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We present a dynamical approach to generate defect-free continuous-random-network (CRN) mod-
els of hydrogenated amorphous silicon (a-Si:H). Using the atomic co-ordination number of silicon as
a collective variable and few configurational constraints, we have shown that classical metadynam-
ics can be used to construct CRN models of a-Si with arbitrary concentrations of dangling-bond
co-ordination defects. These defective networks have been subsequently hydrogenated to produce
high-quality models of a-Si:H using ab initio total-energy calculations to generate hydrogen (H)
microstructures for H concentrations from 7 to 22 at.%. The structural, electronic, optical, and
vibrational properties of the models are examined, and the microstructure of the hydrogen distri-
bution is analyzed and compared with experimental data from neutron scattering, spectroscopic
ellipsometry, infrared spectroscopy, and nuclear magnetic resonance studies. The results obtained
from the models are found to be in excellent agreement with the experimental data.

PACS numbers: 71.15.Mb, 71.23.Cq, 71.23. An

I. INTRODUCTION

Atomistic models of many amorphous semiconduc-
tors are well represented by continuous random networks
(CRN).1 Despite the simplicity of the CRN model, the
dynamic modeling of high-quality CRNs (i.e. with low
strain and few structural defects) has proved to be partic-
ularly difficult. While a few event-based approaches, such
as the Wooten-Winer-Weaire (WWW)2 and Activation-
Relaxation (ART) techniques,3 can address the prob-
lem satisfactorily, we are not aware of any molecular-
dynamical approaches that can produce high-quality con-
tinuous random networks for modeling tetrahedral semi-
conductors. Conventional ab initio molecular dynam-
ics (AIMD)4–7 and Car-Parinello (CP) approaches8 have
been employed successfully to study structural glasses
via traditional ‘melt-quench’ approaches, but their use is
limited mostly to amorphous solids with strong glassy
behavior. For amorphous materials with no or weak
glassy behavior (e.g. a-Si, a-Ge and a-Si:H), MD sim-
ulations either produce highly defective configurations
or tend to crystallize the system during quenching from
molten states at high temperature. The large computa-
tional cost of AIMD, combined with the resulting high
defect concentrations, has been a major obstacle for ac-
curate first-principles studies of amorphous solids with no
or weak glassy behavior, especially on the intermediate-
range length scale.
In this paper, we present a dynamical approach for

structural modeling of hydrogenated amorphous sili-
con (a-Si:H)–an important electroactive and photovoltaic
material of technological importance.9–12 Recent devel-
opments of high-efficiency solar cells, based on a-Si:H/c-
Si heterojunctions with intrinsic thin-layer (HIT) tech-
nology, are indicative of the continuous importance of
the material in photovoltaics.13–16 Here, we have shown

that a dynamical approach can be developed to gener-
ate amorphous networks by including a bias potential in
the total energy using a variant of accelerated molecular-
dynamics simulations, known as metadynamics.17,18 The
resulting networks can be passivated with hydrogen to
produce hydride configurations of amorphous silicon. A
notable feature of the approach is its ability to control
the co-ordination number of the atoms in order to pro-
duce different silicon-hydrogen bonding configurations,
which are consistent with experimental data from in-
frared (IR) spectroscopy19–22 and nuclear magnetic reso-
nances (NMR).23–26 This renders the generation of high-
quality a-Si:H models possible with no defects for a range
of hydrogen concentration and system sizes of up to sev-
eral thousand atoms. While the emphasis of the present
work is on a-Si:H, the approach can be readily general-
ized to produce a variety of binary and ternary amor-
phous networks in two and three dimensions, and amor-
phous/crystalline heterojunctions. Below, we briefly
mention the existing modeling methods and their dis-
advantages before addressing the new approach and its
application to a-Si:H.

The conventional routes to structural modeling of a-
Si:H are mostly dominated by static approaches coupled
with ab initio relaxations.4–8,27–29 Here, one usually pro-
ceeds by building models of a-Si, via WWW2, ART3 or
otherwise,30–32 which are subsequently hydrogenated and
relaxed to obtain configurations at stable local minima
using ab initio total-energy optimizations. However, in
the absence of thermal motion, hydrogen atoms can re-
lax only locally and are unlikely to move between dif-
ferent trap centers, leading to a poor distribution of hy-
drogen in the network.33 The standard remedy is to sub-
ject the system to a medium-temperature (600-800 K)
ab initio molecular dynamics run, so that hydrogen in
the network can be redistributed to attain an ‘equilib-
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rium’ distribution. Ab initio molecular dynamics, how-
ever, is computationally expensive, and it is unclear that
the short-time dynamics (of several picoseconds for large
systems) would suffice to capture the standard picture of
hydrogen migration, namely hopping of hydrogen atoms
from traps to high-energy transport sites and back into
traps again.34,35 A consensus is that ab initio simula-
tions with a simulation time of a few tens of picosec-
onds might be sufficient for small systems to produce
the correct global physical observables (such as 2- and
3-body correlations, the average co-ordination number,
electronic density of states7) but for large systems, the
approach is computationally infeasible and unlikely to
produce correct local properties, such as vacancies,36,37

voids,31,32,38 and molecular hydrogen.31,39 In summary,
the major disadvantages of current dynamical approaches
include the high computational cost and the production
of a large density of co-ordination defects. Since device-
quality samples of a-Si:H have a typical defect concentra-
tion of order 1016 cm−3 (i.e. 1 in 107 atoms), ideal mod-
els of a-Si:H must be practically free from any defects
in order to represent laboratory-grown samples realisti-
cally. To this end, we present here a dynamical approach,
which is capable of producing large realistic models of a-
Si:H with practically no co-ordination defects for a wide
range of hydrogen concentrations.

The plan of the paper is as follows. In section
2, we address the generation of amorphous-silicon net-
works using metadynamics, which is followed by hy-
drogen passivation, equilibration, quenching, and relax-
ation of the hydrogenated networks. Section 3 dis-
cusses results for structural, electronic, optical, and vi-
brational properties by comparing our results with neu-
tron diffraction,40 nuclear magnetic resonance,23–26 spec-
troscopic ellipsometry,41 and infrared spectroscopy21,42

studies. This is followed by conclusions of the work in
section 4.

II. COMPUTATIONAL METHOD

The dynamical approach developed here consists of the
following steps: (1) Adaptation of classical metadynam-
ics using appropriate collective variables to generate a-Si
networks with co-ordination defects to incorporate hy-
dride configurations consistent with experimental data;
(2) Hydrogenation of dangling bonds (1-, 2- and 3-fold
co-ordinated Si atoms); (3)Ab initio molecular dynamics
comprising equilibration of the resulting hydride config-
urations at 800 K for 20 ps, followed by quenching the
systems from 800 K to 300 K in 25 ps (5 ps per 100 K);
(4) Ab initio total-energy relaxations via the conjugate-
gradient method to obtain the final structure at a stable
local minimum.

