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Abstract

We show that a slowly decaying current pulse can lead to nearly deterministic precessional switch-

ing in the presence of noise. We consider a biaxial macrospin, with an easy axis in the plane and

a hard axis out-of-the plane, typical of thin film nanomagnets patterned into asymmetric shapes.

Out-of-plane precessional magnetization orbits are excited with a current pulse with a component

of spin polarization normal to the film plane. By numerically integrating the stochastic Landau-

Lifshitz-Gilbert-Slonczewski equation we show that thermal noise leads to strong dephasing of the

magnetization orbits. However, an adiabatically decreasing pulse amplitude overwhelmingly leads

to magnetization reversal, with a final state that only depends on the pulse polarity, not on the pulse

amplitude. We develop an analytic model to explain this phenomena and to determine the pulse

decay time necessary for adiabatic magnetization relaxation and thus precessional magnetization

switching.
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I. INTRODUCTION

The study of spin current driven magnetic excitations has been a very active area of re-

search over the past decade and has significant technological applications1,2. Specifically, the

excitation of magnetization precession has led to current controlled oscillators that operate

at GHz frequencies3 and spin-current driven magnetization reversal has led to the develop-

ment of non-volatile magnetic memory devices4. Spin currents create spin-transfer torques

(STT) that provide a means of exciting and driving non-linear magnetization dynamics of

nanometer scale magnets (or nanomagnets). The magnetization dynamics is also strongly

affected by the presence of thermal noise which can alter the stability of magnetization states

and the nature of the spin-transfer induced dynamics, including precessional magnetization

orbits.

Typically the magnetization dynamics consist of a fast gyromagnetic precession, whose

amplitude slowly changes over time due to spin torque and thermal effects. This separa-

tion of timescales can be used to study analytically the dynamical and thermal stability of

nanomagnets subject to spin-polarized currents5–7, and allows for a reduction in complex-

ity of the stochastic Landau-Lifshitz-Gilbert-Slonczewski (sLLGS) equations to a simpler

one-dimensional stochastic differential equation. In the absence of damping, spin torque,

and thermal noise, the dynamics conserve the macrospin energy, but in their presence a

macrospin’s dynamical evolution deviates from a constant energy trajectory.

Thus an analysis of the noise-induced dynamics obtained by averaging the magnetization

equations over constant-energy orbits provides significant new insights. Some of the authors

of this paper have done this for a biaxial nanomagnet with an easy axis in the film plane and

a hard axis out of the plane, typical of thin film nanomagnets patterned into asymmetric

shapes (e.g. an ellipse)6,7. Relevant dynamical scenarios have been shown to depend on

the ratio between hard and easy axis anisotropies. The range of currents for which limit

cycles exist was found, and the constant energy orbit averaging approach was used to study

the magnetization dynamics of spin-torque oscillators, both in the presence of thermal noise

and as a function of the spin-polarization angle in a biaxial macrospin model6. For this case

analytical expressions were derived for currents that generate and sustain the out-of-plane

precessional states. Further, there is a critical angle of the spin polarization necessary for

the occurrence of such states. We also predicted a hysteretic response to applied current7,
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which were tested in experiments on orthogonal spin-transfer devices 8, where the predicted

hysteretic transitions into an intermediate resistance state were observed9.

Here we consider STT magnetization switching that occurs by out-of-plane precessional

magnetization dynamics, as can occur in an orthogonal spin-transfer device. For this case

it was widely thought that thermal and other noise sources would lead to dephasing of the

precessional motion and thus an indeterminate magnetic state after the pulse ends. Here we

demonstrate and explain a rather unexpected result that when the decay of a spin-current

pulse is sufficiently slow the switching is very reliable even in the presence of noise, with

the current pulse polarity determining the final magnetization state. After introducing our

model for a biaxial nanomagnet and its dynamical modes we consider the effect of the

pulse decay on the magnetization’s final state. We determine the switching probability by

numerically integrating the sLLGS equations and then describe our analytic model which

explains the origin of the highly reliable switching.

