
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anomalous gap-edge dissipation in disordered
superconductors on the brink of localization

Bing Cheng, Liang Wu, N. J. Laurita, Harkirat Singh, Madhavi Chand, Pratap
Raychaudhuri, and N. P. Armitage

Phys. Rev. B 93, 180511 — Published 26 May 2016
DOI: 10.1103/PhysRevB.93.180511

http://dx.doi.org/10.1103/PhysRevB.93.180511


Anomalous gap edge dissipation in disordered superconductors on the brink of

localization

Bing Cheng,1 Liang Wu,1 N. J. Laurita,1 Harkirat Singh,2

Madhavi Chand,2 Pratap Raychaudhuri,2 and N. P. Armitage1

1Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
2Department of Condensed Matter Physics and Materials Science,

Tata Institute of Fundamental Research, Homi Bhabha Rd., Colaba, Mumbai 400 005, India
(Dated: May 16, 2016)

Superconductivity in disordered systems close to an incipient localization transition has been
an area of investigation for many years, but many fundamentally important aspects are still not
understood. It has been noted that in such highly disordered superconductors, anomalous spectral
weight develops in their conductivity near and below the superconducting gap energy. In this work
we investigate the low frequency conductivity in disordered superconducting NbN thin films close
to the localization transition with time-domain terahertz spectroscopy. In the normal state, strong
deviations from the Drude form due to incipient localization are found. In the superconducting
state we find substantial spectral weight at frequencies well below the superconducting gap scale
derived from tunneling. We analyze this spectral weight in the context of a model of disorder
induced broadening of the quasiparticle density of states. We find that aspects of the optical and
tunneling data can be consistently modeled in terms of this e↵ect of mesoscopic disorder, showing
that in this disorder and frequency range, quasiparticle e↵ects and not collective modes are the
source of low energy absorption. Interestingly, we also find that as a function of frequency the
optical conductivity recovers to the normal state value much faster than any model predicts. This
points to the non-trivial interplay of superconductivity and disorder close to localization.

The manifestation of superconductivity in systems
close to a disorder-driven localization transition has been
an area of investigation for many years, yet many even
central topics are not understood. The electrodynamic
response of such systems is a fundamental probe of
their physics but wide-open issues exist here as well.
The optical conductivity corresponding to the mean-field
Bardeen-Cooper-Schrie↵er (BCS) model of superconduc-
tivity was worked out in the context of the celebrated
Mattis-Bardeen (MB) theory [1]. A central prediction
of the MB theory is the presence of a zero-frequency
delta function and a gap 2� the form of which depends
non-trivially on the BCS coherence factors in the real
part of optical conductivity (�1). This theory works ex-
ceptionally well for many superconductors even in the
“dirty” limit, where the normal state scattering rate
(1/⌧) is much larger than the gap, but which are still
far from a localization transition [2–4]. The MB the-
ory predicts that in the limit of zero temperature there
is no spectral weight in �1 for frequencies below 2�,
which means the gap is clean. However, it has been
noticed for many years that in highly disordered super-
conductors, for instance in thin-film systems near the
superconductor-insulator transition, anomalous spectral
weight develops near and below the expected gap edge.
This has been observed in many di↵erent systems includ-
ing granular superconductors [5–9], amorphous thin films
[10–12], and high-temperature superconductors with in-
trinsic disorder [13, 14]. Aside from its fundamental im-
portance, it is essential to understand this dissipation as
it is an essential limiting factor for IR photon detectors

using similar films [15].

In this work we studied the low-frequency conductiv-
ity of disordered superconducting NbN films close to the
localization transition. In the normal state, strong de-
viations from the Drude form are found, which are in-
dicative of incipient localization. For medium disorder,
the optical conductivity of the superconducting state is
well-described by the MB formula. However, for higher
disorder samples, additional low-energy spectral weight
forms in a region below that predicted by the BCS the-
ory. For these samples, this energy is well below the scale
of the gap determined by tunneling. We investigated this
feature in the context of prevailing models and conclude
that its onset is reasonably described by a model of pair
breaking from mesoscopic disorder, showing that - in this
disorder and frequency range - quasiparticles and not col-
lective modes are the source of low energy absorptions.
However, discrepancies exist with the predicted shape of
the conductivity in that in the most disordered samples,
the conductivity recovers more quickly than predicted to
the normal state with increasing frequency. As the shape
of the MB conductivity functional derives from the form
of the BCS coherence factors, this di↵erence may presage
a transition to a state with localized Cooper pairs.