A. Metadynamics

The first step involves metadynamical simulations of
amorphous-silicon networks with a requisite defect den-
sity. This can be readily implemented once a set
of collective variables is identified for the problem.
Metadynamics17,18 is a non-equilibriumMD approach for
an accelerated sampling of the events on the free-energy
surface (FES) associated with a set of collective vari-
ables. The collective variables, Ξ(RN ), are continuous
and differentiable functions of the system co-ordinates
R

N , the choice of which is guided by the physical events
to be studied in a problem. Once the collective variables
are determined, the accelerated sampling is achieved by
adding a history- and time-dependent bias potential,
V (Ξ, t), to the total energy of the system. The bias is
applied adaptively during the time evolution of the sys-
tem by adding a repulsive Gaussian potential centered
on the current position of Ξ at a regular time interval
of τG. The accumulation of the Gaussian-bias poten-
tials progressively flattens the free-energy surface (FES),
and facilitates the system to overcome the energy barri-
ers or escape from the potential minima at an accelerated
rate. The presence of a history-dependent bias constrains
the system to explore new regions of the FES. Thus, by
choosing a set of appropriate collective variables, it is
possible to study the desired configurations of interest
for the problem. For an arbitrary value ξ, of Ξ at time t,
the Gaussian-bias potential V (ξ, t) is given by,

V (ξ, t) =
∑

t′=τg,2τg,...

t′<t

Hg exp

(

−|ξ − Ξ(t′)|2
2ω2

)

, (1)

where Hg and ω are the Gaussian height and width
of the bias potential, respectively. The basic assump-
tion in metadynamics is that the free-energy function is
Gaussian-representable, i.e. after a sufficiently long time,
V (ξ, t) cancels the underlying free energy F (ξ) along Ξ,
and is given by the negative of the accumulated bias up
to a constant value,

F (ξ) ≈ − lim
t→+∞

V (ξ, t) + constant. (2)

Here, we have used the average co-ordination number
of silicon atoms as a collective variable to generate an
ensemble of continuous random networks with varying
(co-ordination) defect concentrations. This enables us to
produce a-Si networks with a requisite number of dan-
gling bonds to construct SiH/SiH2 configurations via hy-
drogenation, which are consistent with experimental data
from infrared spectroscopy.20,22,38,42 For a system withN
silicon atoms, the collective variable ξ can be written as:

ξ =
1

N

∑

i<j

Θ(rij), (3)
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where

Θ(rij) =















1, if rij ≤ r1
1

2

[

1 + cos

(

π(rij − r1)

r2 − r1

)]

, if r1 < rij ≤ r2

0, if rij > r2
(4)

is a continuous nearest-neighbor function that decays
monotonically beyond the first shell of neighbors, and
r1 and r2 are the upper and lower limits of the first and
second nearest-neighbor distances, respectively.43

All metadynamical runs were performed with a sys-
tem size of N=1000 silicon atoms using the modified
Stillinger-Weber potential.44,45 Starting from a random
initial configuration, the system was equilibrated at
a constant initial temperature of 1600 K for 250 ps
with a time step of 1 fs using a chain of Nosé-Hoover
thermostats.46–48 Next, the temperature of the system
was reduced from 1600 K to 1000 K in two steps (300 K
per step). At each step, the temperature was kept con-
stant for a period of 250 ps. At the end of 1000 K run, the
Gaussian potential was switched on to initiate metady-
namics using the following (metadynamics) parameters:
Gaussian-addition rate 1/τG = 1 ps−1 (i.e. addition of a
Gaussian kernel or function at a time interval of 1 ps),
Gaussian height HG = 0.1 eV, Gaussian width ω = 0.1,
and the cutoff distances (for the nearest-neighbor func-
tion) r1=2.7 Å and r2=3.15 Å (see Eq.4 and Ref. 43).

During metadynamical runs, several hundred config-
urations of the system along the trajectory with 4-, 3-,
and 2-fold co-ordinated Si atoms were collected to gener-
ate a-Si:H models for a range of concentrations. Metady-
namics can produce configurations with under- and over-
coordinated defects, so care was taken to ensure that
the configurations collected for hydrogenation contained
only under-coordinated defects. Specifically, the config-
urations consisted of at least 77% 4-fold co-ordinated
atoms, 21% 3-fold, and 2% 2-fold co-ordinated atoms,
which were sufficient to generate models in a wide con-
centration range of 7-22 at.% of hydrogen. Figure 1
shows a plot of the free-energy function F (ξ) of a-Si as
a function of the collective variable ξ from metadynam-
ical simulations. The thin red curve denotes the region,
3.75 ≤ ξ ≤ 4, of the free energy from where the afore-
mentioned configurations were collected for subsequent
hydrogenation. This region of ξ corresponds to mostly
3-fold co-ordinated dangling bonds with an admixture
of a few 2-fold and 1-fold co-ordinated Si atoms.49 While
several hundreds of such configurations were collected for
statistical purposes, we confined ourselves to seven repre-
sentative configurations for each hydrogen concentration
of interest for the purpose of configurational averaging of
the physical quantities presented here.
It should be noted that the free-energy values, associ-

ated with the collective variable ξ, shown in Figure 1 are
not necessarily converged. Since the purpose of meta-
dynamics simulations here is to generate configurations
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FIG. 1. (Color online) The free-energy of a-Si from metady-
namical simulations at 1000 K as a function of the collective
variable ξ. The thin red curve indicates the region (of ξ)
from where the configurations of a-Si have been sampled for
hydrogenation.

with specific topological properties (e.g. dangling-bond
defects), our metadynamic simulations ended as soon as
an appropriate number of specific configurations were col-
lected. Thus, the free-energy values presented in Figure
1 do not necessarily reflect the limiting value of V (ξ, t)
in the long time limit as required by Eq. 2. Furthermore,
the total number of Gaussian functions that is necessary
to produce the required configurations may vary signif-
icantly. This depends on the height and width of the
Gaussian potential, the complexity of the potential en-
ergy landscape, and the stability of initial configurations
to be used for metadynamics simulations.

