
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hydration-induced spin-glass state in a frustrated Na-Mn-O
triangular lattice

Ioanna Bakaimi, Rosaria Brescia, Craig M. Brown, Alexander A. Tsirlin, Mark A. Green, and
Alexandros Lappas

Phys. Rev. B 93, 184422 — Published 18 May 2016
DOI: 10.1103/PhysRevB.93.184422

http://dx.doi.org/10.1103/PhysRevB.93.184422


* Electronic address: lappas@iesl.forth.gr 

	

Hydration induced spin glass state in a frustrated Na-Mn-O triangular lattice 

 

Ioanna Bakaimi,1,2 Rosaria Brescia,3 Craig M. Brown,4,5 Alexander A. Tsirlin,6 Mark  A. Green,7 

and Alexandros Lappas1,* 

1 Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, Vassilika 

Vouton, 71110 Heraklion, Greece 

2 Department of Physics, University of Crete, Voutes, 71003 Heraklion, Greece 

3 Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy 

4 NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899-8562, USA 

5 Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, 

USA 

6 Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, 

University of Augsburg, 86135 Augsburg, Germany 

7 School of Physical Sciences, University of Kent Canterbury, Kent CT2 7NH, UK 

	

Abstract 

Birnessite compounds are stable across a wide range of compositions that produces a remarkable 

diversity in their physical, electrochemical and functional properties. These are hydrated 

analogues of the magnetically frustrated, mixed-valent manganese oxide structures, with general 

formula, NaxMnO2. Here we demonstrate that the direct hydration of layered rock-salt type α-

NaMnO2, with the geometrically frustrated triangular lattice topology, yields the birnessite type 

oxide, Na0.36MnO2·0.2H2O, transforming its magnetic properties. This compound has a much-

expanded interlayer spacing compared to its parent α-NaMnO2 compound. We show that while 

the parent α-NaMnO2 possesses a Néel temperature of 45 K as a result of broken symmetry in 

the Mn3+ sub-lattice, the hydrated derivative undergoes collective spin-freezing at 29 K within 

the Mn3+/Mn4+ sub-lattice. Scaling-law analysis of the frequency dispersion of the AC 

susceptibility, as well as the temperature-dependent, low-field DC magnetization confirm a 

cooperative spin-glass state of strongly interacting spins. This is supported by complementary 
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spectroscopic analysis (HAADF-STEM, EDS, EELS) as well as by a structural investigation 

(high-resolution TEM, X-ray and neutron powder diffraction) that yield insights into the 

chemical and atomic structure modifications. We conclude that the spin-glass state in birnessite 

is driven by the spin-frustration imposed by the underlying triangular lattice topology that is 

further enhanced by the in-plane bond-disorder generated by the mixed-valent character of 

manganese in the layers.  

 

I. INTRODUCTION  

Layered manganese oxides containing triangular magnetic lattice topology have demonstrated 

important phenomena including magnetic frustration [1], unique electronic properties as a result 

of the Jahn-Teller active Mn3+ cations [2], and the development of different polymorphic phases 

[3] with variable magnetic response and redox potentials, overall reflecting a notable interplay 

between microstructure and properties. Due to their modular porosities, high thermal surface area 

and stabilities, these compounds find numerous technological applications such as their use in 

ion sieves, molecular sieves, catalysts [4,5] and electrodes in batteries. One of the most 

prominent characteristics of manganese oxides is that their structure can be used as a host 

material for intercalation and de-intercalation reactions.	  LiMnO2 [6] is a member of the 

manganese oxides family, which is widely known for its use as cathode material in Li 

rechargeable batteries. The replacement of the conventional Li- based compounds with Na- 

based ones, such as birnessite, is of great importance due to the higher abundance and relative 

low cost of sodium compared with lithium. Examples of sodium manganese oxides which have 

been studied as candidates for the aforementioned applications are the Na0.44MnO2 [6,7] and 

recently reported  β-NaMnO2 [8] where tuning the concentration of planar defects [3] determines 

its quality as a high performance cathode material for battery technologies[9].  

A common characteristic of layered manganese oxides is the presence of edge shared 

MnO6 octahedral units, which are separated by metal ions such as Li, Na or K [10]. The 

interlayer distance varies between particular structures from ~4.7 Å in Li1.09Mn0.91O2 [11], to ~7 

Å in the birnessite [12] and ~10 Å in the buserite structure [13]. The hydrated NaMnO2 oxides, 

whose Na/Mn molar ratio is between 0.2-0.7, are known as Na-birnessites [10,14]. Depending on 
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the intercalating cation there are also K, Li [15], Bi, or Zn  based birnessites. The latter have 

recently been discussed to have a critical role in Zn-batteries during the charging process [16]. 

Interestingly, a recent study showed that hydrated manganese oxides such as the 

Na0.71MnO2·0.25H2O, have superior cycling stability and high capacity as a result of the 

presence of water within the interlayer gap [17]. 

There are several studies [11,12,15,18-20] describing the preparation methods of 

birnessites including deintercalation [19], ion exchange [19] and hydrothermal synthesis [18]. 

Here, we evaluate Na-birnessite prepared from direct hydration of pure geometrically frustrated 

α-NaMnO2. The latter is a rock salt type derivative (C2/m, a= 5.67 Å, b= 2.85 Å, c= 5.80 Å, 

β=113.2°)	which may be used as a precursor for the preparation of the cathode material LiMnO2. 

