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A charged entanglement entropy is a new measure which probes quantum entanglement between
different charge sectors. We study symmetry protected topological (SPT) phases in 2+1 dimensional
space-time by using this charged entanglement entropy. SPT phases are short range entangled states
without topological order and hence cannot be detected by the topological entanglement entropy.
We demonstrate that the universal part of the charged entanglement entropy is non-zero for non-
trivial SPT phases and therefore it is a useful measure to detect short range entangled topological
phases. We also discuss that the classification of SPT phases based on the charged topological
entanglement entropy is related to that of the braiding statistics of quasiparticles.

I. INTRODUCTION

One feature that distinguishes quantum physics from
classical physics is its non-locality: two spatially sepa-
rated regions can have non-trivial correlations. It has
been recognized that this non-locality may play a central
role in characterizing different quantum phases of mat-
ter. While Landau’s symmetry breaking paradigm fo-
cuses on the behavior of local order parameters, topolog-
ical phases focus on the global structure of quantum en-
tanglement. Therefore, topological phases are genuinely
of quantum origin. Since the discovery of the quantum
Hall effect1, it is recognized that there can be distinct
topological phases, which have different patterns of quan-
tum entanglement2–4.

An essential idea to topologically classify different
gapped phases of quantum matter is to ask whether dif-
ferent ground states are connected to each other by a
continuous deformation. Namely, when two states are
transformed into each other by local unitary transforma-
tions with a finite depth, they belong to the same phase
and are topologically equivalent. On the other hand, if
they are not, they belong to different phases. For a latest
comprehensive discourse, see5.

If a state cannot be connected to a topologically trivial
states, i.e., a product state, by any local unitary transfor-
mation, it is called a long range entangled state. For ex-
ample, with this definition, integer quantum Hall states
(Chern insulators), and fractional quantum Hall states
are long range entangled states. Most of the states with
long range entanglement have a specific scaling form of
the entanglement entropy. As suggested from the area
law of the entanglement entropy, the dominant contribu-
tion to the entropy is from the vicinity of the entangling
surface. In addition to this short range non-universal
contribution, long range entangled states have topologi-
cal contribution, which does not depend on the shape of

the subsystem. For a long range entangled state in (2+1)
dimensions, which is placed on a plane, when we choose
a disk region of size L as a subsystem, where L is much
larger than other scales such as the correlation length,
the entanglement entropy behaves as6,7

SEE = aL− γ + · · · . (1.1)

The first term, the area law term, arises from short range
physics near the entangling surface and the coefficient a is
non-universal in the sense that it depends on the cut-off.
The subleading term γ is the topological entanglement
entropy and measures the total quantum dimension of a
topological phase.
On the other hand, gapped states which can be contin-

uously connected to a product state are called short range
entangled states8. In this sense, all gapped short-range
entangled states belong to the same phase and completely
trivial. However, if we restrict the type of local unitary
transformations, by imposing a symmetry, say, there can
be distinct phases even within the short range entangled
states. For instance, in 3+1 dimensional non-interacting
fermion systems, there is no states with long range entan-
glement (i.e., there is no analogue of the integer quantum
hall effect in 3+1 dimensions). However, if we impose
time-reversal symmetry, there are states which are topo-
logically distinct from trivial insulators. This is an ex-
ample of topological insulators and superconductor9,10,
which are classified by K-theory11,12. More generally, if
a state is connected to a product state by general local
unitary transformations but not by local unitary trans-
formations with certain symmetry, it is called a symme-
try protected topological phase (SPT phases). Since the
topological entanglement entropy is zero for all short-
range entangled states, it is not a useful measure for dis-
tinguishing SPT phases.
In this paper, we consider the ”grand canonical entan-

glement entropy”13–15, which have been discussed, e.g.,
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in the context of the gauge/gravity duality. In short,
the grand canonical entanglement entropy is an exten-
sion (a generalization) of the ordinary (von-Neumann
and Rényi ) entanglement entropy by introducing the
conjugate variables that couple to conserved quantities,
such as charges and (angular) momentum, etc., in the
subregion of our interest. (See below for more detailed
definitions.) In particular, the grand canonical entangle-
ment entropy defined in the presence of a potential (the
”entanglement chemical potential”) that is conjugate to
a conserved charge is called the charged entanglement
entropy. Similarly, the grand canonical entanglement en-
tropy defined in the presence of the conjugate variable
that couples to momentum is called the shifted entangle-
ment entropy.

In the context of the gauge/gravity duality, the grand
canonical entanglement entropy can be naturally moti-
vated/introduced as follows. In the gauge/gravity dual-
ity, the entanglement entropy is measured by the ther-
mal entropy of black holes whose horizon ends on the
entangling surface at the boundary of AdS space-time.
This idea was used in17,18 to prove the Ryu-Takayanagi
formula19 of the holographic entanglement entropy. This
class of black holes, dual to the entanglement entropy,
has non-compact horizons. Nevertheless they satisfy the
standard thermodynamical laws. In particular, one can
consider charged and rotating black holes20, which will
follow the grand canonical ensemble. It is then natural
to ask what the meaning of those charged and rotating
black holes is, in the context of the entanglement entropy.
It is shown in13 that those grand canonical entanglement
entropies measure the charge/angular momentum fluc-
tuations across the entangling surface that partitions the
system into two regions. It has been shown that there is
a phase transition in Rényi entropy in the presence of a
scalar and an electric charge21.

The purpose of this paper is to demonstrate another
utility of the grand canonical entanglement entropy in
condensed matter systems, – SPT phases. In fact, since
the presence of symmetries is a prerequisite for both SPT
phases and the charge entanglement entropy it is natural
to expect that the latter is useful to study the former.
We show that they can distinguish different short range
entangled states; In particular, we show that for (2+1)-
dimensional SPT phases, the charged entanglement en-
tropy SEE(µE , φE) behaves as

SEE(µE , φE) = aL+ γc + · · · , (1.2)

where the universal part is

γc = C (2πiµEφE) (1.3)

Here, µE and φE are grand canonical potentials that
couples to symmetry “charges” of SPT phases. C is a
topological number characterizing the SPT phase. No-
tice that γc is pure imaginary; it is a phase factor of
the partition function on a replica space. As such, one
may think it is defined modulo 2π. However, this iden-

tification has a meaning only if µE and φ are physically
determined. In our case, they are just parameters and
one could take µE as small as one wants so that γc is
always between 0 and 2π for any value of C . In fact, a
physical information is in C rather than γc. As we will
see, the identification of C is not by the periodicity of γc
but by a different physical reasoning.
The organization of this paper is as follows. Sec. II, we

review the charged and shifted entanglement entropies.
Sec. III A, we calculate the charged entanglement en-
tropies from bulk point of view. Sec. III B, we rederive
the charged entropies by using the edge theories. Sec.
IV, we apply the charged entanglement entropies to SPT
phases. Sec. V, we compute the shifted entanglement
entropy in the bulk theory.