The paper is structured as follows. In section II we introduce the basic physics of the

biaxial macrospin model, its energy landscape as well as dynamical effects of spin-transfer

torques and thermal noise. We discuss the energy of the magnetization orbits that separates

in- and out-of-plane precessional states (the separatrix), summarizing the previously studied

features of the model such as switching behavior, out-of-plane precessional steady states and

critical currents. We then present numerical simulations of current induced magnetization

dynamics, demonstrating that a slowly decaying current pulse can lead to reliable switching

of the magnetization. Subsequently, we introduce a model that can qualitatively explain

this phenomenon. In section III we project the macrospin’s dynamical equation onto the

separatrix and study these projected dynamics as a function of current intensity. In so doing

we show how, for current intensities greater than a threshold, the dynamics orthogonal to

the separatrix lead to a net drift of the magnetization towards one of the two in-plane

basins depending on the current polarity. We call this effect “orthogonal drift biasing”.

This biasing favors magnetization relaxation into a given in-plane basin as long as the

currents driving it are above a threshold as it transits across the separatrix. In section IV we

employ the constant energy orbit averaging techniques to show that if pulse decay timescales

are larger than those for magnetization relaxation onto a given constant energy orbit, the

magnetization will approach the separatrix adiabatically following a continuous sequence

of steady-state orbits. We argue that this explains our numerical results on magnetization
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switching with exponentially decaying current pulses. Finally, in section VI we show in

numerical simulations that the switching behavior depends on the decay time of the pulse

and not on the maximum current intensities.

II. MACROSPIN MODEL WITH SPIN-TRANSFER TORQUES

We study a macrospin with magnetization M of constant modulus (Ms = |M|) with a

biaxial magnetic anisotropy, with easy direction along the x̂-axis and hard direction along

ẑ. Its energy landscape depends on the projection of the magnetization onto these two

axes17. We write the easy and hard axis anisotropy energies as KE = µ0MsHKV/2 and

KH = µ0M
2
effV , where HK is the anisotropy field, Meff is the effective easy-plane anisotropy

field, which is of order Ms when this anisotropy has its origin only in the shape of the

magnetic element10, and V is the volume of the magnetic element. In the absence of external

magnetic fields and magnetic dipole fields arising from other magnetic layers, the energy can

be written as:

E(m) = KE

[
Dm2

z −m2
x

]
, (1)

where m = M/|M| is the normalized magnetization vector and D ≡ KH/KE =

M2
eff/(MsHK) is a dimensionless ratio of the hard and easy axis anisotropies. mx and mz

are the projections of the normalized magnetization vector on the x and z axis, i.e. m · x̂

and m · ẑ respectively. This energy has minima and thus stable magnetic configurations for

m parallel and antiparallel to x̂, with an energy barrier U = KE separating these states.

The out-of-equilibrium dynamics are described by the sLLGS equation:

ṁi = Ai(m) +Bik(m) ◦Hth,k (2)

where the stochastic contribution Hth is taken to have zero mean and delta-function cor-

relation 〈Hth,i(t)Hth,k(t
′)〉 = 2Cδi,kδ(t − t′). The diffusion constant C = α/(2ξ(1 + α2)),

with α the Landau damping constant (typically� 1), ξ ≡ U/kBT the energy barrier height

divided by the thermal energy, is chosen to satisfy the fluctuation-dissipation theorem, and

multiplicative noise ‘◦Hth,k’ is interpreted in the Stratonovich sense11. The expressions for
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the drift vector A(m) and diffusion matrix B̂(m) terms read:

A(m) = m× heff − αm× (m× heff)

− αIm× (m× n̂p)− α2Im× n̂p, (3)

Bik(m) = [−εijkmj − α(mimk − δik)], (4)

where heff = − 1
µ0MsHKV

∇mE(m) is the effective field rescaled by HK , α is damping con-

stant and n̂p is the axis along which the spin current is polarized. STT effects due to

current density J (in units of A/m2) are written in terms of a rescaled dimensionless cur-

rent I = (h̄/2e)ηJ/(αµ0MsHKt), where t is the thickness of the magnetic free layer and

η = (J↑ − J↓)/(J↑ + J↓) is the spin polarization. The effect of a STT depends on ω, the

angle between the spin-polarization axis n̂p and the easy axis x̂ (see Fig. 1(a))18. The tem-

poral derivatives appearing in (2) and throughout this paper are with respect to the natural

timescale τ = γµ0HKt/(1+α2), where γ is the gyromagnetic ratio. The dynamics associated

with Eqn. 212–14 leads to a Boltzmann equilibrium distribution of the magnetization at long

times.