B. Hydrogenation

Hydrogenation proceeds by passivating dangling
bonds. As mentioned earlier, none of the configurations
collected during metadynamical simulations has over-co-
ordinated bonds, but mostly 2- and 3-fold co-ordinated
dangling bonds. Thus, to passivate a configuration effi-
ciently, the defect sites were identified and a hypothetical
sphere of radius 1.0-1.2 Å was constructed around each
site.50 Next, hydrogen atoms were placed on the surface
of the sphere such that the tetrahedral character of the
defect site was maintained maximally. To this end, an
ensemble of unit radial vectors was generated in a fine
mesh within a cone of solid angle Ω, and a direction vec-
tor was identified for placing a hydrogen atom along the
vector (see Fig. 2). The latter was chosen to ensure that
the average bond angle and its root-mean-square (RMS)
deviation at the defect site remained as close as possi-
ble to 109.5◦ and less than 12◦, respectively, to maintain
the tetrahedral quality of the network. The RMS devi-
ation was varied from 5◦ to 12◦ by 0.5◦ increments in
each sweep (of radial vectors) until a suitable direction
was identified. This was done by calculating the average
bond angle and its RMS deviation for the defect site for
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FIG. 2. (Color online) Hydrogenation of a 3-fold dangling
bond. A hydrogen atom (red) is placed on the surface of a
central sphere (gray), whose center coincides with that of a
defective Si atom (yellow), such that the Si-H bond retains
the maximal tetrahedral character of the site.

each direction until they satisfy the criteria mentioned
above. The procedure is illustrated in Fig. 2 by passi-
vating a dangling bond with a hydrogen atom. For a
dangling bond with two missing Si atoms, two H atoms
were added successively to ensure that the tetrahedral
character of the defect site was maintained. The pro-
cedure was repeated for all defect sites to complete the
hydrogenation process.

C. Ab initio dynamics and relaxation

Upon successful hydrogenation, the configurations
were subjected to the following steps: a) Relaxation of
the total energy to reduce the strain associated with the
addition of hydrogen atoms; b) Equilibration of the re-
sulting configurations at 800 K for 20 ps to facilitate hy-
drogen migration; c) Cooling the equilibrated configura-
tions from 800 K to 300 K in 25 ps to obtain an equilib-
rium distribution of hydrogen; d) A further total-energy
relaxation at 200 K via the conjugate-gradient method to
obtain a stable local minimum. Step (c) was performed
by reducing the temperature of the systems from 800
K to 300 K in steps of 100 K in 5 ps. The annealing
and quenching of the hydrogenated networks were per-
formed within the framework of density-functional the-
ory using the code Siesta.51 A time step of 1 fs was used
to integrate the equations of motion. The temperature
of the system was controlled by the Nosé thermostat.46

Siesta uses pseudopotentials and localized basis func-
tions for solving the Kohn-Sham equations. We employed
double-ζ basis functions to expand the Kohn-Sham or-
bitals for silicon and hydrogen. Electronic correlations
were taken into account via the local-density approxi-
mation (LDA)52 using the Perdew-Zunger formulation.52

Siesta employs norm-conserving Troullier-Martins pseu-
dopotentials,53 which are factorized into the Kleinmann-
Bylander form54. Due to large system sizes (> 1000

atoms) and long MD simulation times (45 ps per con-
figuration), the Kohn-Sham equations were solved in a
non-self-consistent manner using the Harris functional.55

To obtain the final structure and equilibrium mass den-
sity for each concentration, the atomic positions and
cell-lattice vectors were simultaneously relaxed using the
conjugate-gradient method until the force on each atom
was less than 0.005 eV/Å and the stress was less than 0.1
GPa.

III. RESULTS AND DISCUSSION

This section addresses structural, electronic, optical,
and vibrational properties of the models for different
hydrogen concentrations. Microstructural properties of
hydrogen distributions are examined, and addressed by
comparing the results from the models with those from
nuclear magnetic resonance23–26 and infrared absorp-
tion20–22,42 studies.

A. Structural properties

We begin by addressing the variation of the mass den-
sity of a-Si:H with hydrogen concentration. Theoretical
studies often ignore this variation by assuming the ex-
perimental density of a-Si:H as a simulation parameter.
However, the density of a-Si:H depends on the hydro-
gen concentration and should be treated as a variable in
simulations. Figure 3 shows the density of a-Si:H mod-
els for different hydrogen concentrations, along with the
experimental density of variously prepared a-Si:H films
reported in Ref. 38. Although the exact density of a-Si:H
films depends upon the method of preparation, history of
the samples, and the deposition conditions, infrared mea-
surements suggest that the density of a-Si:H decreases
with an increase of the hydrogen content.38 A comparison
of our results with the experimental data from Fourier-
transform IR measurements38 confirms that the variation
is correctly reflected in our results. We should mention at
this point that the use of double-ζ basis functions for Si
and H atoms is very important for producing the correct
density of a-Si:H, as observed in experiments for vary-
ing hydrogen concentrations. Our present and earlier
works56 suggest that a single-ζ basis (for Si) can pro-
duce reasonably good structural and electronic properties
provided one uses the experimental density (for a given
concentration) as an input simulation parameter in the
construction of the simulation cell for a given number of
atoms.
Table I lists the key structural properties of the mod-

els for concentrations from 7 to 22 at.% of hydrogen.
The models are practically free from co-ordination de-
fects (see CNSi in Column 8, Table I), and the average
values of the bond angles are close to the ideal tetrahedral
value of 109.47◦, with a root-mean-square (RMS) devi-
ation of 9.4-10.1◦. The latter matches closely with the
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FIG. 3. Mass density of model networks of a-Si:H versus
hydrogen concentration. Experimental data from Ref. 38 are
included for comparison.

TABLE I. Summary of structural properties of a-Si:H mod-
els: system sizes (N), atomic H concentration (Hconc.), den-
sity (ρ), average Si-Si bond length (rSi-Si), average Si-H bond
length (rSi-H), average bond angle (〈θ〉), RMS deviation of
bond angles (∆θrms), and the percentage of 4-fold Si atoms
(CNSi).

N ρ Hconc rSi-Si rSi-H ∆θrms 〈θ〉 CNSi

(g.cm−3) (at.%) (Å) (Å) (degree) (%)

1074 2.236 6.9 2.38 1.51 9.44 109.20 99.9

1090 2.233 8.3 2.38 1.52 9.63 109.19 99.9

1118 2.217 10.6 2.38 1.51 9.22 109.17 99.8

1142 2.205 12.4 2.38 1.51 9.23 109.16 100

1172 2.196 14.7 2.38 1.51 9.31 109.12 99.9

1218 2.174 17.9 2.37 1.51 9.54 109.11 100

1282 2.165 22.0 2.37 1.51 10.04 109.02 99.8

computational57 and experimental58 values of 9.8◦ and
9.6◦, respectively. In Fig. 4, the correlation function,59

T (r) = J(r)/r, where J(r) is the total radial distribution
function, is shown, together with the results from neutron
scattering experiments by Wright et al .40 The agreement
between computed values and experimental data is quite
remarkable, which ensures the reliability of the models
as far as the 2-body correlations are concerned. This ob-
servation can be combined with the results from Table I
to conclude that the structural properties of a-Si:H have
been produced accurately in our approach.

