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In this paper we derive the full gauge-invariant electromagnetic response beyond the BCS level
using the fermionic superfluid path integral. In the process we identify and redress a failure to satisfy
the compressibility sum rule; this shortcoming is associated with the conventional path-integral
formulation of BCS-level electrodynamics. The approach in this paper builds on an alternative saddle
point scheme. At the mean field level, this leads to the well known gauge-invariant electrodynamics
of BCS theory and to the satisfaction of the compressibility sum rule. Moreover, this scheme can
be readily extended to address arbitrary higher order fluctuation theories (for example, at the
Gaussian level.) At any level this approach will lead to a gauge invariant and compressibility sum
rule consistent treatment of electrodynamics and thermodynamics.

There is a great interest from diverse physics communi-
ties in understanding superfluids [1–4] and superconduc-
tors [5, 6] with stronger than BCS correlations. These
strong correlations are present in both high temperature
superconductors and in ultracold Fermi superfluids. At
the heart of probes of superfluidity are electrodynamic
and thermodynamic responses. It is, therefore, impor-
tant to have a consistent theory for addressing both of
these. One consistency requirement is that of gauge in-
variance. This affects only the electrodynamics, and im-
portantly introduces collective modes of the order pa-
rameter. Another consistency requirement involves the
inter-connection between electrodynamics and thermo-
dynamics. This is encapsulated in the compressibility
sum rule [7].

The path integral scheme is particularly well suited
to consistency checks related to this inter-connection be-
cause it simultaneously derives electrodynamics and ther-
modynamics. However, this scheme, as it is applied in the
literature, is not compatible with the compressibility sum
rule [8]. This inconsistency shows up at the widely ap-
plied [9–12] saddle point plus Gaussian fluctuation level
of approximation. This is the approximation level which
is argued to be essential for obtaining the gauge invariant
electrodynamics of BCS theory.

In this paper we present an alternative to this stan-
dard literature path integral approach [9–12]. The main
goals are: (i) To obtain a fully gauge invariant theory of
electrodynamics beyond BCS theory. (ii) To show how
to make thermodynamics and electrodynamics consistent
with the compressibility sum rule. (iii) To establish the
physically observable consequence that if the electrody-
namics are described by strict BCS theory, then the ther-
modynamics should not include collective mode contribu-

tions. There seems to be no consensus about whether
these non-BCS terms should or should not be consid-
ered in thermodynamics [13, 14]. In our path integral
re-formulation, for both the lowest order mean-field, and
Gaussian fluctuation levels, we will derive theories fully
consistent with gauge invariance and the compressibility

sum rule. Indeed, this consistency can in principle be
achieved at all orders of approximation.
We begin by addressing the compressibility sum rule.

We define Ω = Ωmf+Ωfl as the thermodynamic potential
resulting from a calculation that uses Gaussian fluctua-
tions (fl) around mean field theory (mf) to establish a
BCS-level gauge invariant electrodynamic response. We
consider n particles having chemical potential µ. Within
this formulation, which we call the gauge restoring Gaus-
sian fluctuation (GRGF) theory, the number of particles
n = −∂Ω/∂µ has a leading order mean-field term nmf

and a fluctuation contribution nfl. Similarly the electro-
dynamic kernel which derives from Ω contains the coun-
terpart mean-field and fluctuation terms, both of which
combined lead to a proper gauge invariant BCS density-
density correlation function K00(ω,q). One can show
that n = nmf + nfl satisfies

K00(ω = 0,q → 0) = −
∂nmf

∂µ
6= −

∂n

∂µ
. (1)

This demonstrates an explicit violation [8] of the com-
pressibility sum rule, which should read K00(ω = 0,q →
0) = −∂n/∂µ. It also demonstrates (at least at an em-
pirically suggestive level) what assumptions need to be
made to satisfy the compressibility sum rule within BCS
theory.
In the GRGF approach leading to Eq. (1) and pre-

sented in a fairly extensive literature [9–12], fluctuations
of the mean-field phase φ were used to restore gauge in-
variance. These fluctuations enter as a “dressed” vec-
tor potential Ãµ = Aµ + ∂µφ, which is then expanded
to quadratic order. Integration of the fluctuations φ re-
sulted in the standard electromagnetic response kernel of
strict BCS theory. We emphasize here [9–12] that the
focus was on electrodynamics while the thermodynamic
implications were of no concern.
In contrast, understanding thermodynamics associated

with Gaussian fluctuation theories (beyond the BCS
level) was the focus of work by a different community
that studied ultracold Fermi superfluids [15–20]. In these
neutral superfluids, soft bosonic collective modes arising
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from fluctuations were shown to provide new thermody-
namic contributions in addition to those of the fermionic
quasi-particles of BCS theory.
Yet another series of studies incorporated these