We note that in most experiment situations the spin transfer torque associated with the

current (the third term on the right hand side of Eqn. 3) is small compared to the precessional

torque (the first term on the right hand side of Eqn. 3). In this case the precessional timescale

is much smaller than that of spin-transfer torque, damping and thermal diffusion, allowing

Eqn. 2 to be effectively reduced to a 1D stochastic differential equation for the evolution

of the macrospin’s instantaneous energy E as a function of time5,15. The current range

in which this is valid is discussed in7 and the analysis conducted in this paper considers

this small spin transfer torque and thus current limit. This approach has proven to be

useful because it allows the macrospin’s dynamics to be characterized analytically in many

interesting physical situations, which we now summarize.

A. Biaxial Macrospin Model

In the absence of damping, spin-torque and thermal noise, the dynamics (2) preserve the

macrospin’s energy which, expressed in dimensionless form, reads:

ε =
E(m)

U
= Dm2

z −m2
x. (5)
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(a) (b)

FIG. 1: (a) Uniaxial easy x̂ and hard-axis ẑ magnetic anisotropy directions are shown along with spin-

polarization direction n̂p. The spin-polarization makes an angle ω to the easy axis. (b) Constant energy

trajectories for D = 10. ε < 0 trajectories are shown in red whereas ε > 0 trajectories are shown in

blue. Notice how two distinct basins exist for positive and negative energy trajectories. The separatrix,

corresponding to ε = 0, can be parametrized as two intersecting circles γ1,2(s) shown in black and purple

respectively. Their tangents γ1,2
// (s) and normal components γ1,2

⊥ (s) are indicated by green and red arrows

respectively.

The conservative trajectories come in two different types. For −1 < ε < 0 the magnetization

gyrates around the easy x̂-axis and is said to be precessing “in-plane” (IP). For 0 < ε < D,

the magnetization precesses about the hard ẑ-axis and is said to be precessing “out-of-

plane” (OOP). A sample of these trajectories for positive and negative energies is shown in

Fig. 1(b). The dashed black line represents the separatrix which divides the Bloch sphere

into four distinct dynamical basins: two ε < 0 IP basins, and two ε > 0 OOP basins.

Upon introducing the effects of damping, the dynamics will dissipate magnetic energy,

thus mapping any initial state of the configuration sphere into a corresponding final state

either aligned parallel (P) or antiparallel (AP) with the easy x̂-axis. Figure 2 shows a

projectional map of the Bloch sphere color coded according to the state to which the mag-

netization relaxes; D = 10 and α = 0.04 was chosen for the plot and white/black regions

correspond to P/AP final states respectively. In Fig. 3(a) & (b), the Bloch sphere of an

identical macrospin model relaxes in the presence of thermal noise with intensity ξ = 1200
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FIG. 2: Bloch sphere representation of the zero temperature relaxed configuration as a function of initial

magnetization for D = 10 and α = 0.04. X and Y correspond to coordinates of the Bloch sphere in a

Molleweide spherical projection16. White and black correspond to P and AP final states respectively. The

dashed green line shows the dynamical separatrix between the ε < 0 P (mx < 0) and AP (mx > 0) basins

and ε > 0 OOP+ (mz > 0) /OOP− (mz < 0) basins.

and ξ = 80 (larger ξ corresponds to lower temperature). We omit the Molleweide axes

labels in this and subsequent figures as they are identical to those used in Fig. 2. Thermal

effects can be seen to modify the zero temperature relaxation shown in Fig. 2 by blurring

the boundaries of the white and black regions; the relaxation process becomes stochastic.