Its structure is composed of sheets of edge-sharing MnO6 octahedra, which are separated by a 

single two-dimensional layer of Na cations. Geometric magnetic frustration develops as the 

Jahn-Teller (J-T) active Mn3+ (3d4, S=2) distorts the in-plane Mn-topology allowing for a 

spatially anisotropic J1-J2 two-dimensional (2D) triangular spin lattice [1]. When spin frustration 

is lifted below 45 K, this system adopts a remarkable nanoscale inhomogeneity in the ground 

state, with Néel order being the outcome of local symmetry-breaking pinning sites [21]. A recent 

study highlights that the formation of different NaMnO2 polymorphs, such as α-NaMnO2 and β-

NaMnO2, is largely driven by the evolution of relative concentration of planar defects in  their 

microstructure [3]. Moreover, alkali substoichiometry, as in α-Na0.7MnO2.25 [22], allows mixing 

Mn3+ and Mn4+ states, therefore determining the important role of structural details in modifying 

the cooperative nature of the electronic/magnetic properties. The latter is demonstrated in a 

spectacular manner with the interplay of Na-vacancies and cooperative J-T effects in Na5/8MnO2 

[23],where a favorable charge ordered state is established. However, despite the plethora of the 

synthesis-based studies found in the literature, there are only few reports related to the magnetic 

properties of the birnessite-based systems [24]. One such study is the reported work on the 

birnessite type MnO2 nanowalls [24] that were found to exhibit a magnetic transition at 9.2 K, 

evident by a bifurcation of the	DC susceptibility zero field cooled and field cooled  (ZFC-FC) 

curves. The magnetic properties of the birnessite type nanowalls were attributed to the 

antiferromagnetic interactions between the Mn3+/Mn4+ cations [24].  
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In this work, we examine the impact of the structure and composition modifications on the 

magnetism after intercalating water-molecules between the MnO6 layers of α-NaMnO2. The 

hydration of the latter resulted in the formation of birnessite-type material with the composition 

Na0.36MnO2·0.2H2O,	 and concomitant enhancement of the interlayer spacing. This drastically 

changes the magnetic properties and the antiferromagnetic ordering of the parent α-NaMnO2 

gives way to a strongly interacting spin glass state. Indeed, extensive DC and AC magnetic 

susceptibility studies corroborate that the system undergoes spin glass freezing below 29 K. We 

demonstrate that the frequency dispersion of the temperature-dependent AC susceptibility 

maximum is described well by the dynamic scaling analysis according to critical slowing down 

(a phenomenological power-law behavior). Based on the experimental evidence we discuss that 

frustration caused by bond disorder, attributed to competing exchange interactions due to random 

distribution of the Mn3+/Mn4+ cations, provides the conditions for such an emerging state.  

 

II. EXPERIMENTAL PROCEDURES 

Polycrystalline powder of Na0.36MnO2·0.2H2O (hereafter referred as Na-birnessite in 

abbreviation) was synthesized by direct hydration of α-NaMnO2
1 and based on a synthesis 

protocol previously reported [25]. The starting material α-NaMnO2 was  prepared by solid state 

reaction: stoichiometric amounts of Na2CO3 and Mn2O3 were mixed, ground, pelletized and 

heated from room temperature up to 750 °C, with a heating rate of 3 °C/min under Argon 

atmosphere [3]. After holding at high temperature for 60 hrs the pellet was cooled to room 

temperature. The final product was exposed to ambient atmosphere for two weeks. This ensured 

the homogeneous hydration of α-NaMnO2 within the interlayer gaps, which leads to the 

formation of the Na-birnessite compound. Frequent mixing of the powder was undertaken so that 

all crystallites would become exposed to air. This promoted the homogeneity of the final 

compound, while the powder converted from the host framework α-NaMnO2 to the Na-

birnessite. 

X-Ray powder diffraction (XRPD) experiments were carried out on a Rigaku [26] 

D/MAX-2000H rotating Cu anode diffractometer (λ=1.5406 Å). Samples were prepared for 

TEM investigations by mild sonication in ethanol and drop-casting onto Cu grids covered with a 
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holey carbon film. High-resolution transmission electron microscopy (HRTEM), electron 

energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS) analyses 

were carried out using a Jeol JEM 2200FS instrument, equipped with a Schottky emitter operated 

at 200 kV, a CEOS spherical aberration corrector of the objective lens allowing for a spatial 

resolution of 0.9 Å, and an in-column imaging filter (Ω-type). EELS analyses were carried out in 

TEM mode (convergence and collection angles 5.5 mrad and 1 mrad, respectively, 0.4 eV/pixel 

dispersion) and the quantification was carried out using EELS Model [27]. EDS mapping and 

compositional quantification was determined in scanning TEM (STEM)-high angle annular dark 

field (HAADF) imaging mode, using a Bruker Quantax 400 system with a 60 mm2 XFlash 5060 

silicon drift detector. Thermal analysis (Thermogravimetric – TGA and Differential Thermal 

Analysis –  DTA) was performed on a SDT-Q600 TA instruments system under Ar-gas flow. 

