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We address the question of why strongly correlated d-wave superconductors, such as the cuprates, prove to be
surprisingly robust against the introduction of non-magnetic impurities. We show that, very generally, both the
pair-breaking and the normal state transport scattering rates are significantly suppressed by strong correlations
effects arising in the proximity to a Mott insulating state. We also show that the correlation-renormalized
scattering amplitude is generically enhanced in the forward direction, an effect which was previously often
ascribed to the specific scattering by charged impurities outside the copper-oxide planes.
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Introduction.— For many classes of unconventional su-
perconductors, such as the cuprates1–4, heavy fermion
superconductors5, organic materials6,7 and iron pnictides8,
electronic interactions are believed to be essential. Among the
many puzzling features of these systems is their behavior in
the presence of disorder9,10. In weakly interacting d-wave su-
perconductors, Abrikosov-Gor’kov (AG) theory predicts that
a small concentration of non-magnetic impurities should bring
the transition temperature Tc to zero. In the case of the
cuprates, however, experiments have shown that these d-wave
superconductors are very robust against disorder3,11–13. This
feature was frequently ascribed to scattering by charged off-
plane impurities, which is mostly in the forward direction (see,
e.g.,14). It has also been attributed to the frequency depen-
dence of the pairing interactions in spin-fluctuation theories15.
The puzzle was partially clarified, however, once strong elec-
tronic interactions were shown to give rise to the impurity
screening effects seen in these experiments, especially as cap-
tured by the Gutzwiller-projected wave function16–24. Despite
this progress, it would be desirable to understand both quali-
tatively and quantitatively whether disorder screening has any
significant influence on Tc as well as on the normal state trans-
port properties. In other words, can a physically transparent
answer be given to the following question: how do strong cor-
relations and Mott physics affect the predictions of AG the-
ory?

The transition temperature in the under-doped region of the
hole-doped cuprates is believed to be influenced by phase fluc-
tuations, various types of competing orders (such as charge-
and spin-density waves), stripe formation, etc. Consequently,
impurities act as nucleations centers, which complicates the
analysis considerably. In the over-doped region, however, Tc
is dominated by the superconducting gap opening, thus offer-
ing a particularly favorable window into the interplay between
disorder and interactions. This regime will be the focus of the
present work.

In the presence of impurities, the strongly correlated state
readjusts itself and creates a renormalized disorder potential.
In the dilute limit, the AG theory can be extended to describe
the effect of this renormalized potential on Tc degradation and
transport properties. We will describe in this Letter how elec-
tronic interactions lead to a much slower decrease of Tc as

compared to the weak-coupling theory. Our results demon-
strate that (i) this effect is intrinsically tied to the proximity to
the Mott insulating state, although it is significant even above
optimal doping; (ii) the doping dependence of normal state
resistivity is different from that of the pair-breaking scattering
rate, which governs Tc; and (iii) the softening of the disorder
potential by interactions leads to a strong enhancement of the
forward scattering amplitude.

Model and method.—We start with the t−J model on a cu-
bic lattice in d dimensions with dilute nonmagnetic impurities

H =−t ∑
〈i j〉σ

c†
iσ c jσ + J ∑

〈i j〉
Si ·S j +∑

i
(εi−µ0)ni, (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator of an

electron with spin projection σ on site i, t is the hopping
matrix element between nearest neighbors, J is the super-
exchange coupling constant between nearest-neighbor sites,
ni = ∑σ c†

iσ ciσ is the number operator, µ0 is the chemical po-
tential. The no-double-occupancy constraint (ni ≤ 1) is im-
plied. We work in units such that h̄ = kB = a = 1, where
a is the lattice spacing and the total number of lattice sites
is V . For definiteness, we will set J = t/3. The impurities
are taken into account through a random on-site potential de-
scribed by εi. We use a model of disorder in which we set the
potential εi = t and randomly place the impurities on lattice
sites with n impurities per unit volume and no correlations be-
tween their positions. Note that this model assumes random
non-magnetic scattering but does not describe the removal of
magnetic ions. We will focus on the two-dimensional case rel-
evant to the cuprates, but our results are easily generalizable
to higher dimensions with few modifications.

We proceed with U (1) slave boson theory, details of which
can be found in4,25–28. Briefly, it starts with the replacement
c†

iσ → f †
iσ bi, where f †

iσ and bi are auxiliary fermionic (spinon)
and bosonic (slave boson) fields. This substitution is faithful
if the constraint ni ≤ 1 is replaced by ∑σ f †

iσ fiσ + b†
i bi = 1.