Gaussian-level (beyond BCS) fluctuations to revisit elec-
trodynamics in a higher level theory. By introducing
a small phase twist in the thermodynamic potential, it
was argued that one could determine the superfluid den-
sity ρs [21, 22]. This leads to bosonic contributions, not
present in BCS theory. These were somewhat similar
(but not equivalent) to contributions found within a very
different diagrammatic formalism [23]. In contrast to the
present work, these electrodynamic calculations did not
establish consistency with gauge invariance.
All this previous literature relating to Gaussian fluc-

tuations can be summarized by noting that there have
been separate path integral studies of superfluid electro-
dynamics and of thermodynamics. What is missing is an
analysis of the constraints which relate the two. In this
paper we address this shortcoming.
Path integral and mean field.– Here we consider a

fermionic partition function for a neutral, attractive,
Fermi gas with s-wave pairing. The techniques presented
here can be readily extended to higher order pairing,
and Coulomb interactions can be included at the RPA
level [11]. The partition function is calculated using the
Hubbard-Stratonovich (HS) path integral

Z [A] =

∫
D [∆] e−SHS[∆,A], (2)

where the HS action takes the usual form SHS [∆, A] =∫
dx |∆|2

g
− Tr ln

[
−G−1 [∆, A]

]
[9, 24], g > 0 is an inter-

action constant, and Tr [·] includes a trace over both po-
sition and Nambu indices; throughout we set ~ = kB =
1. The inverse Nambu Green’s function G−1 [∆, A] =
G−1
0 [A] − Σ [∆] is constructed from a single particle

Green’s function G0 [A] and a self-energy Σ = −∆ · τ ,
with τ = (τ1, τ2) a vector of Nambu Pauli matrices.
Throughout we use the notation ∆ = (∆1,∆2) to repre-
sent two real HS fields ∆a (x), with a = 1, 2, consistent
with previous literature [25]. The single particle Green’s
function G0 [A] is kept general, but we note that an elec-
tromagnetic vector potential Aµ has been explicitly in-
cluded.
We now calculate Z [A] at the mean-field level using

the saddle point approximation δSHS [∆, A] /δ∆a = 0 in
the presence of Aµ 6= 0. This is to be contrasted with
previous work (belonging to the GRGF scheme) [9–12]
where the saddle point condition assumed Aµ = 0. Here,
explicit calculation produces the standard BCS gap equa-
tion, 0 = 2∆a [A] /g − Tr [G [∆ [A] , A] τa], in the pres-

ence of a non-zero vector potential Aµ. We define the
solution to this gap equation as ∆mf [A], which depends
on Aµ. We note that other communities have also ex-
ploited the advantages of considering alternative saddle
point schemes [26, 27].

At the present mean-field (saddle point) level, we can
write Zmf

[
∆mf [A] , A

]
= e−Smf , where the mean-field

action Smf = SHS

[
∆mf [A] , A

]
is the HS action evalu-

ated at the solution to the saddle point equations. In
general we cannot explicitly calculate the solution to the
gap equation for Aµ 6= 0. Instead, we will first use
the self-consistent gap equation to find the variation of
∆mf [A] with respect to a variation in Aµ. We then take
the Aµ → 0 limit, after which all quantities are calcu-
lated using ∆mf ≡ ∆mf [0]. Thus, no additional compu-
tational difficulties arise when using this self-consistency
condition compared to the GRGF formalism.

Response functions at saddle point level.– Given an
arbitrary “effective action” Seff [A] = − lnZ [A] in the
presence of a weak perturbation Aµ, the response kernel
comes from the second functional derivative of the ac-
tion in the Aµ → 0 limit [24]. As such, we can expand
Seff [A] ≈ Seff [0] + 1

2

∫
dx

∫
dx′Aµ (x)K

µν (x, x′)Aν (x
′)

to second order in the vector potential Aµ, where

Kµν (x, x′) =
δ2Seff [A]

δAµ (x) δAν (x′)

∣∣∣∣
A→0

(3)

is the response kernel for an arbitrary action Seff [A].