Neutron Powder Diffraction (NPD) data were collected using the high-resolution powder 

diffractometer BT-1 at the National Institute of Standards and Technology Center for Neutron 

Research (NCNR), with a wavelength of 1.5406 Å and 60’ collimation from the Cu-311 

monochromator. 

Magnetic susceptibility (DC and AC) was measured on a Superconducting Quantum 

Interference Device (SQUID) magnetometer (Quantum Design MPMS-XL5) under various 

protocols and magnetic fields (H= 2.5 mT – 100 mT). The frequency dependent (f= 47 Hz – 901 

Hz) AC susceptibility data, which were analyzed by appropriate phenomenological laws, were 

collected using the temperature sweep mode of the MPMS. This mode was chosen as a more 

appropriate one, since it affects less the thermodynamic and time dependent phenomenon of the 

encountered spin glass transition. 

 

III. RESULTS AND DISCUSSION 

A. Transmission Electron Microscopy studies (EDS, HRTEM, EELS) 

EDS quantification has been performed in STEM mode	by the Cliff-Lorimer method, combined 

with HAADF-STEM imaging to determine the distribution of the Na, Mn and O atoms in the 

Na-birnessite sample. While EDS mapping typically shows a homogeneous distribution of the 

Mn, O and Na over individual crystals (Figure 1), atomic quantification over several crystals 
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results in an average Na/Mn ratio of 0.36(±0.10). Due to the low accuracy of EDS for 

quantification of light elements, the O/Mn atomic ratio was instead obtained as 2.2(±0.5) from 

EELS analyses over three different crystals of the Na-birnessite. According to elemental 

analyses, the chemical formula corresponding to the hydrated compound was then estimated to 

be Na0.36MnO2·0.2H2O. 

Together with the aforementioned results of compositional analysis, a HRTEM study of 

individual crystallites was fundamental for the identification of the crystal structure of the Na- 

birnessite phase. The images reveal the	presence of µm scale crystals in the hydrated compound 

whose structure matched well that reported for the Na0.3MnO2·0.93H2O [28] birnessite. Figure 2 

(and Figure S1) presents one such crystal which has been used for the analysis. The fast Fourier 

transform (FFT; Fig. 2b) of the area in Fig. 2c matches to the [00-1] orientation of the 

Na0.3MnO2·0.93H2O phase, with a 6% dilation compared to the reported cell parameters. 

According to the FFT, analysis the hydrated compound crystallizes in the triclinic system (space 

group C1), with the following cell parameters:  a= 5.53(1) Å, b= 3.11(6) Å, c= 7.80(1) Å, α= 

89.492(13)°, β= 103.136(12)°, γ= 89.929(10)°. Stacking faults appear parallel to the {210} 

planes (Fig. 2c). These structural defects are not parallel to the {100} planes, in which H2O 

molecules are inserted in the structure. The structural modifications could result from Mn 

vacancies. Noticeably, the c parameter has increased in the hydrated final product by ~2 Å in 

comparison with that of the parent host α-NaMnO2 (c~ 5.8 Å, at room temperature).  This is 

nicely illustrated by means of XRPD (Figure 3), in which the 001 Bragg reflection of α-NaMnO2 

is shifted towards lower angles when the Na-birnessite compound is formed. A schematic 

representation of the ideal structure shown in Figure 4 depicts the hydrated material’s in-plane 

triangular Mn sub-lattice topology.  

Furthermore, the manganese L2,3 core-loss EEL spectrum of the Na-birnessite was recorded 

(Figure S2) and carefully analyzed based on the white line ratio method [29]. According to this 

method, the integral intensity ratio of the L3 and L2 excitation peaks of a transition metal is 

correlated to its formal oxidation state [29-35]. The analysis resulted in the average oxidation 

state of 3.4, postulating a mixed valent (Mn3+/Mn4+) character for the manganese cations. 
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B. Thermogravimetric Analysis 

Measurements of the weight-loss versus temperature were carried out from room temperature up 

to 1100 °C with a small quantity (<10 mg) of the Na-birnessite sample that was heated up with a 

constant rate of 20 °C/min. The results are shown in Figure 5. Above 100 °C there is a 13% 

decrease in the weight up to 500 °C, which is attributed to the removal of H2O from the Mn-O 

sheets. Correspondingly the DTA graph exhibits a sharp endothermic peak around 140 °C due to 

the dehydration of the Na-birnessite. Further heating between 500 - 800 °C results in about 4 % 

reduction of the compound’s weight that is accompanied by a broad dip in the DTA curve, which 

starts above 400 °C and an endothermic peak at 642 °C. The changes in this temperature regime 

may be caused by a transformation of birnessite to other layered polymorphs such as γ-MnO2, 

and its subsequent partial conversion to Mn2O3, inferring reduction of the tetravalent manganese 

correlated also with the release of oxygen [18]. Due to the disproportionation of manganese 

valence state, analogous observation have been made in the TG-DTA measurements for Na-

deficient α-Na0.7MnO2.25 [22], as well as other birnessite-like systems including 

(H0.22MnO2·0.62H2O)	 [36], and Na4Mn14O27 9H2O [14].  The additional weight loss (∼2%) up to 

1000 °C, likely relates to redox/extraction reactions due to the increased mobility of alkali ions 

in forming high-temperature manganese polymorphs. In view of this, powder XRD was 

performed on the product formed immediately after the TGA-DTA experiment, and compared to 

the as-synthesized compound. The XRPD patterns presented in Figure 6 indicate that the sample 

heated up to 1100 °C in the TGA reverts back to layered α-NaMnO2, although impurities of β-

NaMnO2 and Mn3O4 phases are also present. The absence of the (001) reflection in Na-birnessite 

after the heating stage, confirms the elimination of intercalated H2O in the final product. 