The effect of hydrogen on the connectivity of a-Si:H
networks has been analyzed by studying the distribu-
tion of irreducible rings,34 and the number of tetrahedral
units and their volume distribution associated with sil-
icon atoms. The addition of hydrogen in a-Si networks
leads to the formation of large ring structures, especially
at high H concentrations. As more hydrogen atoms be-
gin to bond with silicon atoms at high H concentrations,
irreducible closed paths (or rings) associated with singly-
coordinated H atoms become longer. Thus, the ring dis-
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)

Expt. data 22% H
Model data 22% H

FIG. 4. (Color online) Neutron-weighted correlation functions
(atoms/Å2) of a-Si:H from a 1000 Si-atom model (blue) with
22 at.% hydrogen and experiments. Experimental data (red)
correspond to 22 at.% of hydrogen from Ref. 40.

tribution can be expected to be correlated with the con-
centration of hydrogen and the density of SiHn (n=1, 2,
3) configurations. This is reflected in Fig.5–although in
a subtle way–where the irreducible-ring distributions for
two models are plotted as a function of their ring sizes.
A comparison of the ring-size distributions at low (6.9
at.%) and high (22 at.%) H concentrations shows that
the number of large rings has increased slightly as the
concentration of hydrogen increases and supports this as-
sumption. The minor changes in the ring distributions
can be explained as being due to the absence of significant
numbers of di- and trihydride configurations. In a recent
publication,31 we have shown that the change is particu-
larly noticeable in large models at high H concentrations
where the hydrogen microstructure is characterized by
the copious presence of di- and trihydride configurations,
as well as microvoids in the network.

While irreducible rings reflect the medium-range topo-
logical changes in the structure due to hydrogen incor-
poration, structural changes associated with the nearest
neighbors of silicon atoms can be quantified by the distri-
bution of tetrahedral volumes of local silicon tetrahedra
(formed by the four nearest neighbors of each Si atom).
Since the volume of an irregular tetrahedron depends on
the length of its six edges (via the four nearest-neighbor
distances) and the six angles subtended by the four ver-
tices at the center of the tetrahedron, the volume distri-
bution of silicon tetrahedra is a reflection of the disorder
associated with the bond-length and bond-angle distribu-
tions. Furthermore, the total number of such tetrahedra
is indicative of the presence of co-ordination defects. For
models with no co-ordination defects, all Si atoms are 4-
fold co-ordinated, and the number of tetrahedra is equal
to the number of Si atoms. Thus, the volume distribution
of the tetrahedra can be considered as a form of reduced
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FIG. 5. Irreducible-ring distribution versus ring sizes for
two models with different H concentrations. Hydrogenation
causes a subtle change in the number of rings at a high con-
centration of hydrogen.

4-body correlation function, which is sensitive to bond
lengths, bond angles, and the co-ordination number of
an atom.

Figure 6 shows various tetrahedral units formed by dif-
ferent silicon-hydrogen bonding configurations that can
be used to represent the network structure of a-Si:H. Sil-
icon and hydrogen atoms are shown in yellow and white
colors. The volume distribution of these tetrahedra pro-
vides useful information regarding the change of the local
structure and ordering associated with hydrogen passiva-
tion. Depending on the presence of mono-, di-, and tri-
hydride configurations, the network may consist of Si3H,
Si2H2 and SiH3 tetrahedra. The volume distributions of
these tetrahedra for an a-Si:H model with 17.9 at.% H,
along with a 1000-atom model of pure a-Si, are plotted
in Fig. 7. The peak areas are proportional to the num-
ber of different Si4-nHn tetrahedra for n=0, 1, and 2. A
careful examination of the distributions in Fig.7 reveals a
subtle change associated with the volume of primary Si4
tetrahedra upon hydrogenation. The tetrahedral volume
distribution of pure a-Si is slightly wider than its hydro-
genated counterpart. This appears to suggest that the
hydrogenation of a-Si not only passivates the dangling
bonds but also modifies the entire network to produce
a narrower distribution of primary (i.e. Si4) tetrahedral
volumes in a-Si:H. Since the volume distribution of Si4
tetrahedra for a-Si is obtained from a 100% 4-fold CRN
model of the highest quality,3 this small deviation can
be seen as an indicator of the local changes associated
with the Si4 tetrahedra in a-Si:H. To treat both the data
sets on an equal footing from a computational point of
view, we have relaxed the CRN model of a-Si using a
double-ζ basis in Siesta. Finally, the volume of a per-
fect tetrahedron from the crystalline-silicon structure is

FIG. 6. (Color online) Tetrahedral units associated with
Si4-nHn configurations for n=0, 1, 2, 3. Silicon and hydro-
gen atoms are shown in yellow and white colors, respectively.

FIG. 7. (Color online) The volume distributions of individual
Si4-nHn tetrahedra for a model of a-Si (red) and a-Si:H (blue).
The contributions from different H-bonded tetrahedra (see
Fig. 6) are indicated. The vertical line (at 6.8 Å3) corresponds
to the volume of an ideal Si4 tetrahedron in the crystalline-
silicon environment.

indicated as a vertical line at 6.8 Å3. Once again, we
have relaxed the crystalline Si structure using a double-ζ
basis in Siesta for consistency in our calculations. The
crystalline volume of 6.8 Å3 corresponds to an equilib-
rium nearest-neighbor distance of 2.367 Å in the diamond
structure.
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FIG. 8. (Color online) Comparison of 1H-NMR spectra from
simulations (red and blue) and experiments (black). Sim-
ulated spectra correspond to a-Si:H models with 6.9 at.%
(blue) and 14.7 at.% (red) of hydrogen. Experimental data
are from Ref. 25 and correspond to a sample of a-Si:H with
10-15 at.% hydrogen.