II. GRAND CANONICAL ENTANGLEMENT

ENTROPIES AND FLUX OPERATORS

A. Charged entanglement entropies

In Refs. 13–16, the entanglement entropy is general-
ized by introducing chemical potentials and angular po-
tentials. In this section, we review the definitions and
basic properties.
Let us consider a quantum system and divide it spa-

tially into two parts, a subsystem V and its complement
V̄ . The reduced density matrix of the subsystem V is
given by tracing out the Hilbert space of the subsystem
V̄ :

ρV = trV̄ ρ, (2.1)

where ρ is the density matrix corresponding to the pure
ground state of the total system. From the positivity
and the hermiticity of the reduced density matrix, one
can define an entanglement Hamiltonian HE as

ρV =
e−βHE

Z(β)
, (2.2)

where β = 1/T is a fictitious inverse temperature (”en-
tanglement temperature”) and Z(β) = tre−βHE is a nor-
malization constant chosen so that trρV = 1. We will fix
the normalization of HE later so that β = 2π.
Let us now consider the case where this reduced density

matrix of the subsystem V has a conserved U(1) charge
QE . The meaning of the conserved charge here is that
the charge operator QE defined on V commutes with
the entanglement Hamiltonian HE : [HE , QE ] = 0. In
this case, one can modify the reduced density matrix by
introducing a chemical potential µE

ρ̃V (β, µE) =
e−βHE+µEQE

Z(β, µE)
, (2.3)

where Z(β, µE) = tre−βHE+µEQE is a normalization con-
stant to ensure trV ρ̃V = 1. The entanglement Hamilto-
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nian HE in (2.3) is the same as HE in (2.2) and the state
we are studying is the same pure state in this sense.

Since ρ̃V is a reduced density matrix, the charge oper-
ator QE acts only on the Hilbert space of the subsystem
V . Therefore the chemical potential µE is different from
the physical chemical potential for which the conjugate
charge operator acts on the entire system. We call µE
an entanglement chemical potential to distinguish it from
the physical chemical potential.
By using this modified reduced density matrix, we de-

fine a charged Rényi entropy by

Sn(µE) =
1

1− n
log

[(

e−βHE

Z(β, µE)

)n

eµEQ
]

, (2.4)

Note that this definition of the charged Rényi entropy
is slightly different from the one presented in Ref. 13.
The chemical potential µE here is rescaled by 1/n than
that in Ref. 13, which turns out to be more natural in
topological theories discussed in this paper.

The charged entanglement entropy is defined by taking
the n → 1 limit in the charged Rényi entropy. It can be
expressed as

SEE(µE) = −
∑

i

pie
µEqi log pi, (2.5)

where we introduced pi and qi as eigenvalues of HE and
QE :

e−βHE

Z(β, µE)
|i〉 = pi|i〉, eµEQE |i〉 = eµEqi |i〉. (2.6)

Note that the factor eµEqi in (2.6) appears in the coeffi-
cient of the logarithm but not in the argument of it. This
asymmetry comes from the fact that the Rényi parameter
n changes the effective entanglement temperature from
β to nβ while keeping the the entanglement chemical po-
tential µE intact as shown in the second line of (2.4).
It is clear that this recovers the standard entanglement
entropy in the limit µE = 0

SEE(µE = 0) = −
∑

i

pi log pi. (2.7)

It is also useful to consider the modified reduced den-
sity matrix from the path integral point of view. Let us
consider a quantum field ψ. We denote the basis of the
quantum field in the subsystem V as ψV or ψ′

V . In the
Euclidean path integral, the reduced density matrix of a
ground state is described by

〈ψV |ρV |ψ
′

V 〉 =
1

Z(β)
〈ψV |e−βHE |ψ

′

V 〉

=
1

Z(β)

∫

Dψ e−S(ψ)
∣

∣

∣ψ(t=0−,~x∈V )=ψV

ψ(t=0+,~x∈V )=ψ′
V

,

(2.8)

where t is a time coordinate and ~x is a spacial coordi-
nate. One can think that the entangling Hamiltonian

HE is an evolution generator around the entangling sur-
face ∂V , from (t = 0+, ~x ∈ V ) to (t = 0−, ~x ∈ V ),
and β is an evolution time. For instance, let us con-
sider a relativistic theory on (t, x0, x1) with a subsystem
V chosen to be x0 > 0. The entangling surface (en-
tanglement cut) is a codimention 2 surface defined by
(t, x0, x1) = (0, 0, x1). The entanglement Hamiltonian is
a generator of the translation in the angular direction
θ = arctan(t/x0). In this paper, we consider more gen-
eral cases where the size of the entangling surface is finite
so that we can avoid the IR divergence.

If we modify the entanglement Hamiltonian by intro-
ducing chemical potential, as evolving from t = 0+ to
t = 0−, the state ψ′

V will be twisted, where the amount
of the twist depends on the total charge stored within the
subsystem V In path integral picture, this is achieved by
turning on a background U(1) gauge field Aµ around the
entangling surface: Aθ =

µE
2π where θ ∈ [0, 2π] is the tem-

poral angular coordinate around the entangling surface:

〈ψV |ρ̃V |ψ
′

V 〉

=
1

Z(β)
〈ψV |e−βHE+µE

∫

V
jθ |ψ′

V 〉

=
1

Z(β)

∫

Dψ e−S(ψ)+
µE
2π

∫ 2π
0

dθ
∫

V
jθ
∣

∣

∣ψ(t=0−,~x∈V )=ψV

ψ(t=0+,~x∈V )=ψ′
V

.

(2.9)

The gauge field holonomy around the entangling sur-
face (the temporal angular circle) has non-zero value:
∮

Aθdθ = µE . By Stokes’ theorem, the effect of the
background field is reduced to the insertion of a mag-
netic flux at the entangling surface: the field strength
F = µE

2π d(dθ).

µE can be both real and imaginary. When it is imagi-
nary, it can be thought of as the Aharonov-Bohm phase
as the state receives an additional phase as it goes around
the entangling surface. In this paper, we reserve µE as a
real number and denote iµE when we consider an imag-
inary entanglement chemical potential. An imaginary
chemical potential has been used in quantum Hall sys-
tems, for instance22, and QCD, for instance23. One ad-
vantage of using the imaginary potential is that in the
case where the conserved charge corresponds to angular
momenta, which we will consider in the next subsection,
a real chemical potential could lead to unwanted diver-
gences in the partition function which come from exci-
tations moving faster than the speed of light at fixed
angular potential in a non-compact space. An imaginary
chemical potential would allow us an extra flexibility to
extract useful information while fending off divergences.

It is also possible to turn on a background flux in di-
rections other than the time direction. For instance, if
the entangling surface extends in a spacial direction y,
one can turn on a background gauge field Ay ∼ φE in
the subsystem V . In general, Ay can be a function of
space-time. By repeating the same argument as above,



4

one can generalize the reduced density matrix as

ρ̃V =
e−βHE+φEJ

Z(β, φE)
, (2.10)

where J is a current operator coupled with Ay. We call
φE an entanglement flux.