The introduction of a driving current will strongly affect the magnetization dynamics

due to the additional spin-transfer torque biasing either the P or AP basins. We note that

this is generally a non-conservative torque and thus its effects cannot be described in terms

of the gradient of an effective energy. This renders many techniques used to analyze the

energetics involved in the macrospin’s evolution inapplicable. However, previous work has

shown that whenever the timescales for thermal and spin-torque driven diffusion are much

larger than the conservative precessional timescale, non-conservative effects can be studied

perturbatively5,6,14. Effectively, the macrospin precesses multiple times along nearly constant

energy trajectories, only diffusing slowly in energy. This allows for an averaging of the LLGS

dynamics (2) along constant energy trajectories (shown in Fig. 1(b)) to obtain a description
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(a) (b)

(c) (d)

FIG. 3: Relaxed configuration as a function of initial magnetization for D = 10 and α = 0.04 where

colors white/black correspond to relaxation into P/AP basins respectively. Both (a) and (b) correspond to

a scenario where the macrospins are allowed to relax without applied current in the presence of thermal

effects with ξ = 1200 and ξ = 80 respectively (larger ξ implies lower temperature). Subfigures (c) and (d)

correspond to relaxation at temperature ξ = 80 preceded by a constant 0.027 ns · T current pulse (physical

times are obtained upon dividing by µ0HK) of intensity I = 1.5 Ic and axial tilt ω = 0.5ωc and ω = 2.5ωc

respectively.

of the macrospin’s dynamics solely in terms of diffusive behavior over its conservative energy

landscape6. An analysis of the time evolution of the macrospin’s energy provides significant

insights into magnetization dynamics in the presence of STT.

We summarize the main results of such an analysis, the details of which can be found

in Refs.6,7. There are two fundamental features of a biaxial macrospin subject to a spin

current. The first is that there are two critical currents (Ic and IOOP). For currents I >

Ic = (2/π)
√
D(D + 1)/ cosω the entire AP basin becomes unstable (ε̇ > 0 for all ε < 0)

and magnetic states within it will be driven into the mz > 0 OOP basin (OOP+). In turn,

the magnetization will either then proceed to relax to the stable P basin or, if I > IOOP =

Ic/(
√
D tanω), remain in the OOP+ basin evolving along a constant energy orbit, thus

maintaining a steady-state OOP precession.

The second fundamental feature is there is a critical tilt of the spin-polarization axis that
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determines the nature of the magnetization dynamics excited by the spin-transfer torque.

At the critical tilt ωc = atan(1/
√
D), Ic = IOOP and for ω > ωc, Ic > IOOP. For subcritical

tilts ω < ωc the current can be increased such that Ic < I < IOOP. If the current is increased

sufficiently slowly (so that the constant energy orbit approach applies), magnetizations in

the AP state will evolve toward OOP states but immediately relax into the P basin, leading

to a deterministic switch19. Conversely, for supercritical tilts, all magnetic states excited

into OOP states will remain there until the current is lowered back below IOOP.

These magnetization switching characteristics can be seen by numerically integrating

the sLLGS equation, Eq. 2. We have done this for an ensembles of 92160 independent

macrospins, sampling the entire Bloch sphere homogeneously, with an integration time step

of 0.01 in natural time units, i.e. τ . Results are shown in Fig. 3(c) & (d), where we take a

damping constant α = 0.04 and D = 10.

Fig. 3 shows the final magnetization state after a current pulse greater than the Ic (I =

1.5Ic) for subcritical tilts (ω = 0.5ωc Fig. 3(c)) and supercritical tilts (ω = 2.5ωc Fig. 3(d)).

In both cases the thermal noise ξ = 80 is present and the driving current is instantaneously

switched off at the end the 1 ns·T pulse (physical times are obtained upon dividing by

µ0HK). For subcritcial tilts a large fraction of initial magnetization states have switched

into the P basin. The not-switched states are around the AP state mx = 1 and the north and

south poles of the Bloch sphere. Those near the AP state did not have time to switch during

the finite duration of the current pulse; had the pulse been left on for a longer time there

would been fewer not-switched states in this zone. In the supercritical case the large tilt

allows the current to excite all IP states into OOP orbits where thermal noise and dynamical

decoherence shuffle the trajectories enough that, once relaxation takes place in the absence

of a current, the final states appears random.

