaction. Mean field (MF) magnetic phase dia-

gram and stabilities of the long-range magnetic ordered states

are examined by the spin-wave (SW) approximation, as well

as the Schwinger-boson (SB) MF approximation. In the SW

method, stabilities of any possible MF magnetic and charge

ordered states up to the 6 × 6 site clusters are examined. It

is found that this spin-charge coupling promotes an instability

of the long-range magnetic ordered state around a parameter

space, in which two spin-spiral phases are merged. This is at-

tributed to the low-energy spin fluctuation induced through the

spin-charge coupling. Implications of the present results for

the spin liquid state observed in κ-(BEDT-TTF)2Cu2(CN)3
are discussed.

In Sec. II, a model Hamiltonian is introduced. In Sec. III,

calculation results obtained by the SW and SB MF approx-

imations are presented. Section IV is devoted to discussion

and summary.
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II. MODEL HAMILTONIAN

We start from a tight-binding model Hamiltonian for the

DM insulating system: the extended Hubbard model, where

the BEDT-TTF molecules are identified as the fundamental

units. This is given by

HexH = tA
∑

iσ

(
c†iaσcibσ +H.c.

)
+ U

∑

iµ(=a,b)

niµ↑niµ↓

+ VA
∑

i

nianib +
∑

〈ij〉σ

tµµ
′

ij

(
c†iµσcjµ′σ +H.c.

)

+
∑

〈ij〉µµ′

V µµ′

ij niµnjµ′ , (1)

where ciµσ is an annihilation operator for a hole at the µ(=
a, b) molecule in the i-th dimer unit with spin σ(=↑, ↓), and

niµ =
∑

σ niµσ =
∑

σ c
†
iµσciµσ is the number operator.

The first three terms represent the interactions inside of a

dimer unit, i.e. the intra-dimer carrier hopping (tA), the intra-

molecular Coulomb interaction (U ), and the inter-molecular

Coulomb interaction inside of a dimer (VA). The last two

terms represent the interactions between the dimer units, i.e.

the carrier hopping between the molecule µ in the i-th dimer

and the molecule µ′ in the j-th dimer (tµµ
′

ij ), and the Coulomb

interactions (V µµ′

ij ).

The effective spin model derived from the extended Hub-

bard model introduced above is more useful to examine the

low-energy magnetic states. When the intra-dimer inter-

actions are sufficiently larger than the inter-dimer interac-

tions, the number of holes in a dimer unit is restricted to

be one, and the inter-dimer parts are treated as the pertur-

bational interactions. The spin and charge degrees of free-

dom, respectively, inside of the dimer unit are described

by the spin operators with an amplitude of 1/2 defined as

S = (1/2)
∑

ss′ν c
†
iνsσss′ciνs′ and the pseudo-spin operator

Q = (1/2)
∑

sνν′ ĉ
†
iνsσνν′ ĉiν′s, where σ are the Pauli matri-

ces, and ĉνs =
∑

µ=a,bWνµcµs with a unitary matrix W =

(σz + σx)/
√
2. The eigenstates forQz

i with the eigenvalue of

1/2 and −1/2, respectively, represent the states, in which one

hole occupies the antibonding orbital ψAB = (ψa − ψb)/
√
2

and the bonding orbital ψB = (ψa + ψb)/
√
2, and those for

Qx
i with 1/2 and −1/2, respectively, represent the states, in

which one hole occupies the a orbital (ψa), and the b orbital

(ψb) inside of the dimer.

Up to the second order perturbations, the Kugel-Khomskii

type Hamiltonian27 for the spin and charge degrees of free-

dom is obtained.22,23 This is expressed as a sum of a num-

ber of the exchange terms classified by the perturbation pro-

cesses, and the full expression of the Hamiltonian is presented

in Refs. [22,26]. When the magnetic properties in the DM

phase without the static charge polarization are focused on,

we have confirmed that the following Hamiltonian plays as a

minimal model which includes the dominant terms instead of

all exchange terms:

H =
∑

〈ij〉

JijSi · Sj − Γ
∑

i

Qz
j

+
∑

〈ij〉

Kij(Q
x
i −Qx

j )Si · Sj. (2)

The first and second terms in Eq. (2), respectively, repre-

sent the Heisenberg interaction, and the intra-dimer carrier

hopping, corresponding to the energy difference between the

bonding and antibonding orbitals. The third term is the main

term, i.e. the spin-charge coupling term. We have checked

numerically that the magnetic phase diagram and magnetic

order parameters in the DM phase calculated by this Hamilto-

nian reproduce qualitatively those by the Hamiltonian includ-

ing all interaction terms, such as
∑

〈ij〉 J̃ijSi · SjQ
x
iQ

x
j and∑

〈ij〉WijQ
x
iQ

x
j . Details are presented in the Supplemental

Material (SM).