B. Shifted Entanglement Entropies

The charged entanglement entropy defined in the pre-
vious section assumes an internal U(1) symmetry. One
can extend the idea to other U(1) symmetries, such as a
rotational or translational symmetry. Let us again con-
sider a quantum field theory on a Euclidean flat space
(t, x0, xi) with i ≥ 1 and choose a half space x0 > 0 for
the subsystem V . The metric is

ds2 = dt2 + dx20 + dx2i

= r2dθ2 + dr2 + dx2i . (2.11)

(r, θ) are polar coordinates of (x0, t) = (r cos θ, r sin θ).
As mentioned below (2.8), the entanglement hamiltonian
is a generator of the angular rotation in (t, x0) space and
by choosing the normalization so that β = 2π, it is HE =
i ∂∂θ .
Observe that for the above choice, the subsystem V

still has translational symmetry in xi directions. I.e., the
entanglement Hamiltonian HE = i ∂∂θ and the translation

operator in xi direction P
i = 1

i
∂
∂xi

commute. Hence, one
can modify the reduced density matrix as

ρ̃A =
e−βHE+aiPi

Z(β, ai)
, (2.12)

where ai is a shift vector. This quantity is closely related
to a momentum polarization introduced in16.
In addition to the flat entangling surface, one can also

consider a spherical entangling surface where the subsys-
tem V is inside a sphere. In this case, the momentum
operator Pi and the shift vector ai are replaced by the
angular momentum Ji and the angular potential Ωi. In
the context of the gauge/gravity duality, the Rényi en-
tropy with the angular potential is dual to a rotating
hyperbolic black hole14 and it is called a rotating Rényi
entropy. One difference between the momentum polar-
ization and the rotating Rényi entropy is that the shift
vector breaks conformal symmetry whereas the angular
potential does not.
As in the case of the charged Rényi entropy, when

the shift vector (the angular potential) is turned on, the
wave function is shifted around the entangling surface.
Therefore, one can think of this as a generalization of the
Aharonov-Bohm effect. It generates a dislocation along
the entangling surface. However, unlike the case of the
charge U(1), one cannot totally localize the effect of the
spacial U(1) shift at the entangling surface. This momen-
tum polarization is similar to the entanglement chemical

potential in the sense that it is generated by the time like
component of the energy momentum tensor Pi =

∫

V
T0i.

There is also a current generated by spacial component
of the energy momentum tensor σij =

∫

V
Tij ,

ρ̃V =
e−βHE+bijσij

Z(β, bij)
(2.13)

where bij is an flux potential.

III. THE INTEGER QUANTUM HALL EFFECT

A. The bulk Chern-Simons theory

As our first example, let us consider a massive free
fermion system in d = 2+1 dimensions with non-zero Hall
conductance (i.e., a Chern Insulator). The entanglement
charge QE in this case is a particle number operator re-
stricted to V . For free fermion problems, microscopic cal-
culations of the (grand canonical) entanglement Hamil-
tonian and the charged entanglement entropy would be
possible either analytical or by a mild use of computers.
If we are interested only in the universal properties of
the charged Rényi and entanglement entropies, however,
it is more convenient to rewrite the problem in terms of
topological quantum field theories. (This can be done,
for example, by using the functional bosonization24.)
The effective Euclidean action for a Chern insulator

with unit Chern number (Ch = 1, say) is given as

S =
i

4π

∫

a ∧ da+ i

2π

∫

Aex ∧ da. (3.1)

Here, Aex is an external gauge potential, and a is the one
form gauge field describing the electron current.
We are interested in turning on the entanglement

chemical potential and the entanglement flux. It is con-
venient to use the path integral formalism. In this case,
the entanglement chemical potential is represented as a
gauge field around the entangling surface and the en-
tanglement flux is represented as a gauge field along the
entangling surface. To be more precise, let us consider a
2+1 dimensional flat space time R3 and compactify it by
adding an infinity {∞}. The topology of the total space
is a sphere S3. Let us introduce coordinates (r, θ, x).

ds2 = sin2
πr

2
dθ2 + dr2 + cos2

πr

2
dx2, (3.2)

where r is a distance coordinate from the entangling sur-
face and takes values in r ∈ [0, 1]; θ is an angular coor-
dinate around the entangling surface and takes values in
θ ∈ [0, 2π]; and finally x is an angular coordinate along
the entangling surface and takes values in x ∈ [0, 2π].
The subsystem V at t = 0 is r ∈ [0, 1] and x ∈ [0, 2π] at
θ = 0. The coordinate transformation between R

3 and
(3.2) involves the stereographic mapping. However, we
are interested in only a topological information.
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At the entangling surface r = 0, the θ circle shrinks
to zero whereas x circle is finite. On the other hand,
at r = 1, the x circle shrinks to zero whereas θ circle
is finite. One can see that this indeed makes a sphere.
In this coordinate, the entanglement chemical potential
is Aexθ = µE and the entanglement flux is Aexx = φE .
Note that the normalization of the gauge potential Aex

is different from the one in (2.9).

From the second term of (3.1), by doing partial inte-
gration, the entanglement chemical potential generates a
Wilson loop along the entangling surface

µEQE =
1

2π

∫

Aexθ dθ ∧ da

= µE

∫

V

∂[rax]drdx

= −µE
∮

r=0

axdx, (3.3)

whereas the entanglement flux generates a Wilson loop

φEJ =
1

2π

∫

Aexx dx ∧ da

=φE

∫

∂[raθ]drdθ

=φE

∮

r=1

aθdθ. (3.4)

Notice that although r has two boundaries r = 0 and
r = 1, ax(θ) must vanish at r = 1(0) from regularity.
With these Wilson loops, the action is now given by

S =
i

4π

∫

a ∧ da+ µE

∮

r=0

axdx− φE

∮

r=1

aθdθ. (3.5)

The two Wilson loops link each other. Therefore, evalu-
ating the partition function gives

Z(µE , φE) = exp (2πiµEφELk) , (3.6)

where Lk is the Gauss linking number

Lk =
1

4π

∫

r=0

dxµ
∫

r=1

dyνǫµνρ
(x− y)ρ

|x− y|3
= 1. (3.7)

The charged Rényi entropy,

Sn(µE , φE) =
1

1− n
log

[(

e−βHE

Z(β, µE , φE)

)n

eµEQ+φEJ

]

,

(3.8)

can be computed from Z(nβ, µE , φE), for which the uni-
versal part does not depend on n. Therefore the Rényi
entropy is

Sn(µE , φE) = logZ(β, µE , φE). (3.9)

From (3.6), the charged entanglement entropy is

γc(µE , φE) = 2πiµEφE . (3.10)

When |Ch| > 1, the hydrodynamic Chern-Simons the-
ory for Chern insulators is given in terms of two gauge
fields a (“the statistical gauge field”) and b (“the hydro-
dynamic gauge field”), and described by the action

S =
iCh

4π

∫

a ∧ da− i

2π

∫

b ∧ (da− dAex). (3.11)

Introducing a two-component notation (a1, a2) := (a, b),
the hydrodynamic theory can be also written as

S =
iKIJ

4π

∫

aI ∧ daJ , I, J = 1, 2, (3.12)

where the K-matrix is given by

K =

(

Ch −1
−1 0

)

. (3.13)