The low-frequency conductivity was measured with
time-domain terahertz spectroscopy (TDTS) (See supple-
mentary materials (SI)). The NbN used in this study con-
sist of 60 nm and 120 nm thin films that were grown by
using pulsed laser deposition on (100)-oriented MgO sin-
gle crystalline substrates. Disorder in NbN can be tuned
by varying the number of Nb vacancies in the crystalline



2

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

60

60
60 120

120
120

120

120

T c
 (K

)

k F l

0.0

0.1

0.2

0.3

0.4

 Optics
 Tunneling

η

FIG. 1. (Color online) The left axis is Tc vs. the dimen-
sionless conductance parameter kF l for the samples used in
this study. The thickness (unit is nm)of each sample is shown
next to the data points. Tc was defined by the temperature
where the resistance is indistinguishable from zero. The green
dashed line is kF l = 1. On the right axis is the depairing pa-
rameter ⌘ extracted from optics and tunneling as discussed in
the text.

NbN lattice [16]. Disorder introduced in these samples
shows a homogeneous distribution at the nanoscale [17].
The e↵ective disorder in each film was quantified by the
normal state conductivity just above the transition tem-
perature (Tc) and calibrated to previous results that de-
termined the room temperature kF l [16], the product of
the Fermi wave vector (kF ) and electronic mean free path
(l). Fig. 1 gives the details of Tc vs kF l for the samples
used in this study. At optimal deposition conditions NbN
films have a Tc ⇡ 16 K. In our work we examined a range
of films with kF l ⇠ 1.7 � 10.5. As disorder is increased
Tc decreases monotonically down to the limit where it is
destroyed at kF l of order unity.

In Fig. 2(a), we show the real parts of optical con-
ductivity �1 just above Tc (⇠ 1.1 Tc) for this series of
samples measured with TDTS. The spectra of the least
disordered Tc = 13.4 K sample is flat and featureless,
indicating a Drude scattering rate that is much larger
than the measured spectral range. The spectra is consis-
tent with dc transport measurements and indicates typi-
cal behavior [18] for a moderately disordered metal. For
increasing disorder, the normal state real conductivity is
progressively suppressed. Even more significant for our
analysis below is the deviations from conventional Drude
behavior for samples with kF l . 6. At higher disorder,
one observes that the conductivity becomes a strongly in-
creasing function of !, which is a signature of incipient lo-
calization in a disordered metal [19–21]. Consistent with
this, dc transport has shown that as Tc is suppressed,
the resistivity of all lower Tc samples show a negative
temperature coe�cient at low T [18]. Localization modi-
fied Drude and Drude-Simith models have been proposed
to include localization e↵ects in such disordered systems
and can reproduce the spectra with positive slope [20].

The real and imaginary parts of the optical conductiv-
ity at our lowest temperature of 1.5 K are shown in Figs.
2(b) and 2(c) for this series of samples. For the highest
Tc, a notable gap forms in �1 at the lowest temperature
and a 1/! dependence is exhibited in the imaginary part
of the conductivity (�2). (Please see the SI for all mea-
sured data for all measured samples). As the disorder
level increases, the optical gap decreases in accord with
the lowering of Tc. As the coe�cient of the 1/! is set by
the spectral weight in the zero frequency delta function,
the coe�cient of �2 decreases in accord with the delta
function’s dependence on both the gap and the normal
state conductivity [1]. It is important to note that, at
least up to moderate disorder levels, despite the strong
frequency dependence of the normal state conductivity
due to localizing tendencies, the missing area that results
from the formation of the gap, reappears in the spectral
weight of the zero-frequency delta function. However,
due to the strong frequency dependence of the normal
state, this can only be seen by directly integrating the
spectra and comparing the missing area to the coe�cient
of the 1/! part of �2 at low !. It is also interesting to
note that for the highest level of disorder, the high fre-
quency parts of �2 show a progressively larger negative
contribution. This negative contribution is also apparent
in the normal state and comes from the increasing rela-
tive e↵ect of finite frequency excitations on the real part
of the low-frequency dielectric function (e.g. the polariz-
ability) and departures from the Drude form due to the
localizing tendencies of the normal electrons. This neg-
ative contribution progressively obfuscates the 1/! part
of �2 at low ! and does not allow us to make statements
about how spectral weight is conserved for the most dis-
ordered samples levels.
In the conventional MB theory, the real part of the