Let us first consider the spin-charge coupling on an isolated

bond connecting NN dimers in the κ-(BEDT-TTF) type lattice

[Fig. 1(b)]. It is noticeable that this spin-charge coupling term

provides an antisymmetric interaction; its sign is changed by

interchanging sites i and j. Any rotations of the local pseudo-

spin frames do not remove this alternation of signs, when we

express this term for all NN bonds in a unified fashion. In

the DM phase, where the local charge polarizations and cur-

rents are zero, i.e. 〈Qx〉 = 〈Qy〉 = 0, the single-site wave

function is given by a form |ψ〉 = a |↑, ↑〉 + b |↓, ↓〉, with

complex numbers a and b. The bracket represents |Sz, Qz〉
where Sz is taken as the local spin quantization axis. That is,

the spin and charge sectors are entangled strongly with each

other. The spin and spin-charge coupled moments in this wave

function are calculated as 〈S〉 = (0, 0, (|a|2 − |b|2)/2) and

〈SQx〉 = (Re[a∗b]/2, Im[a∗b]/2, 0), respectively. Thus, 〈S〉
is perpendicular to 〈SQx〉. As shown in Eq. (2), the spin-

charge coupling term is given by inner products of SiQ
x
i and

Sj , and SjQ
x
j and Si, with the positive and negative coupling

constants, respectively. Therefore, SiQ
x
i and Sj (SjQ

x
j and

Si), tend to be antiparallel (parallel) with each other. Conse-

quently, the effective interaction between Si and Sj favors a

spin configuration with 90 degree as shown in Fig. 1(a), in a

similar way to the Dzyaloshinsky-Moriya interaction.

In the κ-(BEDT-TTF) type lattice, since the number of the

NN bonds along the y axis is larger than that along the x axis,

the spin-charge coupling term favors a 90 degree spin-spiral

order along the y axis in the DM phase. In a realistic parame-

ter set, a magnitude of the spin-charge coupling is comparable

to the Heisenberg-type interaction given by the first term in

Eq. (2). We will show that the competition between these two

interactions induces instability of the conventional spin order.

As shown in Fig. 2(a), there are two kinds of the exchange in-

teractions: the interactions between the equivalent dimers and

the interactions between the inequivalent dimers denoted by

(J ′,K ′) and (J,K), respectively. In the following analyses,

for simplicity, we adopt J as a unit of energy, and a relation

J ′/J = K ′/K and Γ = 40J are assumed.
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III. FORMULATION AND RESULT

Spin structures under the competition between the inter-

actions in Eq. (2) is examined by the linear SW approxima-

tion based on the MF approximation. As the MFs, we intro-

duce 〈Sµ〉, 〈Qν〉, and 〈SµQν〉 where (µ, ν) = (x, y, z). The

MF solutions are calculated in finite size clusters up to the

6× 6 unit cells under the periodic boundary condition. Three

kinds of the Holstein-Primakoff (HP) bosons are introduced;

the spin excitation, charge excitation, and spin-charge coupled

excitation. We introduce the local unitary transformations U ,

which turns the local quantization axes to be parallel to the MF

spin and pseudo-spin directions at each site, as S̃z = USzU†

and Q̃z = UQzU†. When the local spin and charge states

are represented by

∣∣∣S̃z, Q̃z
〉

, |↑, ↑〉 (≡ |1〉) is the MF ground

state, and |↓, ↑〉 (≡ |2〉), |↑, ↓〉 (≡ |3〉), and |↓, ↓〉 (≡ |4〉) are

the excited states. The excitations are given by the generators

Jn
m in the SU(4) algebra as Jn

m |n〉 = |m〉 wherem and n take

1–4. The HP bosons are introduced by the transformations

J1
1 = M − ∑

n6=1 α
1†
n α

1
n, J1

n = α1†
n

√
M −∑

l 6=1 α
1†
l α

1
l ,

and J l
n = α1†

n α
1
l for (l, n) 6= 1 with M = 1. The Hamilto-

nian in Eq. (2) is rewritten by the HP bosons within the linear

SW approximation where 1/M expansion is applied. Details

are given in SM.

A MF magnetic phase diagram at zero temperature is pre-

sented in a plane of the anisotropy in the exchange interaction

(J ′) and the spin-charge coupling constant (K) in Fig. 2(b).