By integrating over both a and b, the Chern-Simons term

−iCh
4π

∫

Aex ∧ dAex, (3.14)

is generated for the effective action of the external field,
indicating that the Hall conductivity of the system is
quantized. Observe also that the determinant of the K
matrix is |detK| = 1 as it should be since Chern insu-
lators are not topologically ordered. By introducing the
entanglement chemical potential and flux, let us consider

S =
iCh

4π

∫

a ∧ da− i

2π

∫

b ∧ da

− µE

∮

bxdx+ φE

∮

bθdθ, (3.15)

where we noted the current is given by

jµ = δS/δAexµ =
1

2π
ǫµνλ∂νbλ. (3.16)

From this, one sees that the logZ picks up the contribu-
tion

γc = µEφEtItJ × 2πiK−1
IJ (3.17)

where

t =

(

0
1

)

, K−1 =

(

0 −1
−1 −Ch

)

. (3.18)

Thus, the charged topological entanglement entropy is
given by

γc = Ch× 2πiµEφE . (3.19)
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B. Boundary theory

It is known that the relevant part of the reduced den-
sity matrix of topological phases is described by the edge
theories25. Therefore one can reproduce the the charged
entanglement entropy obtained in the previous section
from the edge theory point of view.

1. Boson description

We are interested in a Chern insulator with Ch = 1.
It is known that the low energy modes of the entangle-
ment Hamiltonian essentially the same as the physical
edge Hamiltonian25–27. Hence, we consider a chiral free
boson Φ living on the entangling surface. The chiral bo-
son satisfies the constraint

(∂t − ∂x)Φ = 0, (3.20)

where x is the spatial coordinate along the entangling
surface. We compactify it into 2π. The Hamiltonian is

HE =
1

4π

∫

dx(∂xΦ)
2. (3.21)

The entanglement chemical potential and the entangle-
ment flux act as the chemical potential and the Berry
gauge potential along the spacial direction respectively.
The charge term induced by the chemical potential is

QE =

∫

dx∂xΦ. (3.22)

The entanglement flux changes the spatial boundary con-
dition for Φ,

Φ(x+ 2π, t) = Φ(x, t) + 2πn+ 2πφE , (3.23)

where n is an integer.

From (3.20) and (3.23), the mode expansion of Φ is

Φ(t, x) = Φ0 + pL(t+ x) + i
∑

m∈Z

m 6=0

am
m
e−im(t+x), (3.24)

where pL = (n + φE) is the momentum and am is a
creation (annihilation) operator for m < (>)0.

We would like to compute a partition function of the
boundary theory on a spacetime torus whose modular
parameter is τ = τ1+ iτ2. In our case, the spacial shift is
not important so we set τ1 = 0. Therefore, the partition
function is

Z(τ, µE) = Tr exp (−τ2HE + iµEQE)

= η(τ)−1
∑

n∈Z

e−τ2(n+φE)2+2πiµE(n+φE), (3.25)

where

η(τ) = q
1
24

∏

n

(1− qn), (3.26)

is the Dedekind eta function with q = e2πiτ .

We are interested in the thermodynamical limit τ2 → 0
of this partition function. To evaluate the partition func-
tion in this limit, it is convenient to perform the Poisson
resummation:

Z(τ, µE)

= η(τ)−1
∑

ñ∈Z

∫ ∞

−∞

dne−τ2(n+φE)2+2πiµE(n+φE)+2πinñ

=

√

1

τ
η(τ)−1

∑

ñ∈Z

e−
π2(µE−ñ)2

τ2
+2πiñφE .

In the thermodynamical limit τ2 → 0, one can see that
only ñ which minimizes (µE− ñ)2 contributes to the par-
tition function. As we saw in the bulk computation, the
chemical potential µE is the coefficient of the gauge field
holonomy in the Wilson loop. If we require that this
Wilson loop is a dynamical operator in the theory in the
sense that a state created by acting the Wilson loop on a
physical state is still a physical state, then the coefficient
has to take discrete values consistent with large gauge
transformations. On the other hand, if such Wilson loop
is treated as an external source, the values of µE and φ
are arbitrary. In this case, the partition function (3.27)
decays to zero as τ → 0. On the other hand, if we choose
the values of µE and φ so that they are physical states
of the theory, there must be ñ satisfying ñ = µE . Then
the partition function becomes

logZ(τ, µE)
∣

∣

∣

τ2→0
= log

(

1

η(τ)

1√
τ

)

+ 2πiµEφE . (3.27)

The first term of the right hand side gives the area law
term, which is non-universal and divergent. Note also
that it depends neither on φE or µE . On the other hand,
the second term is proportional to 2πiµEφE , whose co-
efficient is universal (simply one in this case); we call
the second term the charged topological entanglement
entropy, which is given by

γc = 2πiµEφE . (3.28)

In the above we considered the case of Ch = 1. For a
general Ch, which corresponds to Ch chiral edge states,
we will have

γc = Ch× (2πiµEφE). (3.29)

As can be seen in (3.23), the role of the entanglement
flux φE is to shift the modes, while the entanglement
chemical potential µE detects the change of the charge,
or the modes (3.25). Therefore, the charged topological
entanglement entropy (3.29) is proportional to the prod-
uct of φE and µE , and the physical information is the
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coefficient of it: Ch.

2. Fermion description

Alternatively, one can understand the above computa-
tion in terms of a free fermion system. Let us consider a
fermion ψ(x, t) with the Hamiltonian

HE =
i

2π

∫

dxψ†∂xψ. (3.30)

The entanglement chemical potential and the entangle-
ment flux change the temporal and spatial boundary con-
ditions as

ψ(x+ 2π, t) = −e2πiφEψ(x, t),
ψ(x, t+ 2π) = −e2πiµEψ(x, t). (3.31)

The consistent mode expansion is

ψ(x, t) =
∑

r∈Z+φE− 1
2

are
−ir(x+t),

with {ar, a†s} = δr,s. (3.32)

For a given φ, the vacuum is defined by

an+φE− 1
2
|0〉φE = 0 for n = 1, 2, · · · . (3.33)

By inserting the mode expansion into the Hamiltonian,
and normal order with respect to the vacuum, one ob-
tains

HE =

∞
∑

n=−∞

(

n+ φE − 1

2

)

: a†
n+φE− 1

2

an+φE− 1
2
:

− 1

24
+
φ2E
2
. (3.34)

The chemical potential detects the number of fermions,
so it is described by the insertion of operator g that
satisfies gag−1 = e−2πiµEa Notice that the vacuum
(3.33) itself has non-zero fermion number g|0〉φE =
e2πiµEφE |0〉φE . Taking this into account, the partition
function is28

Det (φE , µE) = Tr gqH

= e
2πi

[

µEφE+τ

(

− 1
24+

φ2E
2

)]

×
∞
∏

n=1

(1 + e2πiτ(n+φE− 1
2 )+2πiµE )

× (1 + e2πiτ(n−φE− 1
2 )−2πiµE ). (3.35)

This fermion partition function is indeed equivalent to
the bosonic one in the previous section due to the follow-

ing formula

Det (φ, θ) =
1

η(τ)
ϑ

[

φ
θ

]

(0|τ), (3.36)

where

ϑ

[

φ
θ

]

(0|τ) =
∑

n

eiπ(n+φE)2τ+2πi(n+φE)θ. (3.37)

By taking the thermodynamical limit τ2 → 0, one obtains
the charged topological entanglement entropy (3.28).