We now calculate the mean-field response using the
definition in Eq. (3) by including a nonzero vector po-
tential in the saddle point condition, i.e., replace Seff [A]
by Smf = Smf

[
∆mf [A] , A

]
. When taking a functional

derivative with respect to Aµ, new terms arise from a
“functional chain rule” [9] applied to the self-consistent
gap ∆mf [A]. These terms, which do not not emerge for
a gap calculated around Aµ = 0 as in GRGF, are cru-
cial for maintaining gauge invariance. The full response
kernel then takes the form:

Kµν
mf (x, x

′) =
δ2Smf

δAx
µδA

x′

ν

∣∣∣∣
∆mf

+
δ∆y

a

δAx
µ

δ2Smf

δ∆y
aδ∆

y′

b

∣∣∣∣∣
∆mf

δ∆y′

b

δAx′

ν

+
δ∆y

a

δAx
µ

δ2Smf

δ∆y
aδAx′

ν

∣∣∣∣
∆mf

+
δ2Smf

δAx
µδ∆

y
a

∣∣∣∣
∆mf

δ∆y
a

δAx′

ν

+
δSmf

δ∆y
a

∣∣∣∣
∆mf

δ2∆y
a

δAx
µδA

x′

ν

, (4)

where the Aµ → 0 limit is applied after taking all deriva-
tives. In this equation we have introduced the notation
∆x

a ≡ ∆a (x) and Ax
µ ≡ Aµ (x); repeated subscript (su-

perscript) indices a, b (y, y′) should be interpreted as an
implied Einstein summation (integration.)
To express Eq. (4) in a more suggestive form, we define

the set of two-point response functions [8, 28–30]:

Qαβ
mf (x, x

′) ≡
δ2Smf

[
∆mf , A

]

δAα (x) δAβ (x′)

∣∣∣∣∣
A→0

, (5)

where Aα =
(
∆mf

1 ,∆mf
2 , Aµ

)
parameterizes both gap and

vector potential response. The kernel Kµν
0,mf ≡ Qµν

mf is
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the standard (non-gauge invariant) response as calcu-
lated with a gap ∆mf ; the functions Qaµ

mf = Qaµ
mf and

Qab
mf = Qab

mf come from “partial” derivatives in the func-
tional chain rule. We note that the propagator Qab

mf is
equivalent to a “GG” t-matrix for a BCS self-energy,
and therefore can be interpreted as an emergent bosonic
propagator [6, 31]. Using these definitions, the mean-field
level gauge invariant response is compactly written

Kµν
mf = Kµν

0,mf +Πµ
aQ

aν
mf +Qµa

mfΠ
ν
a +Πµ

aQ
ab
mfΠ

ν
b , (6)

where we henceforth include an implicit integration
over y, y′ for every Einstein summation over a, b. In
Eq. (6) we have introduced the collective mode terms
Πµ

a (x, x
′) ≡ δ∆mf

a [A] (x′) /δAµ (x)
∣∣
A→0

; these explicitly
restore gauge invariance beyond the “bubble” response
kernel Kµν

0,mf [8, 28–30]. In the saddle point response, the
third line in Eq. (4) vanishes.
Using the revised saddle point condition, along with

the above definitions, the collective modes are Πµ
a =

−
[
Qab

mf

]−1
Qbµ

mf where the inverse
[
Qab

mf

]−1
is taken over

both position and Nambu indices (see Supplemental Ma-
terial [32]). We emphasize that these collective modes
are associated with the mean-field level of approximation.
Finally, after taking the Aµ → 0 limit, the momentum
space response is

Kµν
mf (q) = Kµν

0,mf (q)−Qµa
mf (−q)

[
Qab

mf (q)
]−1

Qbν
mf (q) .

(7)
This is the usual gauge invariant response kernel in BCS
theory [28] which includes both amplitude and phase col-
lective modes.
Importantly, the response kernel Kµν

mf , which is ex-
plicitly gauge invariant, was obtained without including
Gaussian fluctuations, which are usually invoked in the
GRGF literature. In this way the self-consistent treat-

ment of the gap in the presence of a vector potential re-

stores gauge invariance at the mean-field level. Because
there are no accompanying bosonic degrees of freedom
in the thermodynamics, the compressibility sum rule will
be shown to be exactly satisfied using this method, in
contrast to the more conventional path integral method-
ology.
Beyond saddle point.– Often it is desirable to calcu-

late the path integral beyond the saddle point approxi-
mation. In order to do this, one changes variables from
the HS field ∆ to a fluctuation η = (η1, η2) around the
saddle point solution defined through ∆ = ∆mf [A] + η.
We note that since η is a dynamical variable it does not
have any dependence on Aµ. The full action is then ex-
pressed exactly as SHS [∆, A] = Smf + Sη, where the ac-
tion Sη ≡ Sη

[
∆mf [A] , A,η

]
= SHS

[
∆mf [A] + η, A

]
−

SHS

[
∆mf [A] , A

]
is O

(
η2
)
or higher, since any term lin-

ear in η vanishes by the saddle point condition. This
definition allows for the exact factorization of the parti-
tion function Z [A] = Zmf