The horizontal axis at K = 0 is identical to the Heisen-

berg model. The conventional Néel order and the coplanar

120 degree structure, respectively, are realized at J ′ = 0
and 1, which correspond to the square and equilateral trian-

gular lattices. Between them, a spiral spin structure char-

acterized by a momentum (qx, 0), termed a “X-spiral”, ap-

pears. When the spin-charge coupling K turns on, a differ-

ent spiral spin structure characterized by (0, qy), termed a “Y-

spiral”, emerges in the small J ′ region. Spin structures in the

X- and Y-spiral phases are shown in Fig. 2(a). The Y-spiral

phase is consequence of the competition between the Heisen-

berg interaction and the spin-charge coupling which favors the

90 degree spin configuration as mentioned above. The X-

spiral, Y-spiral, and Néel ordered phases are merged around

(J ′ = 0.45,K = 6.5) ≡ (J ′
c,Kc). Another spiral phase

termed “XY-spiral” also appears between the X- and Y-spiral

phases, where the spin structures are characterized by both the

x and y components of the momentum.

Instabilities of the classical magnetic ordered states

are examined by calculating the ordered magnetic mo-

ment corrected by the quantum fluctuations in the linear

SW approximation. This is given by m = M/2 −
N−1

∑
k
(〈α1†

2 (k)α1
2(k)〉 + 〈α1†

4 (k)α1
4(k)〉), where the sec-

ond and third terms are the quantum corrections due to the

spin and spin-charge coupled excitations, respectively. The

results are plotted as a function of J ′ in Fig. 3(a) for several

values of K . In the case of no spin-charge coupling (K = 0),

m decreases toward the phase boundary (J ′ = 0.5) between

the commensurate (C) Néel ordered phase and the incommen-
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FIG. 2: (Color online) (a) A schematic lattice structure and the ex-

change interactions for κ-(BEDT-TTF)2X in units of dimers (upper

panel). Schematic spin structures in the X- and Y-spiral phases are

shown in the middle and lower panels, respectively. The circles and

ellipses represent the BEDT-TTF molecules and dimers, respectively.

(b) Ground state magnetic phase diagram obtained by the MF ap-

proximation. Numbers in the parentheses represent angles between

the NN spins along the x and y axes in the X- and Y-spiral phases,

respectively, as a unit of degree. (c) Ground state magnetic phase

diagram in which fluctuation effects are taken into account by the

linear SW approximation. An infinite number sites along the x axis

is adopted. The shaded area represents a parameter space in which

the magnetic moment obtained by the linear SW approximation is

negative.@

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

J’/J J’/J

(a) (b)

m ρ

K/J=0

K/J=6

K/J=4

K/J=0

K/J=6

K/J=4

FIG. 3: (Color online) (a) Magnetic moments calculated by the SW

method as functions of the exchange anisotropy (J ′/J) for several

values of the spin-charge coupling. (b) Condensation densities cal-

culated by the SB MF approximation.

surate (IC) X-spiral phase, i.e. the C-IC transition point as

known in Ref. [28]. This reduction becomes pronounce with

increasing the spin-charge coupling, and m is negative in a fi-

nite region of J ′. We survey any possible MF magnetic and

charge ordered states described by 〈Sµ
i 〉, 〈Qi〉, and 〈Sµ

i Q
ν
i 〉

up to the 6× 6 site clusters. A part of the calculations are per-

formed in a cluster with an infinite number of sites along the x
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FIG. 4: (Color online) Dispersion relations of SW along the kx (left

panel) and ky (right panel) axes for several values of the spin-charge

coupling. A parameter value is chosen to be J ′/J = J ′

c/J .

axis. The above results imply that, at least, assumed magnetic

orders are unstable, although the stable magnetic structure in

the parameter range, in which m is negative, can not be iden-

tified in the present calculations. The phase diagram where

the quantum fluctuation is taken into account in the linear SW

approximation is presented in Fig. 2(c). The parameter region

where m is negative is represented by a shaded area, and ap-

pears around the point at which the two C-IC transitions are

merged with each other. That is, the competition between the

Heisenberg interaction and the spin-charge coupling enhances

the instability of the magnetic ordered phase.

The results introduced above are checked by utilizing the

SB MF theory.29–32 We introduce the boson operator, β†
iστ

where σ(=↑, ↓) and τ(=↑, ↓) are the spin and charge sub-

scripts, respectively. These operators produce the eigenstates

of Sz and Qz as |στ〉 = β†
iστ |0〉, where |0〉 is the vacuum for

the SBs. The Hamiltonian in Eq. (2) is rewritten by the SB

scheme as

H = −Γ
∑

i

Qz
i +

∑

〈ij〉ττ ′

Jij

[
N (Bττ ′†

ij Bττ ′

ij )−Aττ ′†
ij Aττ ′

ij

]