Having seen the characteristic switching dynamics in the presence of noise for sub- and

supercritical tilts, we now investigate a case in which the driving current is switched off

gradually as opposed in the stepwise fashion we have considered up to this point. We

again consider a pulse that is turned on for a time 0.27 (ns · T ) but decays exponentially,

I(t) = I0 exp (−t/τI). The pulse thus decays from a value I0 > Ic > IOOP with a time

constant τI . We again sample the entire Bloch sphere and determine to what state the

magnetization relaxated in the presence of noise.
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FIG. 4: Relaxed configuration of the Bloch sphere as a function of initial magnetization for D = 10,

α = 0.04 and ω = 2.5ωc where colors white/black imply relaxation into P/AP basins respectively. We

show the effect of an initially constant (I0 = 1.5 Ic) 0.27 (ns · T ) current pulse followed by an exponential

decay (with the pulse polarity favoring the P basin) for different temperatures ξ = 5714 (left column,

Figs:a-c) and ξ = 80 (right column, Figs:d-f). From top to bottom, the exponential relaxation timescale

τI = 0.01, 0.15, 0.3 (ns · T ). (Physical times are obtained upon dividing by µ0HK .) For slow enough current

decays, the magnetization relaxes into the P basin nearly deterministically. The dashed green line shows

the dynamical separatrix.

Figure 4 shows the relaxation behavior for D = 10, α = 0.04, ω = 2.5ωc at different

temperatures (ξ = 5714, 80 corresponding to left/right column respectively) and current

decay timescales (τI = 0.01, 0.07, 0.15 (ns · T ) from top to bottom). As the decay rate

is made progressively larger, the Bloch sphere is seen to overwhelmingly relax into the P

basin. This result is in remarkable contrast to what was seen in Figure 3(d). The current
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FIG. 5: Switching probability as a function of pulse decay time for a model with D = 10, α = 0.04 and

ω = 2.5ωc. Physical time is obtained upon dividing by µ0HK . The switching probabilities were computed

by first driving the magnetization with a constant (I0 = 1.5 Ic) 0.27 (ns · T ) current pulse followed by

an exponential decay. Larger temperatures lead to lower overall switching probability consistent with the

increased thermal noise.

pulse is sufficient to excite OPP orbits yet if the pulse decay time is sufficiently slow the

magnetization relaxes reliably into a state set by the current polarity (positive current in our

model favors the P state). The effect is more pronounced at lower temperatures (compare

Fig. 4(c) and (f)).

To further highlight the role of the pulse relaxation time and the temperature in this phe-

nomena, we show the switching probability for three different temperatures (ξ = 5714, 1200

and 80) as a function of the pulse relaxation time τI in Fig. 5. It is clear that the effect

is robust as a function of temperature but the switching probability increases on reducing

the temperature. We further find that the switching probability is nearly independent of

the pulse amplitude (i.e I0) provided the pulse is of sufficient amplitude and duration to

excite the vast majority of IP states into OPP orbits. This dynamics is thus an important

and fundamental characteristic of a biaxial macrospin subject to a spin-transfer torque and

demands a physical and mathematical explanation.

III. ORTHOGONAL DRIFT BIASING AT THE SEPARATRIX

To explain this phenomena we consider a scenario where a fixed current is sustaining

a stable OOP precessional state (I > IOOP). As discussed in the previous section, the
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macrospin’s steady-state dynamics trace a constant energy orbit, which is a fixed point of the

averaged energy dynamics. Changing the current will alter the fixed point and the macrospin

will diffuse to a new constant energy trajectory. If changes in the driving current are made

slowly enough, then relaxational dynamics will ensure that the energy of the macrospin’s

precessional orbits evolves adiabatically with the current. In turn, the macrospin’s average

energy will trace a sequence of fixed points. When I = IOOP, the structure of the LLGS drift

at the separatrix (averaged over one ε = 0 revolution) will then influence which IP basin

(mx < 0 or mx > 0) the magnetization relaxes into.