The latter is enforced through Lagrange multiplier fields λi on
each site. The J term is then decoupled through additional
Hubbard-Stratonovitch bosonic fields in the particle-particle
(∆i j) and particle-hole (χi j) channels. The auxiliary bosonic
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fields are all treated in the saddle-point approximation, which
here is spatially inhomogeneous due to the presence of disor-
der: 〈bi〉 = ri, which governs the local quasiparticle residue
Zi = r2

i , 〈λi〉 (we will denote it simply by λi) which renor-

malizes the site energies and χi j = ∑σ

〈
f †
iσ f jσ

〉
and ∆i j =〈

fi↑ f j↓− fi↓ f j↑
〉
, which describe, respectively, the strength

of a spinon singlet and the pairing amplitude across the cor-
responding bonds. We also made the change J → J̃ = 3

8 J.
This choice is made so that the saddle-point approximation of
the above multi-channel Hubbard-Stratonovitch transforma-
tion coincides with the mean-field results4. We note, how-
ever, that the usual choice J̃ = 1

4 J would give rise to hardly
noticeable changes in the numerical results. We stress that
the f -electrons mentioned throughout the text are only auxil-
iary fermions, usually called spinons, rather than the physical
electrons. They are related at the saddle point by c†

iσ = ri f †
iσ .

Note that the non-trivial effects of this work come from the
self-consistent spatial readjustments of the condensed fields
to the disorder potential.

In the clean limit (εi = 0) and in the saddle-point approxi-
mation, the bosonic fields are spatially uniform: ri = r0, λi =
λ0, χi j = χΓs (i, j) and ∆i j = ∆0Γd (i, j). Here, Γs,d (i, j) are
the real space cubic harmonics which, in k-space, are given
by Γs (k) = 2(coskx + cosky) and Γd (k) = 2(coskx− cosky).
As the doping level (measured with respect to half-filling) x =
1−∑i ni/V = r2

0 is increased, the slave boson condensation
temperature Tb increases monotonically from zero whereas
the ∆ field condenses at a transition temperature T∆ which de-
creases monotonically from a finite value at x = 0 to zero at an
upper doping level xmax

4,27. The two curves meet at optimal
doping xopt . The dome below the two curves is the supercon-
ducting dome. Our focus in this paper is on the overdoped
region x > xopt , in which the superconducting transition tem-
perature Tc = T∆ < Tb.

Within this spatially inhomogeneous theory, we are able to
perform a complete quantitative calculation of the effective
disorder potential. Details have been explained elsewhere24.
Here, we will focus on the effects of disorder on the supercon-
ducting transition temperature Tc and on transport properties
in the correlated normal state for T ? Tc in the over-doped re-
gion. For this purpose, we can set ∆i j = 0. Moreover, in this
range of temperature and dopings the other bosons, ri, λi and
χi j, are thoroughly condensed and therefore fairly insensitive
to finite temperature effects. We are thus justified in approxi-
mating them by their zero-temperature values.

We will focus on the case of weak scattering by dilute im-
purities n� 1, where a linear response theory is sufficient. In
other words, we calculate the spatial fluctuations of the var-
ious condensed fields to first order in the perturbing poten-
tial εi

24. Extensive numerical calculations carried out both in
the normal and in the superconducting states have shown that
the crucial spatial fluctuations come from the λi and ri fields
whereas fluctuations of χi j play only a negligible role24. We
will thus simply fix χi j at its clean limit value χ while allow-
ing for the full self-consistent spatial adjustment of the λi and
ri fields to the disordered situation.

Given this setup, the superconducting transition at Tc cor-

responds to the formation of the order parameter ∆i j =〈
fi↑ f j↓− fi↓ f j↑

〉
. The condensing f -electrons, on the other

hand, are governed, in the clean limit by a dispersion rela-
tion renormalized by the slave boson fields r0 and χ , h̃(k) ≡
−
(
tx+ J̃χ

)
Γs (k) and a renormalized chemical potential µ0−

λ0 ≡ −ν0. This theory, therefore, describes a BCS-type con-
densation of the f -electrons. In the presence of disorder, the
various fields will readjust themselves. The effect of dilute
identical non-magnetic impurities on Tc will therefore be cap-
tured within the Abrikosov-Gor’kov (AG) theory29. In that
theory, the only input needed is the scattering T -matrix due
to a single impurity. For that purpose, we place a single im-
purity at the lattice origin εi = tδi,0. Crucially, however, the
λi and ri fields will differ from their clean-limit value inside
an extended region around the impurity, not only at the ori-
gin. The effective T -matrix will thus reflect this non-trivial
rearrangement. As shown in reference24, the impurity poten-
tial is “healed” within a length scale of a few lattice parame-
ters, the so-called healing length. Furthermore, it was shown
that the healing process/length is strongly influenced by elec-
tronic correlations and ‘Mottness’, even up to dopings x≈ 0.3.
Therefore, as will be shown, the effective scattering will be
strongly suppressed relative to the non-correlated case.