+
∑

〈ij〉ττ ′

1

2
Cτ

ijC
τ ′

ijKij

[
N (Bτ τ̄†

ij Bτ ′τ ′

ij )−Aτ τ̄†
ij Aτ ′τ ′

ij +H.c.
]
,

(3)

where Aττ ′

ij = 1
2 (βi↑τβj↓τ ′ − βi↓τβj↑τ ′) and Bττ ′

ij =
1
2 (β

†
i↑τβj↑τ ′ + β†

i↓τβj↓τ ′). We define the normal product

N , and τ̄ =↑ (↓) for τ =↓ (↑). A numerical factor takes

Cτ
ij = 1 on the horizontal bonds along the x axis, andCτ

ij = 1
(−1) for τ =↑ (↓) on the diagonal bonds. The MF-type

decoupling is introduced in the bilinear terms in Eq. (3) as

XijYij ≈ 〈Xij〉Yij + Xij〈Yij〉 − 〈Xij〉〈Yij〉 where Xij

and Yij are the bond operators, and the expectation values

are determined selfconsistently under the global constraint∑
iστ 〈β

†
iστβiστ 〉 = 2N (N is the number of unit cells).

In order to examine a possibility of the instability of long-

range ordered state, we calculate the SB condensation densi-

ties (ρ) corresponding to the sublattice magnetization. This

is expressed by the coefficients in the Bogoliubov transforma-

tion, which diagonalizes the SB MF Hamiltonian. Details are

presented in SM. The calculated condensation densities are

shown in Fig. 3(b). In the case of K = 0, a reduction of ρ

is seen around J ′ = 0.6 corresponding to the C-IC transition

point. Similar to the case of the SW approximation, the re-

duction is increased with increasing the spin-charge coupling.

IV. DISCUSSION AND SUMMARY

Through the calculations by the two different approxima-

tion methods, we believe that an instability of the magnetic

ordered state around the “double” C-IC transition point is not

an artifact, but is robust. We note that ρ does not reach zero

even in its minimum points, and the assumed spin structure is

still stable within this SB MF approximation. It is well known

that the linear SW approximation overestimates the magnetic

disordered state, while the SB MF approximation underesti-

mate it. Thus, a real value of the reduction in the magnetic

order parameter is expected to be in between the two calcu-

lation results. To elucidate the low-energy spin fluctuation

causing the reduction of the magnetic moment, we show the

variations of the SW dispersions for the change of the spin-

charge coupling. The energy dispersions for the SW excita-

tions along the kx and ky axes in the Néel ordered phase near

the C-IC transition points are shown in Figs. 4(a) and (b), re-

spectively. When the system approaches to the double C-IC

point, the linear dispersion around the Γ point is changed into

the quadratic-like dispersion in both the kx and ky axes. Si-

multaneously, the bandwidth along the ky direction becomes

narrow. These changes lead to large enhancement of the low

energy spin fluctuation, and the reduction of the ordered mag-

netic moment.

Finally, we touch briefly implications of the present results

for the experimentally observed quantum spin liquid state

in κ-(BEDT-TTF)2Cu2(CN)3. At first, the present theory is

based on the assumption that the static charge polarization in-

side of the dimers does not occur and the system is in the

DM insulating state. This is consistent with the experimen-

tal results in κ-(BEDT-TTF)2Cu2(CN)3 where a clear charge

ordering transition has not been observed.20,21 According to

the first-principles calculation,33 the anisotropy in the electron

hopping integrals is estimated to be t′/t ≈ 0.8 corresponding

to J ′/J ≈ 0.64. That is, this material is located near the C-IC

transition point at J ′/J ≈ 0.5 rather than the isotropic point

J ′/J = 1. A value of the spin-charge coupling constant is

also estimated to be K/J ≈ 2–5. Thus, in the magnetic phase

diagram shown in Fig. 2(c), κ-(BEDT-TTF)2Cu2(CN)3 is lo-

cated in or close to the shaded area in which the long-range

magnetic ordered state is not stable.

In summary, the entanglement effects between the spin and

charge degrees of freedom in a DM insulating system are ex-

amined. An antisymmetric exchange interaction is induced by

the coupling between the spin and the charge degree of free-

dom inside the dimer molecules in the κ-(BEDT-TTF) type

crystal lattice. This interaction favors the 90 degree spin con-

figuration and compete with the conventional exchange in-

teraction. This spin-charge coupling promotes an instability

of the long-range magnetic ordered state around a parame-

ter space, in which two spin-spiral phases are merged. This

is unique in the DM insulating system, and is not likely in
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the transition-metal compounds with the d orbital degeneracy.

The present observation is attributed to the low-energy spin

fluctuation induced through the spin-charge coupling. The

present study suggests a possible connection between the spin

liquid state and the dielectric anomaly observed in κ-(BEDT-

TTF)2Cu2(CN)3.
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