To make these statements quantitative, we first parametrize the energy separatrix and

project the complete LLGS dynamics (2) onto both its tangent and normal. As shown in

Fig. 1(b), the energy separatrix is an intersection of two great circles (shown in black and

purple). We denote by γ1,2(s) the circles composing the separatrix, where s is the coordinate

on the circle and 1, 2 correspond to the black/purple circle respectively. The tangent to the

separatrix will be γ1,2
// (s) = ∂sγ

1,2 and its normal is given by γ1,2
⊥ (s) = γ1,2× γ1,2

// (shown as

green and red arrows respectively in Figure 1). By noting that at ε = 0 the magnetization

components must satisfy Dm2
z = m2

x:

γ1,2(s) =

(
±
√

D

D + 1
sin(s), cos(s),

1√
D + 1

sin(s)

)
(6)

γ1,2
// (s) =

(
±
√

D

D + 1
cos(s),− sin(s),

1√
D + 1

cos(s)

)
(7)

γ1,2
⊥ (s) =

1√
D + 1

(
1, 0,∓

√
D
)
, (8)

with s ∈ [0, 2π] and γ1,2(0) is a unit vector along the y-axis. Increasing s traces the circle

along γ1,2
// .

Projecting the magnetization dynamics onto γ1,2
// (s) and γ1,2

⊥ (s) gives (see Appendix A):

ṁ · γ1,2
// (s) = ∓2

√
D

[
sin(s) +

α
√
D

π

I

Ic
(1∓ tanω tanωc)

]
(9)

ṁ · γ1,2
⊥ (s) = 2α

√
D

[
± sin(s) +

1

π

I

Ic

(
1∓ tanω

tanωc

)]
, (10)

where the critical tilt, as mentioned earlier is, ωc = atan(1/
√
D). (As a reminder, ω > ωc is

assumed in this analysis, as this condition must be satisfied to have stable OPP precessional

states.)
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On the separatrix, where the period of conservative trajectories formally diverges7, we

see that the timescale for drifting across the separatrix is a factor of 1/α (∼ 20) larger than

that for precessing along it. We thus consider only the portion of the separatrix that bounds

the OOP+ basin (s ∈ [0, π]) and compute the average net drift orthogonal to the separatrix:

〈ṁ · γ1,2
⊥ 〉orbit =

2α
√
D

π

[
±1 +

I

IC

(
1∓ tanω

tanωC

)]
, (11)

where 〈·〉orbit implies averaging over the coordinate range s ∈ [0, π]. Given the convention

chosen for the orientation of the normals to the separatrix (see Fig. 1(b)), a positive average

orthogonal flow (〈ṁ · γ1,2
⊥ 〉orbit > 0) will always bias exiting the separatrix into the P basin.

This is the case whenever:(
tanω

tanωc
+ 1

)−1

<
I

Ic
<

(
tanω

tanωc
− 1

)−1

(12)

Since IOOP = Ic/(tanω/ tanωc) > Ic/(1 + tanω/ tanωc), this biased orthogonal drift effect

will always occur whenever the magnetization crosses the separatrix for I = IOOP. We now

proceed to show how this leads the magnetization to relax into a specific IP basin upon

slowly reducing the current sustaining OOP precessional orbits.

IV. NEAR DETERMINISTIC RELAXATION

We will now determine the timescales, for which the magnetization will relax to its energy

fixed point if perturbed, to determine the requirements on the pulse decay time for reliable

magnetization reversal. Upon linearizing the energy evolution equations around ε0 fixed

point (ε → ε0 + δε) (see Appendix B), the perturbations will be governed by dynamics

which exponentially decay with timescale τrel(I). Figure 6 shows how the relaxation rate of

perturbations to a given steady-state precessionary state is expected to change as a function

of currents I > IOOP and varying temperature for a sample with D = 10, α = 0.04 and

ω = 2.5ωc. Larger currents and temperatures are seen to favor a faster relaxation of the

magnetization dynamics.