IV. SYMMETRY PROTECTED TOPOLOGICAL

PHASES

In the previous section, we consider a Chern insulator
which has chiral edge modes. In this section, we consider
a general class of SPT phases in (2+1) dimensions which
have a Chern-Simons theory description30. The potential
edge modes of SPT phases are non-chiral; there are same
numbers of right moving and left moving edge modes.
Those phases are unstable under perturbation and the
edge modes are gapped out unless we impose some sym-
metries.

A. Bosonic SPT phases

1. Bulk and boundary field theory descriptions

A convenient description of a wide class of (2+1)-
dimensional SPT phases is given in terms of the multi-
component K-matrix Chern-Simons theories and their
edge theories.30 Let us consider a Chern-Simons theory
with a characteristic K-matrix and a charge vector tI

given in terms of the Euclidean action,

S =
i

4π

∫

KIJa
I ∧ daJ +

∫

i

2π
tIAex ∧ daI , (4.1)

where I, J runs from 1 to M , and KIJ is a symmetric
matrix taking integral values. For SPT phases, there is
no ground state degeneracy and KIJ has unit determi-
nant: | detK| = 1. Note that K matrices connected by
GL(N,Z) transformations are physically equivalent.
In this paper, we consider only 2 × 2 K matrices for

SPT phases. This is sufficient in many cases since more
general cases can be understood as a direct sum of the
2×2K matrices. For a bosonic system with detK = −1,
one can always bring the K-matrix into a canonical form,
K = σx, by using GL(2,Z) transformation, where σx is

the Pauli-matrix, σx =

(

0 1
1 0

)

.

The coupling to an external gauge field Aex is specified
by theM -component charge vector tI . In principle, more
than one type of external gauge fields can be introduced,
but for our purposes below, it suffices to consider a single
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external U(1) gauge field. In this section, we will con-
sider SPT phases protected by ZN symmetry, which can
be ”embed“ into a global U(1) symmetry. I.e., ZN sym-
metry can be thought of as obtained by spontaneously
breaking the U(1) symmetry. (See below.)
It is also convenient to look at the corresponding

edge theory, which consists of two components of scalars
φI=1,2. They are compactified by 2π, φI(x) = φI(x)+2π.
An ZN × ZN symmetry transformation can act on the
scalars as

φI(x) → φI(x) +
2π

N
LI , (4.2)

where L = (k, l)T ∈ ZN × ZN is an integer vector. We
will focus on ZN symmetry within ZN ×ZN by imposing
l = qk with q ∈ ZN . By using GL(2,Z) transformation,
one can always take it into (k, l) = (1, q).
The transformation law (4.2) can be deduced from the

following generic argument. To implement the symmetry
ZN in theK-matrix theory, we need to specify how the K
matrix and the edge modes φI transform under g, which
is the generator of ZN and satisfies gN = e (identity).
Since it is a symmetry, we require its action on the K-
matrix, denoted by W g, leave the K matrix unchanged,

K = (W g)TKW g, (4.3)

whereW g ∈ GL(2,Z). The symmetry g acts on the edge
modes as

φI →
∑

J

W g
IJφJ + δφgI , (4.4)

where δφgI is a constant phase rotation. W g
IJ and δφgI are

determined from the requirement gN = e, which gives

(WIJ )
N = δIJ ,

N
∑

a=1

(WIJ )
a−1δφg =

(

0
0

)

mod 2π. (4.5)

Combining it with the constraint (4.3) we obtain

WIJ = δIJ , δφg =
2πk

N

(

1
q

)

, (4.6)

where k is an integer whose greatest common divisor with
N is 1.
In terms of the edge theory, the spontaneous symme-

try breaking of U(1) down to ZN can be described as
follows. A bulk quasiparticle excitation characterized by
an integer vector lI is mapped to a boundary field eilIφI ,
which can be added to the action of the edge theory. In
general such Higgs terms can be written as

S =
∑

l

∫

dxdtCl cos(lIφI + αl), (4.7)

where Cl and αl are constants. Once we require ZN ,
we consider only those integer vectors l for which the

corresponding cosine term is invariant invariant under
the g transformation δφg in (4.6). If there is a set of such
terms allowed by symmetry, and if they can localize all
the degrees of freedom (i.e., if they can completely gap
out the edge), then it is a trivial phase. On the other
hand, there is no cosine term that can gap out the edge,
we have a SPT phase protected by ZN symmetry. As
shown in30 q = 0 is the trivial phase while q 6= 0, mod N
are non-trivial phases.
In the following, we will show that the charged entan-

glement entropy can capture this classification of SPT
phases protected by ZN symmetry.

2. Charged entanglement entropy from the bulk field theory

To turn on the entanglement chemical potential and
the entanglement flux, we set Aexθ = µE , A

ex
x = φE , and

t = (k, l)T , where k, l ∈ ZN . The coupling to the external
background fields generates Wilson loops:

µEQE =
1

2π

∫

tIAexθ dθ ∧ daI

= µEt
I

∫

V

∂[ra
I
x]drdx

= −µEtI
∮

r=0

dxaIx, (4.8)

and

φEJ =
1

2π

∫

tIAexx dx ∧ daI

=φEt
I

∫

∂[ra
I
θ]drdθ

=φEt
I

∮

r=1

dθaIθ. (4.9)

From the action (4.1), the gauge field propagators (in the
covariant Lorentz gauge δµν∂µaν = 0) are

〈

aIµ(x)a
J
ν (y)

〉

=
iK−1

IJ

2
ǫµνα

(x− y)α

|x− y|3 . (4.10)

By using this, one can compute the link number of the
two Wilson loops

〈
∮

r=0

dxµaIµ(x)

∮

r=1

dxνaJν (y)

〉

= 2πiK−1
IJ . (4.11)

Then the partition function picks up a phase factor

(µEφE) (tItJ )

〈
∮

r=0

dyaIy

∮

r=1

dθaJθ

〉

= (tIK
−1
IJ tJ) (2πiµEφE)

= (2kl) (2πiµEφE) . (4.12)

φE is quantized in the unit of 1/N because of ZN sym-
metry. For example, consider the familiar case of super-
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conductors, where the flux 2πφE = 0, π mod 2π because
of Z2 symmetry. Similar quantization is required for the
chemical potential µE once ZN symmetry is gauged. The
classification of the SPT phases, however, does not ex-
plicitly depend on the concrete values of φE and µE .
Therefore we do not specify them here. By setting k = 1,
l = q, Eq. (4.12) is rewritten as

γc = 2q(2πiµEφE). (4.13)

The topological part of the charged entanglement entropy
is C = 2q. The trivial phase is q = 0 mod N , and indeed
the charged topological entanglement entropy vanishes in
this case.