B. Hydrogen distribution and NMR line spectra

In this section, we present an approximate calculation
of the shape of nuclear magnetic resonance spectra for
device-quality models (i.e. 7 to 14 at.% of H with a very
few defects) of a-Si:H by examining the real-space dis-
tribution of H atoms, and compare the results with ex-
perimental NMR spectra.23–26 Experimental data from
NMR23,24 and multiple-quantum NMR measurements26

suggest that, at low concentrations the dipolar interac-
tion between spins (i.e. H nuclei) yields a narrow spec-
trum, which is often approximated by a Cauchy-like dis-
tribution near the resonance frequency. This indicates
the presence of H atoms in a dilute or sparse environ-
ment. However, a broad spectrum results at high con-
centrations of hydrogen, which is generally interpreted
as being due to the presence of small hydrogen clusters
(4-8 H atoms) within a region of 3-5 Å radius.26,60 To
study the shape of the resonance curve, we have cal-
culated the NMR spectra for two models with 6.9 and
14.7 at.% H using the Van Vleck moments61 of the spin
distribution.60 In the moment-based approach, an NMR
spectrum can be approximated as a linear combination of
truncated Gaussian (broad) and Cauchy (narrow) distri-
butions, which are defined via the first two non-zero Van
Vleck moments. The distributions are weighted by ap-
propriate mixing parameters, which are deduced from the
number of hydrogen atoms present in the clustered and
dilute phases in the model. The widths of the Gaussian
and truncated Cauchy distributions are characterized by
the second and fourth moments of the spin (H nuclei)
distribution in real space. Following Van Vleck [33], the
second and fourth moments of a system of N randomly
distributed spins can be expressed as,

µ2

γ4~2
=

1

2N

N
∑

i<j

b2ij (5)

µ4

γ8~4
=

3

16N

N
∑

<ikl>

b2ikb
2
il −

1

36N

N
∑

<ikl>

b2ik(bil − bkl)
2

+
1

72N

N
∑

<ikl>

bikbkl(bil − bik)(bil − bkl) +
1

8N

N
∑

i<k

b4ik

(6)

where,

bij =
3

2

(1− 3 cos2 θij)

r3ij
.

and θij is the angle between the vector rij and the direc-
tion of the applied magnetic field. In Eq. (6), the symbol
< ikl > implies a triple summation with no two indices
being equal, and γ is the gyromagnetic ratio of hydrogen
nuclei. For an ideal Gaussian function, Γ = µ4/µ

2
2 = 3

and the full width at half maximum (FWHM) is given by√
8µ2 ln 2. This reflects a complete random distribution

of spins at high concentration. Likewise, in the dilute
limit, a random distribution of spins produces a narrow
Lorentzian or Cauchy-like distribution near the resonance
frequency. In practice, the shape of an experimental res-
onance curve is neither a Gaussian nor Lorentzian. The
presence of correlation between hydrogen atoms, which is
evidenced from the H-H pair-correlation function, mod-
ifies the resonance curve considerably and produces an
intermediate shape between the two limits. To proceed
further, we make the approximation that the resonance
curve can be expressed as a linear combination of a Gaus-
sian and a truncated Cauchy function62:

f(ν) = αfg(ν) + βfl(ν). (7)

Here α and β are the parameters indicating the total frac-
tion of clustered and dilute H atoms in our model a-Si:H
networks respectively, and fg(ν) and fl(ν) are the Gaus-
sian and truncated Cauchy functions, respectively. In the
spirit of the analysis of experimental IR data, we choose
β = 1−α. This is equivalent to the assumption that a hy-
drogen atom that does not belong to clusters contributes
to the dilute phase. The functions fg,l(ν) above are de-
fined via the first two non-zero moments of the spin dis-
tribution. To calculate the configurational-average line
spectra, we have used several magnetic field directions.
It should be noted that the shape of the resonance curve
obtained in this manner is an approximation of the true
resonance curve, especially at very dilute concentrations,
and that the experimental data can deviate significantly,
depending on the concentration of hydrogen, history of
the samples, and the degree of inhomogeneities associ-
ated with the distribution of hydrogen in the models.
Furthermore, the spectrum constructed from the NMR
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FIG. 9. (Color online) Distribution of H clusters (white) in
a 1000 Si-atom model with 17.9 at. % H. For visual clarity,
individual clusters are enclosed within a hypothetical gaussian
isosurface (orange).

moments is purely classical, which involves only the dipo-
lar interaction between spins, and does not include any
effect of the electron-mediated spin-spin interaction in
solids. Additionally, the moment-based approach breaks
down at very dilute concentrations when the resonance
function is almost Lorentzian, leading to divergence of
the second and higher-order moments.

Figure 8 shows the calculated NMR spectra for two
a-Si:H models with 6.9 at.% and 14.7 at.% of hydrogen,
along with the experimental data from Ref. 25, which
correspond to 10-15 at.% H. For comparison, the simu-
lated data from Eq. 7 are multiplied by an appropriate
normalization factor so that both the experimental and
simulated data have an identical zeroth moment or area
under the plots. Although the simulated spectra from the
moment-based approach appear to deviate from the ex-
perimental data, this minor deviation is not unexpected
in view of the approximate nature of the moment-based
method. The reconstructed spectrum depends not only
on the truncated distributions but also on the relative
weight or the mixing parameter, α. The latter depends
on the density of the clustered phase of H atoms, which
characterizes the 3-dimensional distribution of hydrogen
in a-Si:H. Figures 9 and 10 show several such clusters
of hydrogen in a spherical region of radius 3.8-4 Å at
low and high concentrations, respectively. The presence
of such clusters, consisting of 5-8 H atoms in a spheri-
cal region of radius 3-5 Å, is consistent with the conclu-
sions from nuclear magnetic resonance studies.23,24,26 For
clarity of visualization, a hypothetical gaussian surface is
shown around each cluster.63

FIG. 10. (Color online) A few H clusters (white) in a 1000
Si-atom model with 10.6 at.% H. For visual clarity, a hy-
pothetical gaussian isosurface (orange) is constructed around
each cluster.

C. Hydrogen distribution: density of clustered and

isolated phases

In the preceding section, we have seen that the shape
of the resonance curve provides useful information on the
real-space distribution of H atoms in the network. How-
ever, since an NMR spectrum provides a one-dimensional
representation of a hydrogen distribution, it cannot be
used to uniquely characterize the full three-dimensional
distribution of H atoms in real space. Further character-
ization of the hydrogen distribution is possible by com-
paring the distribution of Si-H bonding configurations
in model networks with the results from infrared (IR)
measurements.19,21,22,42 Experimentally, the frequencies
associated with the stretching peaks in the IR spectra
can be obtained via deconvolution of the high-frequency
region of the spectra using Gaussian functions. The hy-
drogen involvement in a vibrational mode is determined
from the integrated absorption strength and the matrix
element of the mode. Ouwens and Schropp42 obtained
estimates for the densities of clustered and isolated hy-
drogen atoms using different oscillator strengths and re-
fractive indices of H atoms in the clustered and isolated
phases. By analyzing the integrated absorption strengths
of stretching modes at 2000 cm−1 and 2100 cm−1 from
infrared measurements, these authors conclude that up
to 4 at.% of total hydrogen can be dissolved into the
amorphous matrix to form an isolated/distributed phase,
which is independent of the methods of preparation and
the deposition conditions of their samples. Similar con-
clusions followed from the work of Acco et al ,22 who
studied the evolution of the hydrogen concentration pro-
file and bonding configurations using secondary-ion-mass
spectrometry and infrared spectroscopy.
To calculate the density of distributed H atoms in our

models, we assume that a hydrogen atom is isolated if
the atom does not have any hydrogen neighbor within
a spherical region of radius 4-6 Å. While this particu-
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FIG. 11. (Color online) Density of distributed H atoms (in
percentage of total hydrogen) at low and high concentrations
with a varying isolation radius. The hydrogen concentration
of a-Si:H models is indicated in the plot.