 

C. Neutron Powder Diffraction  

NPD patterns were taken at different temperatures, namely at 5, 20, 50 and 300 K (Figure 7), 

with the purpose to identify any possible phase transitions of either structural or magnetic origin. 

Although the high background due to the large incoherent scattering cross section of water 

protons may hinder low-angle diffuse scattering that would point to short-range or low-

dimensional spin-correlations, it is important to note the lack of any additional magnetic Bragg 
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scattering in the low-temperature patterns at 5 K and 20 K. This qualitative observation 

substantiates the absence of long-range magnetic order confirming that Na-birnessite features a 

magnetically disordered ground state, presumably stemming from spin-frustration caused by 

competing exchange interactions due to topology and/or site disorder. This is in contrast to the 

low-angle magnetic Bragg reflections revealed in Na-deficient NaxMnO2 (x= 5/8), where charge-

ordering of Na and Mn stripes yield a fascinating low-temperature magnetic ordering below 

about 60 K [23].  

 

D. Static Magnetic Susceptibility  

The Na-birnessite is synthesized through chemical transformation of the α-NaMnO2 host 

framework. Our studies provide new evidence for the substantial changes in the magnetic 

properties of α-NaMnO2 when converted to Νa-birnessite. Figure 8 compares the ZFC DC 

susceptibility (20 mT) for the two materials.  The magnetic susceptibility of α-NaMnO2 does not 

show a distinct magnetic transition, and rather a broad hump at high temperatures indicative of 

low dimensional magnetism is seen [37]. On the contrary, the magnetic susceptibility of Na-

birnessite shows a sharp peak at 29 K, strongly suggesting that the compound undergoes a 

magnetic transition. We note that in the AMnO2 rock-salt type related derivatives, solid-state 

NMR has shown that the orbital overlap and charge transfer from Mn3+ to the interlayer cations 

(A= Cu, Na) is much larger in CuMnO2 than in NaMnO2 [38]. This corroborates to the role of 

interlayer species controlling the Néel state, setting in at 45 K for Na and at 65 K for Cu, 

however, accompanied by a differing ferromagnetic (FM) and antiferromagnetic (AFM) 

modification of the Mn-Mn interplane couplings, respectively. In view of these facts, the 

qualitatively different features in χ(T) and the nature of the magnetism in α-NaMnO2 and Νa-

birnessite may be related to the critical modification of the interlayer Mn-Mn interaction strength 

along the c-axis, stemming from the different nature of the interlayer motifs accommodated 

therein.  Furthermore, the static (DC) magnetic susceptibility of the Na-birnessite has been 

measured on the basis of a ZFC-FC protocol and under 20 mT external magnetic field (Figure 9).  

Below 29 K there is a significant bifurcation between ZFC and FC curves that seems to infer a 

collective spin freezing, and no long-range magnetic ordered state, in accord with the absence of 

magnetic Bragg peaks verified by NPD below this transition point. It is worth noting that many 
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compounds which undergo a spin-glass transition, such as the La0.5Sr0.5CoO3 [39], CuFe0.5V0.5O2 

[40], Co1-xMnxCl2·H2O [41], and most importantly, the archetypal spin-glass CuMn [42] lack 

long-range magnetic order, but exhibit both the sharp maximum in the ZFC susceptibility, 

χZFC(T), as well as the divergence between the ZFC and FC curves below the Tf (where Tf stands 

for the spin-freezing temperature). In the following (sections E and F) we will provide more 

detailed evidence for the spin-glass magnetism in Na-birnessite.  

Fitting of χ(T) for Na-birnessite on the basis of the Curie-Weiss law χ = C/(T− θ!") is 

presented in the inset of Figure 9. The derived values provide an estimate for the paramagnetic 

effective moment, µeff = 3.401(2) µΒ and the Weiss temperature, θcw = -64.28 (1) K. It is 

intriguing to analyze how the µeff for the Na-birnessite is justified in view of the formal spin-only 

effective moments of Mn3+ (d4) in its low-spin (𝑡!!! 𝑒!!; S= 1; 2.83 µΒ) and high-spin (𝑡!!! 𝑒!!; S= 2; 

4.9 µΒ) configurations, as well as that of Mn4+ (𝑡!!! 𝑒!!; S= 3/2; 3.87 µΒ). For example, in the 

chemically related Na0.7MnO2 the effective moment was estimated at 4.77 µΒ (θcw = -411 K), 

closely resembling Mn3+ in a high spin-state [43]. The µeff for the Na-birnessite, on the other 

hand, may be attributed to a combination of two available valence states for the manganese 

cations, whose ratio Mn4+/Mn3+ has been estimated as ∼0.98 (Supplemental Material, S2) [44] . 