We also look at the transport properties in the normal state
around Tc. Again, the AG analysis can be straightforwardly
applied in our case. The relevant input for the calculation of
the resistivity is the physical electron scattering T -matrix for
a single impurity.

A straightforward calculation up to first order in the impu-
rity potential gives the T -matrix in momentum space for f
fermions and physical (e) electrons, respectively, as30

〈k|T f ∣∣k′〉= xt

[
h(k)+h(k′)−Π(k′−k)

λ0− λ0
2d Γs (k′−k)− xΠ(k′−k)

]
, (2)

〈k|T e ∣∣k′〉=−t

Π(k′−k)+ 2v0
x + J̃χ

tx [h(k)+h(k′)]

λ0− λ0
2d Γs (k′−k)− xΠ(k′−k)

 ,

(3)
where h(k) =−tΓs (k) is the bare energy dispersion,

Π(k)≡ 1+Πb (k)
Πa (k)

, (4)

with

Π
a (k) =

1
V ∑

q

f
[
h̃(q+k)

]
− f

[
h̃(q)

]
h̃(q+k)− h̃(q)

,

Π
b (k) =

1
V ∑

q

f
[
h̃(q+k)

]
− f

[
h̃(q)

]
h̃(q+k)− h̃(q)

[h(q+k)+h(q)] ,

and f (x) is the Fermi-Dirac function at T = 0.
In order to assess the role of electronic correlations we

will compare our full results as described above with a corre-
sponding non-correlated system in which J = 0. In the latter
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case, the T -matrix is given simply by the lattice Fourier trans-
form of the bare disorder potential, 〈k|T0 |k′〉= ε (k′−k) = t,
and there is no distinction between auxiliary and physical
fermions. The two sets of results will be called correlated and
non-correlated, respectively. Even at this point, the renormal-
izations due to strong correlations are clear: the k-dependent
factors in Eqs. (2) and (3), which reflect the spatial readjust-
ments of the ri and λi fields, make the bare potential “softer”
and more non-local. Note also the extra x factor in Eq. (2) as
compared to Eq. (3).

At low temperatures, only scattering very close to the Fermi
level is relevant. We will thus calculate the T -matrices at the
Fermi surface. Furthermore, we are interested in the over-
doped region, where the Fermi surface anisotropy becomes
increasingly less pronounced as the doping increases. There-
fore, we will simplify the actual lattice dispersion in favor
of an isotropic one corresponding to the continuum limit,
h(k) ≈ −4t + tk2. This is equivalent to a bare effective mass
m = 1/2t and a renormalized one m∗ ≡ 1/

(
2tx+2J̃χ

)
. Fi-

nally, we call EF and kF the Fermi energy and momentum
for the bare dispersion h(k), respectively, while ẼF = m∗

m EF
is the Fermi energy for the renormalized dispersion of the f -
fermions.

Pair breaking parameter.— Once the scattering matrix has
been determined, it is a trivial matter to write down the pre-
dictions of the Abrikosov-Gor’kov (AG) theory for the sup-
pression of the superconducting transition temperature Tc

30

ln
Tc0

Tc
= ψ

(
1
2
+

α

2

)
−ψ

(
1
2

)
, (5)

where Tc0 is the transition temperature in clean limit, α ≡
1/
(
2πTcτpb

)
, and τpb is the pair breaking scattering time. The

latter is given in the continuum limit by

1
τpb

=
x2nm∗

2π

ˆ 2π

0
dθg

[∣∣∣∣sin
(

θ

2

)∣∣∣∣](1− cos2θ) , (6)

where

g(y)≡ t2{
ρ∗λ0k2

F y2gL (y)+ x [1−2ρ∗EF gL (y)]
}2 , (7)

where ρ∗ = m∗
2π

is the renormalized density of states and

gL (y)≡

{
1 y≤ 1,
1−
√

1− y−2 y > 1.
(8)

The factor of 1−cos2θ comes from the vertex corrections for
d-wave pairing and can be generalized to other pairing sym-
metries by changing cos2θ to the corresponding lattice har-
monic. The leading behavior for low impurity concentrations
is

Tc = Tc0−π/8τpb. (9)

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à

æ ttr
à tpb

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4

x

1 ê t

1 ê t0

Figure 1: The pair-breaking and transport scattering rates normalized
by the non-correlated value 1/τ0 as a function of the doping level.