lar range may appear to be somewhat empirical, it is
motivated by our desire to compare the results with the
experimental data from Ref. 42, where the authors ob-
tained an average isolation radius of 5.9 Å based on the
analysis of their experimental data using phenomenolog-
ical arguments. Figure 11 presents the results for the
percentage of isolated H atoms (with respect to total hy-
drogen) for two models with 10.6 at.% and 17.9 at.% of
hydrogen for isolation radii between 4-6 Å. The results
suggest that the density of isolated hydrogen atoms does
not exceed 4 at.% of total hydrogen for a radius of 4
Å for a device-quality model with 10.6 at.% of H. Sim-
ilarly, at high concentration, there are a few distributed
H atoms (< 2%) present in the network. These results
are consistent with the experimental results obtained by
Acco et al22 and Ouwens and Schropp.42 An example
of a distributed H atom (i.e. an isolated monohydride)
is shown in Fig. 12 with an isolation radius of 5.9 Å. It
may be noted that, for a perfectly homogeneous distri-
bution consisting of Nh hydrogen atoms in volume V ,
the hydrogen-hydrogen separation cannot be more than
l0 = 3

√

V/Nh. This translates into a maximal distributed

radius of 4.3 Å and 6.9 Å for 22 at.% and 6.9 at.% of
H, respectively. Since, for comparison with experimental
data42 l0 >> 5.9 Å, a condition that is not satisfied by
the models at high concentrations of H, our results at
high concentrations are somewhat affected by the small
size of the models. Here, we have used a value of 4.5 Å
as an isolation radius for the calculation of the density of
isolated/distributed atoms.

The density of clustered hydrogen can be determined
by introducing a suitable definition of hydrogen clusters.

FIG. 12. (Color online) An example of a distributed SiH
configuration (red) in a 1000 Si-atom model of a-Si:H with
10.6 at.%. The radius of the spherical region shown above is
5.9 Å.

Following NMR studies,23 one may assume that a hydro-
gen atom belongs to a clustered phase if it is surrounded
by at least nH=5-7 or more H atoms in a spherical re-
gion of rc=3.5-4.5 Å. For the present calculations, we
have chosen a value of nH = 5 H atoms and rc = 3.8 Å
to define a cluster. The latter is approximately equal to
the average separation between two H atoms, which are
bonded to two neighboring Si atoms, such as H-Si-Si-H
(see Ref. 64). The remaining H atoms are assumed to
be distributed in a dilute or sparse phase, which is nei-
ther clustered nor isolated. The corresponding density of
such a dilute phase can be obtained by subtracting the
sum of distributed/isolated and cluster phases from the
total density of H atoms. It may be noted that, depend-
ing on the definition of a cluster, a few small H clusters
can reside in a dilute distribution of hydrogen. It is ap-
propriate to mention at this point that IR studies often
do not distinguish between isolated and dilute phases–an
assumption that we have already employed in the recon-
struction of an NMR spectrum. Hydrogen atoms, which
are not isolated, contribute to the clustered phase.42 Fig-
ure 13 shows the percentage of total H atoms that appear
in the clustered environment for different concentrations
of hydrogen.
Table II provides the statistics of hydrogen distribu-

tions by listing the number density of H atoms in iso-
lated (Ciso) and clustered (Cclus) phases with respect to
total hydrogen content, as well as the percentage of H
atoms (MSiHn

) associated with SiHn bonding configura-
tions. For the calculation of the density of isolated H
atoms (in Table II), we have used a radius of 4.5 Å. Sim-
ilarly, as mentioned in Ref. 64, a hydrogen cluster is de-
fined as a group of 5 or more H atoms in a spherical radius
of 3.8 Å. A comparison of Ciso between simulated values
from Table II and experimental results from Refs. 22 and
42 suggests that our results are well within the range of
experimental values obtained for device-quality models.



10

6 8 10 12 1416 18 20 22
Total H concentration (%)

0

20

40

60

80

C
lu

st
er

ed
 H

 a
to

m
s

FIG. 13. (Color online) Density of clustered H atoms (in
percentage of total H) as a function of total H concentration
for a set of a-Si:H models. A hydrogen cluster is defined as a
group of five or more H atoms in a spherical region of radius
3.8 Å.

TABLE II. Statistics of hydrogen distribution in a-Si:H. Sys-
tem sizes (N), hydrogen concentration (Hconc.), hydrogen
contents of SiHn (MSiHn), and clustered/isolated hydrogen

Cclus/iso are listed. MSiHn =
[

nNn

Nh

]

× 100, where Nn is the

number of SiHn configurations and Nh is the total number of
H atoms.

N ρ Hconc MSiH MSiH2 MSiH3 Ciso Cclus

(g.cm−3) (at. %) (%) (%) (%) (%) (%)

1074 2.236 6.9 100 0 0 8.1 8.1

1090 2.233 8.3 96.7 3.3 0 5.55 6.6

1118 2.217 10.6 98.3 1.7 0 2.54 10.2

1142 2.205 12.4 97.9 2.1 0 4.22 25.3

1172 2.196 14.7 93.0 7.0 0 1.74 35.5

1218 2.174 17.9 87.2 12.8 0 0.46 53.2

1282 2.165 22.0 77.0 19.9 3.1 0.00 71.0

The densities of H atoms (with respect to total H) asso-
ciated with mono- and dihydride configurations are also
listed in Table II as MSiH/SiH2

.