Literature reports suggest that when the Mn4+/Mn3+ ratio is above a critical value of 0.4-0.5 [45], 

Mn3+ ions prefer the low-spin state; a case that appears to hold also for Na-birnessite. The 

unusual low-spin Mn3+ state has also been predicted by DFT, and confirmed by magnetic 

susceptibility studies on Cr-doped rhombohedral LiMnO2 (µeff = 2.97 µΒ)  [46]. Moreover, its 

occurrence in closely related porous manganese oxide octahedral sieves [47] has been claimed to 

emerge from the suppression of the Jahn-Teller distortion caused by the influence of higher 

valence cations such as Mn4+
. It is worth noting that in the parent oxide α-NaMnO2, which is not 

a mixed valent compound, the Jahn-Teller active Mn3+ cations adopt the high-spin state alone 

[1], with antiferromagnetic long-range order at low temperatures. In view of the above, Na-

birnessite and its chemically related dioxides, Na0.7MnO2 (hexagonal) [43] and α-K0.087MnO2 

(tetragonal) [48], seem to support both site-disorder (Mn3+ and Mn4+ mixture) induced by sub-

stoichiometry in the interlayer sites as well as frustration due to the underlying triangular 

sublattice that have both been claimed as the microscopic features central to the emerging spin 

glass-like phase transitions.  
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E. Dynamic Magnetic Susceptibility  

The transition to the spin glass state is a dynamical process. Taking this into account, the 

signature for glassiness is derived and affirmed by AC magnetic susceptibility experiments. 

Figure 10 shows the real χ'(T) and imaginary χ''(T) parts of the susceptibility measured at five 

frequencies (f = 47, 77, 97, 217, 901 Hz) upon a ZFC mode under a 0.3 mT AC  driving field. 

There are two notable characteristics. First, the peak observed in both the real and the imaginary 

parts of the magnetic susceptibility decreases with increasing frequency. Second, the frequency 

dependent transition temperature, Tf, shifts to higher values as the frequency increases, similarly 

with the magnetic dynamics of other known spin-glass systems, such as for example, the Ge1-

xMnx [49] or the La(Fe1-xMnx)11.4Si1.6 compounds [50]. In view of this, quantifying the 

frequency shift of the Tf, measured as the relative variation of χ'(T) peak-temperature position 

per frequency (ω= 2πf) decade  

                                           𝐾 = ∆!!
!!∆(!"#$)

                                                       (1) 

provides some phenomenological description on the strength of interactions and offers a good 

criterion for distinguishing a spin-glass behaviour from that of a superparamagnet. This is 

known as the Mydosh parameter [42,51], which for Na-birnessite yields K~ 0.007. It is worth 

noting that K falls in the range expected for spin-glasses (0.005< K< 0.06) [42,52-54] and is 

comparable with those values obtained for the prototypical, cooperative spin-glasses of CuMn 

(0.005) [42] and AgMn (0.006) [42]. On the contrary, K for superparamagnets is an order of 

magnitude larger, varying from 0.1-0.3 upon gradual blocking of moments [51]; for example 

K= 0.28 for the α-(Ho2O3)(B2O3) superparamagnet [42]. Therefore, the estimated Mydosh 

parameter excludes the scenario of the superparamagnetism for Na-birnessite. 

It is well-accepted though to verify the spin-fluctuations and their strength against the 

frequency dispersion of the χ'(T) maximum. The description of the latter by the available 

phenomenological laws (vide infra) evaluates the temperature dependence of the spin relaxation 

time τ, which in turn, provides information on the underlined dynamics. In view of these, the 

Arrhenius law is utilized to describe weakly or non-interacting magnetic moments [42]: 
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                                                  τ= το exp
!!
!!!

                                                         (2)                                                  

where Ea is the activation energy determined by the energy needed to exit out of a local potential 

well [55], το is the “attempt” time [55],[56] and T stands for the frequency dependent χ'(T) peak-

temperature position, Tm from here onwards. However, the analysis on the basis of the Arrhenius 

law (Supplemental Material,	S3) [44] resulted in physically unreasonable parameters, namely, 

τo∼ 10-151  sec (± 10-159 sec)  and  Ea
kB

 = 10254(567) K (Supplemental Material, Figure S3) [44]. 

This failure adds further support to the argument that the spin dynamics in Na-birnessite is not 

dictated by superparamagnetic blocking of spins, but instead magnetic moments with elevated 

strength of interactions may come into play. For this, the Vogel-Fulcher law for intermediate 

strength interactions may be another appropriate candidate phenomenological description of 

spin-fluctuations [57]:  

                                                           τ= το exp
!! !!
!!!!!

                                                               (3)                           

where Tm is the frequency-dependent peak temperature for the real part of χ'(T), and Tf is the 

spin-glass freezing temperature that corresponds to a qualitative estimate of the inter-site 

interaction energy strength. However, the best fit from the Vogel-Fulcher analysis resulted in Tf= 

29.64 K, Ea
kB

= 2.09(1) K and an attempt time, το= 5.09×10-6 (±1.02 ×10-6sec) (Supplemental 

Material,	Figure S4) [44], unreasonably long for the material’s nature.  This τ0 falls in the range 

expected for superspin glasses (∼10-6 sec) entailing magnetic nanoparticles [58,59] with dipole-

dipole interactions instead of the shorter spin-flip times (10-9-10-13 sec) [42] anticipated for bulk 

systems with atomic Mn3+/Mn4+ magnetic moments.   