Fig. 1 shows the ratio of the pair-breaking scattering rate
1/τpb in the correlated case to the non-correlated one. Note
that, for the non-correlated case,

1
τ0

=
nm
2π

ˆ 2π

0
dθ t2 (1− cos2θ) = nmt2. (10)

Clearly, pair breaking is strongly suppressed by electronic cor-
relations. While this suppression is enhanced as the density-
driven Mott transition is approached (x→ 0), it is still quite
significant up to dopings of x≈ 0.3. As a result, the Tc degra-
dation is expected to be considerably slower in that case and
we expect the d-wave superconductivity to be more robust
than predicted by the weak coupling theory. Equivalently,
the critical impurity concentration nc at which Tc vanishes is
enhanced when compared to the non-correlated case, 5− 10
times in the range of dopings from 0.15 to 0.3. We note that
this suppression of pair-breaking by the impurities is com-
pletely dominated by the x2 dependence of Eq. (6). Indeed,
in the whole range of dopings from∼ 0.01 to∼ 0.3, the prod-
uct of the effective mass m∗ and the angular integral in Eq. (6)
varies very little (roughly from 5 to 3). Thus, in a manner very
reminiscent of the strong healing of gap fluctuations found in
reference24, here the robustness of Tc can also be attributed to
‘Mottness’.

Transport scattering rate.— The normal state resistivity is
governed by the impurity induced transport scattering rate,
which can be evaluated straightforwardly via Eq. (3) to give30

1
τtr

=
xnm∗

2π

ˆ 2π

0
dθg

[∣∣∣∣sin
(

θ

2

)∣∣∣∣](1− cosθ) . (11)

The non-correlated transport scattering rate defined as

1
τ tr

0
=

nm
2π

ˆ 2π

0
dθ t2 (1− cosθ) , (12)

which coincides with the above 1/τ0 for the bare isotropic
scattering impurity potential we used. As shown in Fig. 1, the
transport rate is also suppressed by electronic correlations and
‘Mottness’. In contrast to Eq. (6), however, the dependence
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Figure 2: The angular dependence of the renormalized T -matrices at
x = 0.15 (blue) and x = 0.3 (red).

is almost linear in x. This is because, as before, the product
of m∗ and the angular integral in Eq. (11) is almost doping
independent. As a result, as seen in Fig. 1, for a wide range of
doping levels the suppression of the pair-breaking scattering
rate is much more significant than the transport one.

Forward scattering.— The doping dependence of the scat-
tering rates illustrated in Fig. 1 makes it clear that the domi-
nant effect comes from the explicit x dependence in Eqs. (6)
(∼ x2) and (11) (∼ x). The x-dependence coming from m∗

times the angular integrals over the scattering matrices is very
weak. However, this does not mean that the angular depen-
dence of the T -matrices is not affected by strong correlations,
as we will now show.

In Fig. 2 we show, for two doping levels, the angular depen-
dence of the function g

[∣∣sin
(

θ

2

)∣∣] [defined in Eq. (7)], which

is integrated over in Eqs. (6) and (11). This should be com-
pared to the bare impurity result, which is ∼ t2 and thus θ -
independent. Clearly, there is a large enhancement of forward
scattering, indicating a “softening” of the impurity scattering
by correlations, even for point-like impurities in the plane.

This function is weighted by 1−cos2θ and 1−cosθ in the
integrations in Eqs. (6) and (11), respectively. These weight
functions amplify the contributions from the regions θ ≈ π/2
and θ ≈ π , respectively, which are, however, hardly affected
by correlations. As a result, even with the softening of the
impurity scattering, the angular integrals are not renormalized
significantly in the range from ∼ 0.15 to ∼ 0.3, when com-
pared to the non-correlated bare impurity result: ∼ 0.8−1 in
Eq. (6) and ∼ 0.3− 0.5 in Eq. (11). The conclusion, then, is
that strong correlations enhance significantly the forward scat-
tering region even for point-like in-plane impurities, but this
is not the reason for the robustness of Tc or the resilience of
the normal state conductivity.

Conclusions.—We have shown how the weak-coupling AG
theory of Tc suppression and normal state resistivity by dilute
non-magnetic impurities is modified in a strongly correlated
metal. Even though the renormalized scattering amplitude is
strongly enhanced in the forward direction, the most signif-
icant effect comes from the suppression of the electron fluid
compressibility by ‘Mottness’, which is effective even rela-
tively far from the Mott insulating state. Given its simplicity,
we suggest that this phenomenon is generic to other systems
close to Mott localization.
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