superconducting state conductivity is expressed as a ratio
to the normal state conductivity to normalize out the
matrix elements between single electron states. However,
in the usual theory it is expected that this normal state
real conductivity is flat in frequency and its imaginary
part is zero as is typical for a highly disordered metal.
Due to the strong deviations from the expectation in the
normal state conductivity we found that (except for the
least disordered sample), it is completely impossible to
simultaneously fit both complex components to the MB
form when using a frequency independent �n even when
letting the gap be a free parameter.
To include the localizing features in the spectra, we

normalized the real part of the superconducting state
conductivity by the normal state real conductivity (1.1
Tc) (Fig. 2(d)). The optical energy gap 2Eg can be
extracted from these normalized conductivity directly as
the minimum or threshold in �1. Here and in what fol-
lows, we use 2Eg to di↵erentiate the optical gap from
the gap measured in tunneling. Traditional BCS the-
ory predicts that the ratio between the optical gap and
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Tc 13.4 K 11.6 K 9.2 K 8.2 K 6.2 K 6.1 K 5.6 K 3.8 K

kF l 10.35 8.37 5.30 4.25 3.23 2.24 1.92 1.74

2Eg(THz) 1.10 0.92 0.66 0.55 0.38 0.24 0.23 <0.12

2Eg/kBTc 3.93 3.81 3.45 3.19 2.94 1.89 1.96 <1.52

TABLE I: Optical energy gaps, 2Eg, are extracted directly from conductivity in Fig. 2 for each sample. Units of
2Eg are in THz. 2Eg/kBTc is the ratios between the optical gap and the superconducting transition temperature.
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FIG. 2. (Color online) (a) Real part of the optical conductiv-
ity at 1.1 Tc. (b) Real part and (c) Imaginary parts of the
optical conductivity at 1.5 K. (d) Real parts of optical conduc-
tivity at 1.5 K normalized by the normal state conductivity
at 1.1 Tc given in (a).

transition temperature should be 3.5, while strong cou-
pling e↵ects can drive it larger. As shown in Table 1, for
our lowest disorder Tc = 13.4 K sample, the ratio be-
tween optical gap and transition temperature 2Eg/kBTc

is 3.93. As Tc is suppressed to 8.2 K, the ratio falls be-
low the BCS stability limit of 3.53. For the Tc = 3.8 K
sample, a clear minimum or threshold cannot be seen in
the conductivity �1 in superconducting state (Fig. 1(8a)
of SI). Considering the low detection limit of our spec-
trometer (⇡ 0.12 THz), we estimate 2Eg/kBTc < 1.5 for
this sample. It is interesting to compare these numbers
to those extracted from tunneling. Tunneling spectra in
moderately disordered conventional superconductors like
NbN reveals a conventional BCS density of states with its
square root singularities and a clean gap. With increas-
ing disorder – reminiscent of the situation in optics – the
density of states broadens [17, 32, 34] and although the
energy separating the coherence peaks (2�) maintains a
ratio 2�/kBTc ⇡ 4 up to high disorder levels [18], the
peaks become smeared and a tunneling conductance de-
velops at lower energies (See SI).