The inadequacy of both Arrhenius and Vogel-Fulcher laws to describe the collective spin-

freezing close to Tf , led us to infer that even stronger magnetic interactions may govern the spin-

dynamics in the Na-birnessite compound and are the likely reason for the observed deviations 

from the phenomenology described above. The dynamics of a spin-glass system with strong 

underlying magnetic interactions is in this case adequately described by the dynamic scaling 

theory.[60] This approach, based on the standard theory for the dynamical slowing down of spin 
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dynamics near the freezing point Tf, considers a divergence of the relaxation time (τ = 1/ω ) at a 

finite temperature (Tf),  which can be described by the following critical power-law:                                        

                                                              τ= τo 
!!

!!!!!

!"
                                                       (4) 

where τo is the characteristic attempt time that corresponds to the time needed for a single spin to 

undergo a transition from the paramagnetic to the frozen spin-glass state, Tm is the frequency 

dependent χ'(T) peak-temperature position, and Tf is the static spin glass transition temperature 

(equivalent to the freezing temperature when f→0), while the critical exponent, zv, has 

acceptable values between 4 and 12 for typical strongly interacting spin glasses [42].  

The power-law, scaling analysis of the frequency dispersion of the χ'(T) maximum is 

presented as a linear fit [61] in the inset of  Figure 10a.  The value of Tf has been adjusted 

manually in order to obtain the best linear fit in the log(τ) versus log[Tf/Tm-Tf] plot, while the zv 

and τo were derived from the least-square fitting (Supplemental Material, S4) [44] . The best fit 

for the Na-birnessite yielded the following quantities: Tf = 29.64 K, το =4.38×10-13 (±0.49×10-13) 

sec and zv = 5.0(1). Previous investigations have suggested that some variation of these dynamic 

critical scaling parameters may infer materials of differing spin dimensionality [62-64]. For 

example, short-range insulating spin glasses, such as Fe0.5Mn0.5TiO3 having Ising character and 

the Heisenberg-like (isotropic) CdCr1.7In0.3S4, present a zv = 10.5 and zv = 7, respectively, 

whereas the characteristic attempt times of spin-flip may be much larger than 10-12 sec for the 

former and smaller than that for the latter. The aforementioned analysis of the temperature-shift 

of the AC susceptibility cusp with the frequency (ω), together with the evidence for 

irreversibility (bifurcation) in the DC susceptibility, corroborate that Na-birnessite can be 

thought of as a magnetic system that resembles the cooperative behavior of other archetypical 

spin glasses (cf. CuMn, zv = 5.5 and το∼ 10-12 sec) [42,62,65].  

 

F. Field-Dependence of Magnetic Susceptibility 

In order to further investigate the low temperature transition and bearing in mind that in a spin-

glass the susceptibility cusp is very sensitive to an external applied magnetic field, χ(T) was 

studied under such a stimulus. Edwards and Anderson [66] predicted that the susceptibility field-
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dependent transition cusps become smeared out even under low magnetic fields. Indeed, this 

phenomenon is confirmed for the Na-birnessite. Figure 11 presents the ZFC-FC χ(T) data 

measured at magnetic fields up to 100 mT. The sharpness of the transition is smeared out when 

the field is increased progressively (∼20 mT) until it becomes almost flat for fields of ∼100 mT. 

Similar behavior has been observed in a number of magnetic systems that undergo a spin-glass 

freezing, such as the perovskites La0.5Sr0.5CoO3[39]  and Eu0.58S0.42MnO3[67], as well as in 

chemically diverse intermetallic compounds, such as PrRuSi3 [68]. In addition, the transition 

temperature, Tf, is shifted to lower values as the external magnetic field increases. A possible 

phase diagram for the crossover between paramagnetic and glassy states can then be roughly 

sketched (Figure 12). This DC field-dependence of Tf(H) [39,50,69], has been assessed on the 

basis of the mean-free model of Sherrington and Kirkpatrick [70]:  

                                                                 
!!(!)!!!(!)

!!(!)
∝ 𝐻!                                                      (5) 

It broadly represents a critical line that defines the onset of irreversibility when entering the spin 

glass state in the H-T phase space. In a Heisenberg (isotropic) spin system, the transition occurs 

along the Gabay-Toulouse [71] (GT) line for δ = 2 [72], while for an Ising type, the transition 

occurs along the de Almeida-Thouless [73] (AT) line for values of δ = 2/3. From the least-square 

fitting (inset, Figure 12), Na-birnessite appears to follow the AT-like line of H2/3, instead of GT 

line (Supplemental Material,	 S6) [44] for isotropic spins, a behavior that might have been 

inferred by the analysis of the dynamical scaling exponent (zv) and the Mydosh parameter. This 

likely discrepancy may be reconciled by claiming the role of weak, random anisotropy (e.g. 