D. Electronic and optical properties

Having studied the structural properties of the mod-
els, we now address the electronic and optical proper-
ties. The optoelectronic properties crucially rely on the
electronic density of states (EDOS). The band-gap re-
gion, in particular, is very sensitive to the concentra-
tion of defects and the degree of disorder in the net-
works. The presence of defects introduces gap states in
the EDOS, whereas disorder influences the states near
the valence- and conduction-band tails. These affect the
optical and electronic properties of the material. For ex-
ample, the size of the optical gap (obtained via Tauc
plots65) and the electronic conductivity (obtained via the

Kubo-Greenwood formalism) depend on the distribution
of valence- and conduction-band tail states, and the mag-
nitude of the gap. In Fig. 14, we have plotted the EDOS
for four a-Si:H models with hydrogen concentrations of
8.3, 12.4, 14.7, and 17.9 at.% of hydrogen obtained from
Siesta using a double-ζ basis and the local density ap-
proximation (LDA) for the calculation of the exchange-
correlation energy. The absence of co-ordination de-
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FIG. 14. (Color online) Electronic density of states (DOS) of
a-Si:H models in the vicinity of the band gap near the band
edges for different hydrogen concentrations. The full valence
and conduction bands are shown in the inset. The Fermi level
is located at 0 eV.
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FIG. 15. (Color online) A Tauc plot showing a linear ex-
trapolation from the joint density of states (blue) to obtain
an estimate of the optical gap (1.57 eV above) using a least-
square fit (red).

fects in the hydrogenated models has produced a clean
electronic gap of size ranging from 1.2 to 1.3 eV. This
value is smaller than the optical gap of 1.61-1.72 eV ex-
trapolated from the measured optical-absorption spectra
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FIG. 16. (Color online) Variation of the optical gap (obtained
from the Tauc plot) in a-Si:H with hydrogen concentrations.
The widening of the gap with increasing hydrogen concentra-
tion is consistent with experimental data in Refs. 41 and 66.
Experimental data shown above are from Ref. 41.

for samples of a-Si:H with 6.5-21.8 at.% of hydrogen in
Ref. 41. The deviation from the experimental value can
be attributed partly to the use of the LDA with localized
basis functions and the variational nature of the density-
functional calculations, and partly to the parameteriza-
tion of the optical functions (e.g. the dielectric function)
for fitting the optical-absorption data from experiments.
The Tauc plot for the model with 12.4 at.% H is shown
in Fig. 15. Due to reasonably large system sizes and the
use of double-ζ basis functions, we have resorted to esti-
mating the value of the optical gap by extrapolating the
joint density of states (JDOS) using the parabolic ap-
proximation for the band edges and assumed an energy-
independent transition matrix element between the va-
lence and conduction bands. A linear least-square fit of
the JDOS from 1.5 eV to 4.5 eV yields an extrapolated
value of 1.57 eV for the optical gap in Fig. 15. This value
is somewhat smaller than the experimental value of 1.66
eV from Ref. 41 but larger than the value of 1.3 eV esti-
mated from the EDOS (in Fig. 14). Since the latter re-
flects the energy difference between the highest occupied
and lowest unoccupied energy states, it is often referred
to as the HOMO-LUMO gap, and is generally smaller
than the optical gap due to the presence of a few defect
states and the neglect of the energy-dependent transition
matrix elements in the calculations.

An inspection of the EDOS in Fig. 14 shows a gradual
widening of the gap with increasing hydrogen concen-
tration except for the model with 8.3 at.% H. This is
evident in Fig. 16, where we have plotted the size of the
optical gap with hydrogen concentration for a set of a-
Si:H models with 1000 Si atoms. This widening of the
gap with increasing hydrogen concentration is consistent
with the experimental results from photo-electron spec-
tra by von Roedern and co-workers,66 and the dielectric
measurements of a-Si:H using spectroscopic ellipsometry

by Kageyama et al .41 The latter observed a shift of the
entire dielectric function toward high energies with de-
creasing substrate temperature, which resulted in a linear
increase of the optical gap of the samples with increasing
hydrogen content. This observation is reflected qualita-
tively in Fig. 16, except for the model with 8.3 at.% of
H,where the value of the optical gap (for the 1000 Si-
atom model) has increased from 1.45 eV at 6.9 at.% H
to 1.6 eV at 17.9 at.% of hydrogen. The widening of the
band gap can be understood in terms of silicon-hydrogen
bond formation with increasing hydrogen concentration.
The addition of hydrogen causes a partial reduction of
the states near the valence-band tail through the forma-
tion of SiH and SiH2 configurations (see Fig. 14). Hy-
drogen passivates the defect states, located near the va-
lence tail, by forming Si-H bonds through Si(3p)-H(1s)
interactions.67 These Si-H configurations reduce the local
strain and disorder through the formation of the silicon-
hydrogen bonding states lying deep in the valence band.
An examination of the local EDOS associated with H-
bonded silicon atoms confirms this observation.
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FIG. 17. (Color online) Dielectric function of a-Si:H from
experiments (red) and simulations (blue) using the Tauc-
Lorentz model. Experimental data are from Ref. 41 and corre-
spond to a sample with approximately 11.6 at. % of hydrogen.

The dielectric function of the a-Si:H model with 12.4
at.% H is plotted in Fig. 17 using the Tauc-Lorentz (TL)
model.68 In the TL model, the imaginary part of the
dielectric function, ǫ2,TL(E), is expressed as a product of
the Tauc joint density of states65 and the matrix element
of a classical damped harmonic (Lorentzian) oscillator in
the presence of an electromagnetic field:69

ǫ2,TL(E) =







AE0C(E − Eg)
2

(E2 − E2
0)

2 + C2E2
.
1

E
E ≥ Eg,

0 E < Eg,

(8)

where the parameters A,E0, C, and Eg correspond to
the amplitude, broadening, peak transition, and Tauc-
Lorentz optical gap, respectively. For the purpose of
calculating the imaginary part of the dielectric function,
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we have used the value of the optical gap Eg=1.57 eV
obtained from the joint density of states, and values of
A=214.05 eV, C=2.33 eV and E0=3.649 from Ref. 41 for
the sample with 11.6 at.% of hydrogen. Figure 17 shows
the plot of the dielectric function ǫ2,TL(E) as a function
of photon energy E. The deviation from the experimen-
tal data near the peak-transition energy of E0 = 3.65 eV
can be understood by noting the behavior of ǫ2,TL(E)
near E0. For E = E0, ǫ2,TL(E = E0) = B(E0 − Eg)

2,
where B = A/CE0. Since Eg has been underestimated in
our calculations, the deviation is more pronounced near
the peak transition energy E0, and decreases as E goes
away from the peak. By directly fitting the experimental
data using Eq. 8, Kageyama et al41 reported a value of
1.66 eV for the optical gap for a sample with 11.6 at.%
H, which is about 5.5% higher than the estimated value
of 1.57 eV for the model with 12.4 at.% H obtained from
the joint density of states in Fig. 15.