One can see that in the case of ZN symmetry, the
charged entanglement entropy is essentially equivalent to
the braiding statistical phase of vortices (quasiparticles).
The classification of SPT phases based on the braiding
statistics in 2d systems is considered in Ref. 31. When
the vortices characterized by ZN charge vector tI are
exchanged, they generate a phase −πtTI K−1

IJ tJ/N
2. Since

the braiding of a unit charge vortex generates a phase
2π/N , tTI K

−1
IJ tJ is determined modulo 2N . The charged

topological entanglement entropy C is tTI K
−1
IJ tJ = 2q in

this model. The distinct phases are q ∈ [0, N − 1] and
therefore in the bosonic case, the classification is ZN .

3. Charged entanglement entropy from the edge theory

We can also study the charged entanglement entropy
from the edge CFT point of view. Following6,25,27, we
consider the edge hamiltonian as an entanglement hamil-
tonian. In addition to the edge hamiltonian, there are
terms coming from the coupling to the external fields.
From (4.8) and (4.9) and the bulk-boundary relation
aIi = ∂iφ

I , the boundary CFT partition function is
Z(τ) = tr exp (−τ2HE + iµEQE) where

τ2HE − iµEQE =
τ2
2π

∫ 2π

0

dx
1

2

[

(∂xφL)
2 + (∂xφR)

2
]

− iµE

∫ 2π

0

dx
(

k2∂xφ
2 + l2∂xφ

1
)

. (4.14)

Here we introduced the subscript 2 for the components of
the charge vector (k2, l2). This subscript is for the spa-
tial boundary condition, and we will use the subscript
1, (k1, l1), for the temporal boundary condition. This is
simply for a technical reason and we will remove them
and set (k1, l1) = (k2, l2) = (k, l) at the end of the com-
putation. The left-moving and the right-moving modes
φL and φR are defined by combining φ1 and φ2 as

φL =

√

1

2r
(φ1 + rφ2),

φR =

√

1

2r
(φ1 − rφ2), (4.15)

in which r is the compactification radius (the Luttinger
parameter) and depends on the microscopic details of
the edge Hamiltonian. We fix the length of the spacial
direction to 2π. The effect of the entanglement flux is
encoded in the quantization of the modes. Each mode
φ1 and φ2 has the following boundary condition along
the spacial direction

φ1(x+ 2π, t) = φ1(x, t) + 2π(n+
k1
N

),

φ2(x+ 2π, t) = φ2(x, t) + 2π(m+
l1
N

), (4.16)

where the shifts k1/N, l1/N are due to the flux φE . We
emphasize that the flux is discretized as we saw in the
bulk computation. We see that the entanglement chemi-
cal potential µE generates the twist boundary conditions
in the time direction whereas the entanglement flux gen-
erates the twist boundary conditions in the spacial direc-
tion.

From the equations of motion, the mode expansion for
φL and φR are

φL(x, t) = φL,0 + pL(t+ x) + i
∑

n6=0

an
n
e−in(t+x),

φR(x, t) = φR,0 + pR(t− x) + i
∑

n6=0

bn
n
e−in(t−x). (4.17)

The identifications (4.16) determines the momenta as

pL =

√

1

2r

[

(n+
k1
N

) + r(m+
l1
N

)

]

,

pR =

√

1

2r

[

−(n+
k1
N

) + r(m +
l1
N

)

]

. (4.18)

By using the mode expansion, the modified hamiltonian
is written as

τ2HE − iµEQE

= τ2

[

p2L
2

+
p2R
2

+ (
∑

a−nan − 1

12
+ b−nbn − 1

12
)

]

− iµE

[

k2

√

1

2r
(pL + pR) + l2

√

r

2
(pL − pR)

]

. (4.19)

The universal part of the entanglement entropy can be
obtained by taking the thermodynamical limit τ2 → 0
or equivalently taking the large area limit L/β → ∞
where L is the size of the subsystem V 6. τ2 → 0 is a
high temperature limit and all the modes contribute to
the partition function. It is more convenient to take the
modular transformation τ → −1/τ and compute the par-
tition function of the low energy limit. In this case, only
the ground state contributes to the partition function.

To this end, we rewrite the partition function so that
the modular transformation of the partition function
gives the same partition function up to the phase fac-
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tor and re-parametrization. Following the method used
in29, we first perform Poisson re-summation for n

∫

dn exp(−(τ2HE − iµEQE)) exp(−2πinñ), (4.20)

where ñ ∈ Z. After redefining ñ to n, it is

Z(τ)k1,k2,l1,l2 =
1

η(τ)

√

r

τ2

∞
∑

n,m=−∞

× e−
rπ
τ2

(µEl2−n)
2+2πin

k1
N

−πτ2r(m+
l1
N

)2+2πiµEk2(m+
l1
N

).
(4.21)

One can show that under the S transformation (τ2 → 1
τ2
)

and the following reparameterization

m→ n, n→ −m, l1 → −µENl2, l2 → l1
µEN

,

k1 → −µENk2, k2 → k1
µEN

. (4.22)

the partition function transforms as

Z(τ) → Z(−1/τ) exp
(

2πi
µE
N

(k1l2 + k2l1)
)

. (4.23)

So far we set n,m ∈ Z. However, as we saw in the ex-
ample of the Chern insulator (Sec. III B), in order for
the fractional flux and chemical potential be inside the
Hilbert space, we have to gauge the ZN ×ZN symmetry.
So n and m should take values in ZN . Then

Z(τ2)−k2,k1,−l2,l1

∣

∣

∣

τ2→∞
=

1

η(τ)

√

r

τ2
, (4.24)

and

logZ(1/τ2)k1,k2,l1,l2

∣

∣

∣

τ2→∞

= log
1

η(τ)

√

r

τ2
+
(

2πi
µE
N

(k1l2 + k2l1)
)

.
(4.25)

By setting µE = 1/N , one can reproduce the bulk result
(4.12).

To obtain the charged entanglement entropy, we use
the thermodynamical relation, S = − ∂

∂T T logZ. In our
case the inverse temperature 1/T is the Rényi parameter
n which is multiplied by both HE and QE , rather than
τ2 which acts only on HE . By setting k1 = k2 = 1 and
l1 = l2 = q one can show that the universal part of the
charged entanglement entropy SEE(µE , φE) is

γc = (2q)(2πiµEφE), (4.26)

which agrees with (4.13).

The construction here is along the same vain as gaug-
ing the global symmetry by coupling it to a background
field, while introducing a symmetry twist that leads to
non-trivial winding number. The winding number we
have calculated above can be recovered in discrete lattice

models that realizes SPT phases, such as the Dijkgraaf-
Witten type models. See for example34.

The topological entanglement entropy in topologically
ordered system measures the quantum dimension of a
system which can be computed from the S modular
transformation of the partition function. As seen from
the above calculations, the charged entanglement entropy
is related to the S modular transformation as well. The
difference is that the topological entanglement entropy is
a real number, while the universal part of the charged
entanglement entropy is a phase. In this sense, it can
be interpreted as a diagnosis of anomaly. In29, the un-
removable phase factors of the partition function under
the modular transformations is used as a diagnosis of
the global gravitational anomaly in gauged SPT phases.
When the global symmetry of SPT phases is gauged, the
system becomes a topologically ordered system32. Al-
though our computations are similar to29, we do not
gauge the symmetry to compute the charged entangle-
ment entropy.