If temporal variations of the current happen on a timescale τI > τrel, the magnetization

will quickly respond to any destabilizing effects and continuously trace nearly constant

energy orbits (the adiabatic condition). If, on the other hand, τI < τrel the magnetization

will be in an out-of-equilibrium state which cannot be characterized with energy averaging

techniques.
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FIG. 6: Predicted current and temperature dependence (larger ξ implies lower temperature) of the energy

relaxation rate for a model with D = 10, α = 0.04 and ω = 2.5ωc. (Physical time is obtained upon dividing

by µ0HK .) Whereas larger currents and temperatures (ξ ∝ 1/kBT ) are found to favor faster relaxation

of the magnetization dynamics to their steady-state equilibrium, larger temperatures lead to lower overall

switching probability due to increased thermal noise present when crossing the separatrix, as shown in Fig. 5.

This model thus captures the physics of the situation we simulated numerically in Sec.

II, a case in which a current I > IOOP initially sustains a stable OOP precessional orbit

(Figs. 4&5) and is subsequently reduced. If the current is decreased slowly enough for

the adiabaticity conditions to be satisfied, the magnetization will experience an orthogonal

drift biasing effect and nearly deterministically switch into the P or AP basin depending

on the current’s polarity. Noise will perturb these deterministic dynamics, causing the

magnetization to occasionally jump into the unbiased IP basin even under adiabaticity

conditions whenever the effective energy barrier separating the IP/OOP basins becomes

comparable to the thermal noise strength. This will happen always as the magnetization

approaches very close to the separatrix. For a more detailed quantitative exposition of these

effects, the precise orbital behavior near the separatrix (and not just the constant energy

orbit averaging description) must be taken into account due to the constant energy orbit

averaging method breaking down at the separatrix.

At lower temperatures, however, we see our model capturing the relevant time scales

of the switching dynamics quite well. In fact, for current decay timescales comparable to

the maximum relaxation timescale (τI ∼ max{τrelax}) we see that the switching probability

plotted in Fig. 5 approaches 1 (e.g. for ξ = 5714, max{τrelax} ' 0.35ns·T and high switching

probability is seen to take place for current decay timescales τI ≥ 0.2ns · T ).
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It should be pointed out that even though the constant energy orbit averaging technique

is not capable of capturing thermally activated behavior at the separatrix, it can be used to

characterize the timescales for dynamical relaxation for larger energy orbits. This is due to

the drift-driven character of on-orbit relaxation for which noise related contributions average

to zero and can be shown to be insensitive to the divergence in the orbital period at the

separatrix. As such, inducing adiabaticity through slowly varying current pulses is sufficient

for demonstrating the orthogonal drift biasing effect.

V. EFFECT OF INITIAL CURRENT

The model we have described further predicts that the final magnetization state only

depends on the rate at which the current is decreased, not the initial value of the current

that sustains the OPP orbits. We have confirmed this result by conducting numerical

simulations for different initial currents with the same relaxation rate of the current. The

results are shown in Fig. 7 for initial currents of I = 1.5, 2.5, 3.5 Ic and a relaxation time

of τI = 0.01 (ns · T ). We see that changing the initial current intensity has no effect on

the biasing of the relaxation. Thus the orthogonal drift biasing has been shown to depend

exclusively on the LLGS dynamics when the current is varied adiabatically.
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(a) (b)

(c)

FIG. 7: Relaxed configuration of the Bloch sphere as a function of initial magnetization for D = 10,

α = 0.04, ω = 2.5ωc and temperature ξ = 5714, where colors white/black imply relaxation into P/AP basins

respectively. Imposing an exponential decay of a current pulse with fixed decay constant τI = 0.01 (ns · T )

(Physical times are obtained upon dividing by µ0HK), we vary the initial current intensity (a) I = 1.5Ic (b)

2.5Ic and (c) 3.5Ic, to show that the relaxation biasing effect observed numerically does not depend on the

initial current intensity driving the system.

VI. CONCLUSION

In summary, we have demonstrated that an adiabatically decreasing current pulse leads

to highly reliable precessional switching and explained this phenomena within the context

of a macrospin model, identifying the time-scales that govern adiabatic current variations.