E. Vibrational properties

As a final test of our models, we briefly examine the
vibrational properties of a-Si:H models by diagonalizing
the dynamical matrix in the harmonic approximation.70

Since vibrational modes in a-Si:H typically involve an
excitation energy of several tens of meV (for bend-
ing modes) to a few hundreds of meV (for stretch-
ing modes), they are very sensitive to minute struc-
tural changes associated with the environment of sili-
con and hydrogen atoms. For example, the frequency
positions and vibrational character of stretching modes
(SM) depend on the hydrogen contents of mono- and
dihydride configurations and their local chemical en-
vironment. Infrared-absorption measurements suggest
that the high-frequency region of the IR spectra in a-
Si:H is characterized by the presence of a narrow band
(2000-2040 cm−1) of low-frequency stretching modes
(LSM), which is accompanied by a relatively broad band
(2060-2250 cm−1) of high-frequency stretching modes
(HSM).71–73 Although the assignment and the origin of
these modes are still not very clear, it is now widely
accepted that monohydrides (SiH) are largely responsi-
ble for the LSM,22,38,42,73 whereas the contributions to
the HSM come from dihydrides and a few monohydrides
on internal surfaces or voids.41,74 Figure 18 shows the
vibrational density of states of a device-quality model
with 12.4 at.% H along with the experimental data from
inelastic neutron scattering experiments75 on a-Si, and
infrared-absorption measurements21 on a-Si:H at room
temperature. The high-frequency region of the vibra-
tional spectrum shows the presence of two distinct bands:
1) a narrow band from 1960 to 2020 cm−1; 2) a wide
band from 2040-2180 cm−1. A real-space analysis of the
eigenvectors, in the frequency range 2040-2120 cm−1, ob-
tained from the dynamical matrix of the model with 12.4
at.% H indicates that these modes have 100% stretch-
ing character and originate from both monohydride and

dihydride configurations. The localization character of
the vibrational eigenvectors (i.e. normal modes) follows
directly from the inverse participation ratio (IPR):

IPR(ν) =
N
∑

i=1

[

φ2
ix + φ2

iy + φ2
iz

]2

, (9)

where φix , φiy , and φiz are the x, y, z components
of the normalized eigenvector φ(ν) or normal mode of
frequency ν projected on atom i and N is the total num-
ber of atoms in the system. For a completely localized
mode, centered on a single atom, IPR = 1, whereas for
an ideal extended mode distributed over all atoms, IPR
= 1/N. The plot of the IPR versus frequency (in cm−1) is
shown in the lower panel of Fig. 18. An analysis of the vi-
brational modes suggests that most of the high-frequency
stretching modes are strongly localized in character (with
IPR ≥ 0.9). Figure 19 shows an example of such a high-
frequency stretching mode (HSM) associated with an iso-
lated monohydride configuration observed in a model of
a-Si:H with 12.4 at.% of hydrogen. The frequency of
the mode is given by 2182 cm−1. The mode is found
to be highly localized in real space with an IPR value
of 0.95. An analysis of the eigenvector associated with
this mode confirms that the mode is 100% stretching in
character, and that the vibrational motion (of atoms)
associated with this mode is mostly confined to the hy-
drogen and silicon atoms of the Si-H bond as shown in
Fig. 19. Similar observations have been found to be true
for other high-frequency modes. Thus, our models cor-
rectly produce the characteristic frequency positions of H
atoms, the nature of the vibrational modes, and the lo-
calized character associated with these frequencies, which
have been observed in infrared absorption and inelastic
neutron scattering experiments. The low-frequency lo-
calized modes are mostly due to various bond-bending
vibrational configurations involving Si-H bonds.

IV. CONCLUSIONS

We have presented a dynamical approach to gen-
erate continuous-random-network models of a-Si:H by
combining classical metadynamics with first-principles
molecular-dynamics simulations and total-energy relax-
ations. Unlike conventional MD simulations of amor-
phous solids, where the absence of strong glassy behavior
produces too many defects, the present approach pro-
vides a way to control the concentration of co-ordination
defects by using the atomic co-ordination of constituent
atoms as collective variables along with few configura-
tional constraints in metadynamical simulations. The
ability to control defect concentrations using collective
variables makes it possible to generate nearly 100%
defect-free models of a-Si:H via subsequent hydrogen
passivation. A comparison with the existing simula-
tion methods reveals the following advantages of our
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FIG. 18. (Color online) Atom-projected vibrational density
of states of a 1000 Si-model of a-Si:H with 12.4 at. % H
along with the inelastic neutron-scattering data (black) from
Ref. 75. The inset shows the calculated high-frequency vi-
brational modes and the experimental IR spectrum of a-Si:H
from Ref. 21. The lower panel shows the inverse participa-
tion ratio (IPR) of the vibrational eigenstates as a function
of frequency.

approach: 1) the method provides a systematic way
to generate large defect-free models of a-Si:H over a
wide range of concentrations; 2) it produces a hydro-
gen microstructure by passivating a random distribution
of defects in a-Si networks. This eliminates any spu-
rious correlations in the hydrogen distribution, which
might appear in approaches based on the direct inser-
tion of H atoms via the breaking of weak Si-Si bonds
or the incorporation of experimental data in the gen-
eration of models; 3) the density and distribution (i.e.
isolated versus clustered) of silicon-hydrogen configura-
tions can be controlled quite accurately by using ap-
propriate configurational constraints in order to study
their effects on electronic and vibrational properties;
4) the method can be readily employed to generate
structural models of binary/ternary amorphous networks
and amorphous-crystalline heterojunctions for which reli-
able classical/semi-classical potentials are available. For
multinary amorphous solids, the approach can be ex-
tended to include ab initio force fields in metadynamical

FIG. 19. (Color online) A high-frequency stretching mode
(ν = 2182 cm−1) associated with an isolated monohydride
configuration in a model of a-Si:H with 12.4 at.% of hydrogen.
The vibrational motion associated with this mode is found to
be highly localized (with an IPR value of 0.95) and centered
on the hydrogen (white) and silicon (yellow) atoms of the Si-H
bond as indicated.

simulations.
An examination of structural, electronic, optical, and

vibrational properties of the models suggests that they
are in excellent agreement with experimental data from
infrared, nuclear magnetic resonance, inelastic neutron
scattering, and optical absorption studies. The mi-
crostructure of hydrogen distributions in the models is
characterized by the presence of isolated and clustered
H phases in the background of an intermediate phase of
hydrogen. Approximately 0.5-8 at.% of total hydrogen
atoms have been found to occur in an isolated environ-
ment, which is comparable with the experimental values
of 0-4.5 at.% H inferred from infrared spectroscopy.22,42

The results are more-or-less consistent with experimen-
tal data, taking into account the limits of our simula-
tions. The density of clustered hydrogen shows a mono-
tonic increase with an increase in the hydrogen concen-
tration. This agrees well with the data from optical-
absorption measurements, which show an almost linear
increase of the density (of the clustered phase) with hy-
drogen concentration. In conclusion, the metadynamical
approach presented here provides an efficient way of pro-
ducing large, high-quality, defect-free models of amor-
phous solids for further study of their structural, elec-
tronic, optical, and vibrational properties.
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