In Fig. 3, we show the normalized optical conductivity
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FIG. 3. (Color online) The red hollow squares represent the
real parts of the optical conductivity at 1.5 K for four repre-
sentative samples. The red dashed vertical curves show the
optical energy gaps directly extracted from optics. The green
dashed lines indicate the superconducting gaps extracted from
tunneling. The green curves are created via a numerical so-
lution to the MB formalism with superconducting gaps ex-
tracted from tunneling. The blue curves are simulations using
the model of Larkin and Ovchinnikov.

for four typical samples. The red dashed lines label the
positions of optical energy gaps extracted by inspection.
They can be compared to the green dashed lines that in-
dicate the expected superconducting gap 2� which were
given (as it is in the MB theory) by the experimentally
determined relation 2�/kBTc = 4.2 with 2� the energy
gap determined from fits to tunneling (See SI). Using
the MB theory, we simulate the normalized conductiv-
ity (green curve in Fig. 3) with these superconducting
gaps from tunneling. With increasing disorder, addi-
tional spectral weight progressively develops both below
and above the gap scale 2�. For Tc = 3.8 K, a clear
energy gap could not be observed from the conductivity
spectra. It is also observed that for the most disordered
samples the normalized conductivity approaches the nor-
mal state faster than the BCS prediction.
A number of possibilities beyond MB theory exist to

explain this anomalous absorption. In principle, both
collective modes and quasiparticle excitations may con-



4

tribute. It has been pointed out that, in systems with
a spatial modulation of the superfluid density, one may
find absorptions far below 2� [14, 22, 23]. Cea et al.
give a similar scenario where the spectral weight may be
exhibited at finite frequency [24]. In all cases these are
low-energy phase-like modes that are rendered optically
active at q ⇠ 0 by the breaking of translational symmetry
through disorder. In the present case, we do not believe
phase modes are the obvious choice to explain most of
the additional absorption because it is appears to be as-
sociated with the gap edge, which is not necessarily a
relevant energy for phase degrees of freedom. We believe
that if phase mode absorptions are significant, it is only
on the most disordered samples (Tc < 3.8 K) do not have
clean gap within our measured ! range.

Alternatively, it was recently claimed that in the op-
tical response of disordered films that the in-gap optical
conductivity exhibited a sharp threshold that was con-
sistent with an excitation of the amplitude of the order
parameter [25]. This amplitude mode, if it exists, is an
analog to the famous Higgs boson from particle physics.
However, amplitude modes as such are not generically
guaranteed in condensates [26], and in a BCS-style su-
perconductor, amplitude modes are over damped as they
are degenerate with the quasiparticle absorption edge at
2�. The interpretation in Ref. 25 was made on the ba-
sis of a specific particle-hole symmetric O(2) relativistic
field theory[27] where the quasiparticle energy scale is set
to infinity. It is not clear how the physics of this O(2)
field theory connects to the BCS limit, which is obvious
in our data for kF l � 1. Moreover, in all known cir-
cumstances in which the amplitude mode threshold can
be pushed below the quasiparticle absorption edge and
rendered optically active, e.g. in the limit of strong disor-
der or strong-coupling, particle-hole symmetry is broken
which forces amplitude and phase modes to mix and a
clean distinction between the excitations in di↵erent sec-
tors is obviated. As pointed out in Ref. 28 there are even
internal consistency issues with the possibility to see an
amplitude mode optically. Because the scalar amplitude
mode only becomes optically active by being excited in
conjunction with a phase mode, a coupling between sec-
tors is necessary for an amplitude mode’s observation -
yet this very coupling renders the amplitude and phase
modes indistinct. Note that none of our data shows ei-
ther the sharp onset or the particularly low-energy scale
of the single displayed high disorder curve in Ref. 25.

Irrespective of the above considerations, it is clear that,
with substantial tunneling conductance below �, it is in-
adequate to model the optics with an MB functional that
relies on a clean gap. Tunneling measurements are an im-
portant point of comparison to optical conductivity by
virtue of the fact that they probe quasiparticle e↵ects di-
rectly and only indirectly probe collective modes through
their coupling to quasiparticles. We propose that the low
threshold (as compared to Tc) of 2Eg that we see in op-

tics derives from the same sub-gap states seen below the
coherence peak � in tunneling. It is quite natural to ex-
pect a modification of the quasiparticle excitations of the
system at high disorder. Larkin and Ovchinnikov showed
that that disorder in the form of a spatially varying BCS
coupling constant will give an e↵ective pair breaking ef-
fect [29] that maps to the Abrikosov-Gor’kov pair break-
ing model caused by magnetic impurities [30]. A similar
mechanism may be applicable to superconductors with
mesoscopic fluctuations [31].