These results can be tested on orthogonal spin-transfer torque devices as well as other types

of spin-transfer torque oscillators. Our theory makes specific predictions for the switching

probability as a function of the pulse decay time and temperature. The model also makes

a strong prediction that the switching probability will be independent of the initial current

that sustains the out-of-plane precessional orbit. Further for a slowly decaying current pulse

the final magnetization state is also insensitive to the pulse shape and area, only depending

on the pulse polarity.
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Appendix A: Orthogonal Drift Dynamics on the Separatrix

Here we derive the projections of the LLGS dynamics (2) on the ε = 0 separatrix starting

from the LLGS equation:

ṁ = m× heff − αm× (m× heff)− αIm× (m× n̂p) , (A1)

To do so we first rewrite the parametrization employed in Eqn. (6):

γ1,2(s) =

(
±
√

D

D + 1
sin(s), cos(s),

1√
D + 1

sin(s)

)
(A2)

γ1,2
// (s) =

(
±
√

D

D + 1
cos(s),− sin(s),

1√
D + 1

cos(s)

)
(A3)

γ1,2
⊥ (s) =

1√
D + 1

(
1, 0,∓

√
D
)
. (A4)

The effective field for a biaxial macrospin is given by heff = −∇ε = −∇m (Dm2
z −m2

x) and

the spin-polarization axis n̂p = (cosω, 0 sinω) is tilted by an angle ω with respect to the

easy-axis. On the separatrix:

m× heff = −2

(
D√
D + 1

sin(s) cos(s),∓
√
D sin2(s),±

√
D

D + 1
sin(s) cos(s)

)
(A5)

m× n̂p =

(
sinω cos(s),

cosω√
D + 1

(
1∓
√
D tanω

)
, cosω cos(s)

)
, (A6)

where the portion of the separatrix bounding the OOP+ basin corresponds to s ∈ [0, π].

Employing the vector identities γ⊥ ·(m×A) = A·(γ⊥ ×m) = A·γ// (conversely γ//×m =

−γ⊥) where A is any vector, gives Eqn. (9) in the main text.

Appendix B: Energy Relaxation Dynamics

In this appendix we derive the timescale for magnetic relaxation onto a stable OOP limit

cycle orbit with energy ε0 consistent with some driving current I. First we note that form

of the energy equation is as follows7:

ε̇ = −αfD
(
ε, Ĩ
)

+ g(ε) · Ẇ. (B1)
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For a macrospin precessing in the OOP+ basin this equation is 7:

∂tε(γ) =
πα

η0(γ)

D(D + 1)

[D(1− γ2) + 1]3/2

×
{
±Ĩ(1− γ2)− 2

π

√
D(1− γ2) + 1

[
η1(γ)− γ2

(D(1− γ2) + 1)
η0(γ)

]}
+ h(ε)

+

√
2α

ξ

D(D + 1)

D(1− γ2) + 1

1

η0(γ)

(
η1(γ)− γ2

D(1− γ2) + 1
η0(γ)

)
· Ẇε (B2)

h(ε) =
α

ξ

D(1− γ2) + 1

1− γ2

[
1−

(
D(1− γ2) + 2

D(1− γ2) + 1

)
E[1− γ2]

K[1− γ2]
+

1

γ2(2− γ2)

(
E[1− γ2]

K[1− γ2]

)2
]

+
α

ξ

D(1 + γ2) + 1

D(1− γ2) + 1
, (B3)

where η0(γ) = K[1 − γ2] and η1(γ) = E[1 − γ2] are expressed in terms of complete elliptic

integrals of the first and second kind, γ(ε) = ε(D + 1)/ [D(1 + ε)] depends on the energy ε

and h(ε) is a drift-diffusion correction term. The stochastic contribution Ẇε here has zero

mean and unit variance; the multiplicative noise ‘·Ẇε’ is now interpreted in the Itō sense.

Upon linearizing (B2) around an ε0 fixed point (ε → ε0 + δε), the deterministic portion

of the dynamics governing perturbations δε will be to first order:

δ̇ε = −α
[
∂εfD(ε, Ĩ)

]
ε=ε0(I)

δε, (B4)

whose solution is:

δε(t) = δε0 exp

[
− t

τI

]
(B5)

τI =
[
∂εfD(ε, Ĩ)

]−1

ε=ε0(I)
. (B6)
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