As a final comment, our method can be straightfor-
wardly generalized to other SPT phases with on-site sym-
metries. One interesting example is the bosonic SPT
phases with U(1) symmetry, which are classified by an
integer; Different phases can be distinguished by their
quantized Hall conductance σ = 2q, with q ∈ Z. The cal-
culation of charged topological entanglement entropy is
similar to the ZN symmetry case. For simplicity, here we
briefly show the edge theory calculation. Under the U(1)
symmetry transformation, the edge modes φI change as
Eq. (4.2)

φI(x) → φI(x) + φEL
I , (4.27)

where φE is a continuous variable instead of a discrete
variable in the ZN symmetry case, and LT = (1, q) with
q ∈ Z. I.e.,

W = I, δφ = θt, t =

(

1
q

)

. (4.28)

The boundary condition along the spacial direction reads

φ1(x+ 2π, t) = φ1(x, t) + 2π(n+ φE),

φ2(x+ 2π, t) = φ2(x, t) + 2π(m+ qφE). (4.29)

Following the procedures in the ZN symmetry case, one
can find that the charged topological entanglement en-
tropy has the following expression

γc = (2q)(2πiµEφE), (4.30)

i.e., the topological number C in Eq. (3.28) is nothing
but the Hall conductance 2q, which parallels with the
story in Sec. III A and Sec. III B.



11

B. Fermionic SPT phases

1. Bulk and boundary field theory descriptions

One can extend the above analysis for bosonic SPT
phases to fermionic SPT phases in (2+1) dimensions. by
considering the K-matrix theory description (both in the
bulk and at the edge) of fermionic SPT phases. The
simplest case is when the K-matrix is σz .

As in the bosonic case, to diagnose the existence of gap-
less edge modes, one studies whether there are bosonic
degrees of freedom that take expectation value and gap
out the edge modes without breaking symmetries. Since
fermions cannot condense, a condensate must come from
degrees of freedom consisting of even number of fermions.
Therefore, identity operation in fermionic systems is not
just a trivial transformations but also changes the sign
of all fermions. This makes the fermionic symmetry pro-
jective. The corresponding symmetry transformation is

W g
IJ = δIJ , δφg = ηfπ

(

1
1

)

. (4.31)

Here, ηf = 0 and 1 correspond to trivial, and the

sign change transformations. This Z
f
2 always exists in

fermionic SPT phase.

One can consider symmetry of fermion bilinear G; the

total symmetry is Gf = G × Z
f
2 . Since G is a bosonic

symmetry, for a given bosonic SPT phase, one can al-
ways construct a fermionic SPT phase. The symmetry
transformation g and its transformation in fermionic SPT
phases are determined in a way similar to bosonic SPT
phases, (4.3) and gN = e, except that now the identity
in gN = e allows both the trivial and the sign change

transformation. For Gf = Z2 × Z
f
2 , let g be the genera-

tor of the Z2 symmetry transformations. It acts on the
edge theory as

(W g)2 = δIJ , (W g)TKW g = K,

(I +W g)δφg = ηπ

(

1
1

)

mod 2π. (4.32)

This system is a SPT phase when

η = 0, (4.33)

and t1− t2 mod 2 with t = (t1, t2) a charge vector. Other
cases are trivial. Especially any phase with t1 = t2
(q = 1) is trivial. As we will show below, the charged
topological entanglement entropy is calculated as

C = (1− q2), (4.34)

which indeed is zero/non-zero for trivial/topological
phases.

2. Charged topological entanglement entropy

As in the bosonic case, the entanglement chemical po-
tential generates a Wilson loop along the entangling sur-
face

W (µE) = exp

(

−µE
∮

r=0

(a1 − qa2)

)

, (4.35)

whereas the entanglement flux generates a Wilson loop
around the entangling surface

W (φE) = exp

(

φE

∮

r=1

(a1 − qa2)

)

. (4.36)

From the propagator (4.10), one can expect that the
topological term in the presence of the entanglement
chemical potential and the flux gives

〈W (µE)W (φE)〉 = exp
(

2πi(1− q2)µEφE
)

, (4.37)

from which we conclude the charged topological entan-
glement entropy (4.34).

One can derive the same result from the CFT point of
view. The entanglement hamiltonian HE and the entan-
glement charge QE are given by

HE =
1

2π

∫

dx
1

2
((∂xφ1)

2 + (∂xφ2)
2), (4.38)

and

QE =
1

2π

∫

dx(k2(∂xφ1)− l2(∂xφ2)). (4.39)

The edge modes φ1 and φ2 are already in the chiral and
the anti-chiral modes. The global ZN symmetry is en-
coded into the boundary conditions of the fields

φ1(x + 2π) = φ1(x) + 2π(n+
k1
N

),

φ2(x + 2π) = φ2(x) + 2π(m+
l1
N

), (4.40)

which determines the mode expansions

φ1(x, t) = φ01 + p1(t+ x) + i
∑ an

n
e−in(t+x),

φ2(x, t) = φ02 + p2(t− x) + i
∑ bn

n
e−in(t−x). (4.41)

The momenta are

p1 = n+
k1
N
, p2 = −(m+

l1
N

). (4.42)

We interpret k1/N and l1/N as the entanglement flux
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φE . The CFT partition function is

Z(τ) = η(τ)

∞
∑

n,m=−∞

× exp
[

− πτ2(n+
k1
N

)2 − πτ2(m+
l1
N

)2

+ 2πiµEk2(n+
k1
N

)− 2πiµEl2(m+
l1
N

)
]

. (4.43)

By performing the Poisson resummation with respect to
n, one obtains

Z(τ) =

√

1

τ2
η(τ)

∞
∑

n,m=−∞

× exp
[

− π

τ2
(µEk2 − n)2 + 2πi

k1
N
n

− πτ2(m+
l1
N

)2 − 2πiµEl2(m+
l1
N

)
]

. (4.44)

The S transformation τ2 → 1/τ2 and the change of pa-
rameters

m→ n, n→ −m, l1 → −µENk2, l2 → − k1
µEN

,

k1 → NµEl2, k2 → l1
NµE

.

(4.45)

give

Z(τ)k1,k2,l1,l2

= Z(−1/τ)l2,l1,−k2,−k1 exp
[

2πi
µE
N

(k1k2 − l1l2)
]

.

(4.46)

In the thermodynamical limit τ2 → 0 limit, Z(1/τ2)

gives only the diverging term (η(τ)
√

r
τ2
) and the constant

term gives

logZ = exp
[

2πi
µE
N

(k1k2 − l1l2)
]

. (4.47)

Therefore, setting k1/N = φE , l1/N = qφE and k2 =
1, l2 = q the charged topological entanglement entropy is

γc = (1− q2)(2πiµEφE). (4.48)

This result agrees with (4.37).
As in the bosonic case, once we know the charged en-

tanglement entropy, one can distinguish different SPT
phases based on the analysis in31. In the case of fermionic
phases, the braiding of a fermion generates a phase which
is a multiple of π/N . The total phase factor of excitations
is a summation of the contributions from the vortices and
the fermions. Whether the phase factor from a fermion
gives an additional constraint or not depends on whether
N is odd or even. As demonstrated in31, for odd N , C

is identified modulo N , therefore the classification is ZN
while for evenN , C is identified modulo 2N which results
in Z2N classification.