We can model quasiparticle properties of the optical
and tunneling data in a self-consistent fashion by the
model of Larkin and Ovchinnikov (LO) [29, 30]. The
prediction was that the density of states would be ho-
mogeneously broadened from the BCS expectation with
an energy gap renormalized to Eg(⌘) = (1 � ⌘2/3)3/2�.
Here � is the average value of order parameter (very
approximately indicated in the tunneling by the energy
of the coherence peaks) and ⌘ is a parameter that sets
the strength of the e↵ective depairing [33]. By using �
extracted from fits to tunneling and Eg from optics, we
estimate ⌘ for each sample and plot them on the right
side of Fig. 1. As kF l decreases, ⌘ increases. Although
this method can qualitatively explain the lower thresh-
old, the values of ⌘ are systematically larger than what
is predicted from theory at these kF l values [31]. In this
regard, the mesoscopic fluctuations may be regarded as
the minimal model of disorder and other types of micro-
scopic inhomogeneity may push ⌘ higher. Irrespective of
this, we can compare these ⌘’s with those extracted from
direct fits of the LO model to the tunneling conductance
[35]. One can see that although the values of ⌘ extracted
by the two methods are close, optics gives a value sys-
tematically higher. This is consistent with both recent
experiments that compared the ⌘ determined from the
superfluid density with that of tunneling [36] and recent
theory [37] that predicted (for the 2D case, which is not
necessarily applicable in our thick films) that the ⌘ from
optics should be generally larger in this disorder range
by factor of 6/ln(6g2) (with g the dimensionless conduc-
tance) due to the role of vertex corrections in transport.

To more precisely compare the LO model to the
data we solved the Usadel equation iEsin✓ + �cos✓ �
⌘�sin✓cos✓ = 0 numerically with � taken from tunnel-
ing and ⌘ is estimated above. Here, E is the energy
relative to Fermi level, ✓ is the pairing angle and sin✓
and cos✓ are the disorder-averaged Green’s functions [12].
The single particle density of states is directly given by
⇢(E) = ⇢0Re(cos✓), where ⇢0 is the normal state den-
sity of states. We show our simulations of the density of
states in the part D of the SI. The corresponding nor-
malized real optical conductivity at T = 1.5 K can be
calculated through the expression



5

�1s

�1n
=

2

~!

Z 1

Eg

[f(E)� f(E + ~!)] | F (E,E + ~!) | dE+

1

~!

Z �Eg

Eg�~!
[1� 2f(E + ~!)] | F (E,E + ~!) | dE

where the generalized coherence factor is given by
F (E,E + ~!) = Re[cos✓(E)] Re[cos✓(E + ~!)] +
Im[sin✓(E)] Im[sin✓(E + ~!)]. Here f(E) is Fermi-Dirac
distribution function. In the limit where ⌘ = 0, one re-
covers the traditional MB form. We show the simula-
tion of normalized conductivity in Fig. 3 (blue). As
expected from the above, after considering broadening
e↵ects around the gap edge in the density of states, a
notable amount of optical spectral weight fills the region
between 2� and 2Eg. At high frequency, simulation with
the LO model recovers the predictions of MB. Our simu-
lation qualitatively explains the conflicts between optics
and tunneling or rather demonstrates that when making
a comparison one cannot compare the threshold in optics
to the energy of the coherence peaks.

Our analysis shows that in this disorder and frequency
range, quasiparticle e↵ects and not collective modes are
the source of low energy absorption. Although our model
successfully accounts for the lower onset energy of the op-
tical gap as compare to tunneling, the theoretical curves
still do not capture the high-frequency parts of normal-
ized conductivity. We find that in the most disordered
samples, the conductivity recovers more quickly to the
normal state values than predicted. As the particular
form of the MB conductivity functional derives from a
particular form of the BCS coherence factors, this di↵er-
ence may presage a transition to an insulating state with
localized Cooper pairs [38]. However, we cannot rule out
that this feature does not come from our normalization
procedure where we divide by the strongly frequency de-
pendent conductivity. Although calculations have been
done showing the role that mesoscopic disorder plays in
suppressing the superfluid density [37], no explicit cal-
culation of the gap edge structure has been performed.
Moreover calculations of the gap-edge optical response
across the BEC-BCS crossover have not been made. Such
contributions would be very welcome.
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