Dzyaloshinsky-Moriya, single-ion etc) that is usually present in real systems [74,75]. Mean-field 

calculations have predicted that when anisotropic interactions are present, an otherwise 

Heisenberg spin-glass exhibits an Ising-like behavior in the low-field limit [76,77]. This has been 

verified experimentally in spin glasses of diverse chemical nature, ranging from the archetype 

metallic Ruderman-Kittel-Kasuya-Yosida (RKKY) CuMn [78] system to short-range interacting, 

insulating CdCr1.7In0.3S4 [79] and semiconducting Cd0.62Mn0.38Te [80] compounds. The present 

experimental data in Na-birnessite could suggest that anisotropic interactions should be taken 

into account, but on the other hand, can also imply that such conventional experiments may not 

be sufficiently sensitive [75] to the freezing of transverse spin degrees of freedom that are 

identifying features of Heisenberg spin glasses, consistent with a transition line of the GT type. 
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Nevertheless, further experimental evidence from the critical behaviour in the field-temperature 

phase diagram and the associated critical dynamics (e.g. isothermal time decay of AC 

susceptibility), may be required in order to verify the dimensionality of the spin interactions in 

the system under study. 

 

G. Interactions in Related Manganese Dioxides  

An interesting reference system, owing to its chemical affinity, is the hexagonal Na0.7MnO2 

(P63/mmc; a= 2.811 Å, c= 11.118 Å) layered derivative that has been identified to undergo a 

spin-glass transition at Tf ≤ 39 K [43] due to random distribution of the Mn3+/Mn4+ cations in a 

frustrated triangular lattice topology. Consequently, glassiness develops and reflects on the DC 

susceptibility, with common features between the two materials pertaining to the ZFC-FC 

divergence in χ(T), the elimination of the ZFC-FC χ(T) maximum upon the application of 

moderate external magnetic fields (H< 500 mT), and the comparable Mydosh parameter, which 

was calculated as K= 0.004 for Na0.7MnO2. Interestingly, the bifurcation of the ZFC/FC 

susceptibilities below Tf indicates weakly coupled ferromagnetic species for both, with a 

comparable coercive field of about 0.1 T in the 5-10 K region (Figure S5 and Figure 4 of ref. 

[43]). To rationalize this, the different degree of Mn3+:Mn4+ disproportionation in the two 

systems needs to be considered, namely, 0.86:0.14 for Na0.7MnO2 versus 0.51:0.49 for Na-

birnessite (Supplemental Material, S2) [44]. Although a rigorous evaluation of the relative 

magnitude of interactions between any pair of Mn-cations is difficult given the large number of 

individual microscopic processes involved in the magnetic exchange pathways, one expects that 

the increased abundance of Mn4+ states in Na-birnessite will enhance ferromagnetic interactions 

(as Mn4+-O-Mn4+ 90-degree superexchange is ferromagnetic) [81], in analogy to the closely 

related layered Na5/8MnO2 [23]. Consequently, with the weight of the interactions likely shifted 

to ferromagnetic-like (against antiferromagnetic) correlations, the reduction in the Curie-Weiss 

temperature for Na-birnessite is also anticipated (i.e. -64 K vs. -411 K for Na0.7MnO2). The 

material offers a test-bed to probe subtle details of competing processes in multivalent Mn-

systems, thus going beyond cooperative magnetism and possibly into emerging rechargeable 

battery technologies. In view of the latter, electron-driven (Jahn-Teller) lattice transformations 

met in NaxMnO2 derivatives deserve to be studied as a reason to understand how to avoid 
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impairing [23,82,83] the electrochemical properties of candidate layered oxides for sodium-ion 

rechargeable cathodes.   

 

On the Origin of the Spin Glass State in Na-birnessite.  

In chemically related dioxides, such as Na0.7MnO2 and α-K0.087MnO2, with frustrated triangular 

Mn topology, alkali meal off-stoichiometry in the interlayer sites imposes disorder in the 

manganese sub-lattice by random generation of Mn3+ and Mn4+ states (site disorder) [43,48]. 

This, promotes bond disorder (i.e. the sign of the exchange interaction between nearest-

neighbors may flip at random from AFM to FM and vice-versa), and therefore raises frustration 

[84]. In view of the latter, it is useful to highlight some of the observed microscopic 

characteristics of the Na-birnessite structure. The afore-mentioned avenues for site disorder (and 

frustration) in the compound under the present study would be enhanced due to possible 

vacancies in the MnO6 layers. For example, the Mn vacancies, whether attributed to the Mn3+ or 

Mn4+ cations, would result in the disruption of the long-range periodicity of the magnetic 

interactions. Imperfections of the crystal structure and specifically, stacking-faults were indeed 

revealed by the HRTEM experiments (Figure 2c). Planar defects of this type have a significant 

impact as they alter the exchange pathways, the relative number and strength of exchange 

interactions as well as the type of the magnetic coupling (AFM or FM). Under these conditions 

the development of various competing exchange interactions and their interplay would give rise 

to frustration. An empirical way to estimate the degree of frustration is to calculate the ratio f= - 

θcw/TN, where TN is a temperature at which the system would order cooperatively. The values of  

f>1 imply that the material is magnetically frustrated [85]. Regarding the compound under study, 

f = 2.21 (with θcw = -64.28 K and TN = 29 K), a value in accord with the previous arguments. 