V. SHIFTED ENTANGLEMENT ENTROPY

Since the momentum polarization also twists the wave
function, one can consider a shifted topological entan-
glement entropy. From the generalized entanglement en-
tropy point of view, the momentum polarization gener-
ates a dislocation along the entangling surface. When
one moves around the entangling surface, one’s position
is shifted by the amount of the Burgers vector. This is
described by the co-frame field.

The action for a fermion model coupled to a frame field
is

S =

∫

d3x det(e)ψ̄(γaeµa∂µ −m)ψ. (5.1)

By integrating the massive fermion, one obtains33

S =
1

32π
IT (m)

∫

d3x ǫµνρeaµ∂νe
b
ρηab, (5.2)

where ηab = δab is the tangent space metric and

IT (m) =

∫ ∞

0

dyy
∂

∂y

m

(y +m2)1/2
. (5.3)

As discussed in33, this coefficient can be interpreted as
the Hall viscosity with an appropriate regularization.

One can bosonize the fermion current in the same way
as in the previous section. The partition function of the
fermions coupled with an external coframe field Eex is

Z[Eex] =

∫

D[ψ̄, ψ] exp
(

−S[ψ̄, ψ, Eex]
)

. (5.4)

This action is invariant under a shift transformation
Z[Eex] = Z[Eex + e] for a torsion free frame T Iµν =

∂(µe
I
ν) = 0. Then by introducing a Lagrangian multi-

plier (d − 2) form field bIµν··· with a Lorentz index I the
action can be rewritten

Z[Eex] =

∫

D[e, b]Z[Eex + e]

× exp

(

−i
∫

bI ∧ T J(e)ηIJ
)

,

(5.5)

where ηIJ = diag(1, 1, 1). By shifting e → e − Eex, we
obtain

Z[Eex] =

∫

D[e, b]Z[e]

× exp

(

−i
∫

bI ∧
(

T J(e)− T J(Eex)
)

ηIJ

)

. (5.6)

The bosonization rule for the momentum current is

T I =
1

i

δ logZ[Eex]

δEI,ex
= ∗dbI . (5.7)

In the case of the free fermion (5.1), the current is

T Iµ = ψ̄pIγµψ. (5.8)
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The effective action is

S = −i
∫

bI(deJ − dEJ,ex)ηIJ +
iζH
2

∫

eIdeJηIJ .

(5.9)

In the path integral picture, the entanglement shift flux
(αIE) and the entanglement shift potential (βIE) are de-
scribed by the background co-frame fields

EI,exy = αIE , EI,exθ = βIE . (5.10)

These two terms generate co-frame field Wilson loops

W (αIE) = exp

(

iαIE

∮

r=1

bIθdθ

)

,

and W (βIE) = exp

(

−iβIE
∮

r=0

bIydy

)

. (5.11)

By integrating eI out, one obtains the Chern-Simons ac-
tion for bI . Then the partition function in the presence
of the Wilson loops (5.11) for bI is

〈

W (αIE)W (βJE)
〉

= exp
(

iζHα
I
Eβ

J
EηIJ

)

. (5.12)

One can conclude that the universal part of the shifted
entanglement entropy, the shifted topological entangle-

ment entropy γs, is

γs = ζH(iαIEβ
J
EηIJ). (5.13)

The shifted topological entanglement entropy is non-zero
and the coefficient of (iαIEβ

J
EηIJ) contains physical in-

formation: the Hall viscosity. There are a couple of
differences between the charged entanglement entropy
and the shifted entanglement entropy. In the case of
the charged entanglement entropy, the coefficients of the
Chern-Simons theory, i.e., components of the K ma-
trix, are quantized in integers. On the other hand,
the coefficient of the coframe field Chern-Simons theory,
which is the Hall viscosity ζH , is not quantized given
that the gauge group corresponding to diffeomorphism
is non-compact. Therefore, the shifted topological en-
tanglement entropy is not quantized. Another point is
the symmetry. In the charged case, one could intro-
duce multiple external and internal U(1) gauge fields.

For instance, for SPT phases with
∏M
i=1 ZNi symmetry

described by KIJ matrix, one could introduce external
fields Aexi (i = 1, · · · ,M) as well as internal fields aI . In
the shifted case, the co-frame fields couple with all the
degrees of freedom equally, and therefore it is natural
to have only one type of external and internal co-frame
fields EI,ex and eI(bI) especially in interacting systems.

VI. CONCLUDING REMARKS

In this paper, we apply the grand canonical entangle-
ment entropies to study two dimensional symmetry pro-
tected topological phases with onsite unitary symmetries.

The topological entanglement entropy for SPT phases
always vanishes and it does not distinguish topological
phases from trivial ones. Our main observation is that
the universal part of these grand canonical entanglement
entropies are sensitive to distinguish non-trivial short
range entangled topological phases. Therefore, they play
a similar role as the topological entanglement entropy
in topologically ordered (long range entangled) states.
The inclusion of the entanglement potentials effectively
plays a role of insertion of Wilson loops along and around
the entangling surface. Therefore, one can interpret the
charged topological entanglement entropy as measuring
a braiding statistics of quasi-particles. In higher dimen-
sional topological phases, quasi-particles can be replaced
by loops and other higher dimensional objects. One dif-
ference between the ordinary topological entanglement
entropy and the charged topological entanglement en-
tropy is that the topological entanglement entropy is a
real number while the charged topological entanglement
entropy is imaginary reflecting the fact that it is a phase
factor of the partition function. The topological infor-
mation is encoded in the coefficient C of (2πiµEφE) in
γc. Its identification is determined by a physical reason-
ing: In the case of the Chern Insulator, C is identical to
the Chern number, while for SPT phases, it is the Berry
phase of the braiding operation.

In the models we studied in this paper, the charged
topological entanglement entropies are the topological in-
variants in the response theory. One main difference be-
tween the response theory computation and the charged
entanglement entropy computation is that while those re-
sponse quantities are obtained by perturbing the ground
state, the charged entanglement entropy does not change
the state. Within a given state and its reduced density
matrix, one can extract topological information. From
the view point of the topological field theories and the
conformal field theories, these two are different ways to
compute the same quantities. However, the efficiency of
the computations in microscopic theories may be differ-
ent. Therefore, it is desirable to establish a method to
compute the charged entanglement entropy numerically.
To do this, one needs to define the entanglement charge
and the entanglement current. For a given symmetry, say
U(1) or ZN , one can identify the physical charge with
the entanglement charge. Then, from this charge, the
entanglement current can be derived by the current con-
servation condition. The charged entanglement entropy
can be obtained by computing the expectation value of
non-local operators associated with the charge and the
current.

We did not address the time reversal symmetry in this
paper. The main obstacle is that at this point there is
no known gauge field that generates the time reversal
symmetry. And the chemical potential associated with it
is not clear. We hope to come back to this issue in the
future.
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