Although the triangular in-plane lattice topology triggers magnetic frustration per se, the 

simultaneous presence of Mn3+/Mn4+ cations that are randomly distributed within the MnO6 

layers is an additional avenue generating competing exchange interactions, in turn promoting 

spin frustration and collective spin-glass freezing in the hydrated variant of the α-NaMnO2 

antiferromagnet. 
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V.CONCLUSIONS 

In summary, we have shown a paradigm where facile, hydration preparative routes to layered 

sodium manganese dioxides have driven significant alteration of the crystal structure, leading to 

fundamental changes in the electronic character and the magnetic state, therefore opening 

prospects for enhanced functional behavior. Specifically, the insertion of H2O molecules in the 

interlayer spacing of the two-dimensional frustrated antiferromagnet α-NaMnO2 leads to the 

formation of the Na0.36MnO2·0.2H2O derivative with enhanced MnO6-layer separation and 

mixed-valency that offers favorable redox attributes for technologically useful, rechargeable 

battery cathode materials. From fundamental point of view, the intercalation of water in α-

NaMnO2 has a dramatic impact on the antiferromagnetic ground state of the parent compound 

(TN= 45 K). Na-birnessite is shown to enter a cooperative spin-frozen state, at Tf= 29 K, where 

the critical dynamics of strongly interacting spins is governed by the divergence of their 

relaxation times. This is in agreement with the power-law, scaling theory that dictates the 

magnetic dynamics before the collective spin-glass freezing. The variation in the magnetic 

response, imposed by the structural transformation and the chemically driven in-plane defect 

environment due to crystal H2O, highlight the critical impact of topology and site disorder on 

frustrated magnetism. 
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FIG. 1. HAADF-STEM image of a typical Na-birnessite crystal and corresponding EDS maps 

showing the homogeneous distribution of Mn, Na and O over it. 
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FIG. 2. (a) HRTEM image of a typical crystallite in the Na-birnessite sample, suspended in 

vacuum and (b) fast Fourier transform (FFT) of the area in (c). The observed diffraction spot-

pattern matches the [122]-oriented triclinic Na0.3MnO2·0.93H2O lattice, with 6% cell expansion.	
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FIG. 3. Low-angle part of the XRPD patterns for α-NaMnO2 (a) and the Na-birnessite (b), 

showing the characteristic shift of the 001 Bragg reflection upon hydration; (*), non-converted 

parent α-NaMnO2.  
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FIG. 4. Schematic representation of the crystal structure of the Na-birnessite: the manganese, 

oxygen, sodium atoms are represented with the blue, red and green spheres; the H2O molecules 

in the interlayer space are shown with the turquoise spheres; cell-edges are represented with the 

black lines.	 For ease of visualization, Na atoms and H2O molecules, occupying identical 

positions in the reported structure, are displayed in alternating positions in the model (ICSD 

262208).	 
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FIG. 5. (a) Thermogravimetric (TGA) and (b) heat-flow (DTA) measurements for the Na-

birnessite up to 1100 °C. 
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FIG. 6. Comparison of the XRPD patterns of the Na0.3MnO2·0.2H2O birnessite’s polycrystalline 

powder (a) and the dehydrated compound (b) taken after the TGA experiment performed up to 

1100° C. Indexing of the reflections has been done on the basis of the α-NaMnO2 (ICSD 16270), 

β-NaMnO2 (ICSD 16271) and the Na0.3MnO2·0.93H2O (ICSD 262208) phases, whose Bragg 

reflections are indicated with red, blue and green tick marks, respectively. Bragg peaks attributed 

to the Mn3O4 (ICSD 68174, ICSD 1514104) are left without tick marks for ease of comparison.	
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FIG. 7. A series of neutron powder diffraction patterns for Na-birnessite obtained at 5, 20, 50 

and 300 K. The absence of reflections of magnetic origin in the low-temperature region, 

indicates that no long-range magnetic order develops below 29 K.		
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FIG.  8. The temperature evolution of the zero-field cooled (ZFC) DC magnetic susceptibility 

for (a) α-NaMnO2 and (b) Na-birnessite, under an applied field of 20 mT. 
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FIG. 9.	Low-temperature evolution of the ZFC-FC DC susceptibilities for the Na- birnessite. 

Note: Characteristic sharp peak at Tf= 29 K in the ZFC protocol and bifurcation between the 

ZFC and FC curves below the Tf. Inset: Curie-Weiss fit (red continuous line) of the reciprocal 

susceptibility (blue data points). 

 

 

 



26 

	

	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 10. Real (χ') and imaginary (χ'') parts of the AC susceptibility versus temperature at five 

different frequencies, under an AC drive field 0.3 mT. Inset: Power-law, scaling analysis of the 

frequency dispersion of the real part χ' (T) peak temperature position 
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FIG. 11.	 Field-dependence of the ZFC-FC DC magnetic susceptibility of the Na-birnessite 

measured under magnetic fields ranging from 2.5 - 100 mT. The ‘cusp’ at 29 K is eliminated as 

the external magnetic field is increased.	
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FIG. 12. The magnetic field dependence of the freezing temperature (Tf) in the Na-birnessite 

depicts a relevant phase-diagram for the transition between the PM (paramagnetic) and SG (spin 

glass) states. Inset: Least square fit of the reduced temperature in the de Almeida-Thouless 

mean-free model (equation 5). 
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