[
∆mf [A] , A

]
Zfl

[
∆mf [A] , A

]
,

where

Zfl

[
∆mf [A] , A

]
=

∫
D [η] e−Sη[∆mf [A],A,η] (8)

is the contribution due to fluctuations beyond mean field.
In calculations of response beyond saddle point,

one uses Eq. (3) with an effective action Seff [A] =
− lnZ [A] = Smf + Sfl, and the fluctuation action Sfl =
− lnZfl

[
∆mf [A] , A

]
also depends on the self-consistent

gap ∆mf [A]. The response kernel is linear in the action,
so thatKµν = Kµν

mf+K
µν
fl , where the mean-field response

is given in Eq. (7). The new contribution to the response,
Kµν

fl , has a form identical to Eq. (4), only with Smf re-
placed by Sfl. Note, however, that the collective mode
terms Πµ

a still arise from the mean field self-consistent gap
condition; these collective modes are always constructed
from the Qmf propagators, and not from an analogous
Qfl.
This higher order fluctuation response again contains

a “bubble” term Kµν
0,fl that arises from bosonic fluctua-

tions. On its own, Kµν
0,fl is not gauge invariant. Analo-

gous to the saddle-point response, the collective modes
Πµ

a , along with the corresponding Qfl response functions,
are necessary to restore gauge invariance. To show that
this arbitrary fluctuation theory is fully gauge invariant,
one can verify that ∂µK

µν
fl = 0 is satisfied (see the Sup-

plemental Material [32].) In this way, gauge invariance
holds term by term in the expansion of the action beyond
mean-field. This calculation scheme for gauge invariant
response beyond-BCS is a completely general sum rule
consistent scheme and a central result of this manuscript.
Compressibility sum rule.– Thermodynamic quanti-

ties can be calculated from derivatives of the thermo-
dynamic potential, Ω = −T lnZ = TSeff, which is the
effective action up to the prefactor T . Since electromag-
netic response functions also come from derivatives of
the effective action, it is clear that there should be an
intimate connection between the two. An important re-
quirement for consistency between electrodynamics and
thermodynamics is contained in the compressibility sum
rule: ∂n/∂µ = −K00 (0,q → 0).
A formal derivation of this sum rule, for the ex-

act action, arises from twice invoking the identity∫
dx δG−1

0 /δA0 (x) = −∂G−1
0 /∂µ on the partition func-

tion in Eq. (2). A more intuitive derivation of this
sum rule follows from the fermionic path integral, be-
fore applying the HS transformation. The atom num-
ber is n ≡

〈∫
dx n̂ (x)

〉
= −∂Ω/∂µ, where n̂ (x) =∑

s=↑,↓ ψ
†
s (x)ψs (x) is the local fermion density opera-

tor. A second derivative gives ∂n/∂µ = −∂2Ω/∂µ2 =

−
〈(∫

dx n̂ (x)
)2〉

. On the other hand, the small mo-

mentum limit of the density-density correlation func-
tion is K00 (0,q → 0) =

∫
dx

∫
dx′K00 (x, x′), where

K00 (x, x′) = 〈n̂ (x) n̂ (x′)〉 follows from Eq. (3). It
is straightforward to see this response function is just
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K00 (0,q → 0) = −∂n/∂µ as defined above. Therefore,
the compressibility sum rule is an exact consequence of
a path integral approach provided no approximations are

made.

When considering only thermodynamics, it is not nec-
essary to keep track of the vector potential in the self-
consistent solution, and Seff can be calculated for Aµ = 0
and ∆mf [0]. However, when simultaneously considering
electrodynamics and thermodynamics it is important to
calculate Seff [A] to the same level of approximation for
both quantities. Due to the linear dependence of both
electrodynamic and thermodynamic quantities on the ef-
fective action, any theory studying both quantities, which
considers a consistent approximation scheme, will also
satisfy the compressibility sum rule.

Gaussian fluctuations.– An exact calculation of Zfl

is in general difficult and is frequently treated at the
Gaussian level in the literature. We similarly consider
response at this level: fluctuations η about the saddle
point solution are assumed small and the fluctuation ac-
tion is expanded to quadratic order: Sη

[
∆mf [A] , A

]
≈

1
2ηaQ̃

ab
mfηb. The path integral can then be solved exactly;

integration of the fluctuation field η gives an effective ac-

tion S
(2)
fl = 1

2Tr ln
[
Q̃ab

mf

]
at the Gaussian level. We em-

phasize that in the calculation of the fluctuation response
kernel, Kµν

fl , the propagator Q̃ab
mf = Q̃ab

mf

[
∆mf [A] , A

]
in-

cludes dependence on Aµ both explicitly, and through
the mean-field solution. This is in contrast to previous
literature which used the fluctuation propagator Qab

mf in
Eq. (5).

It is clear that setting Aµ = 0 will reproduce beyond-
BCS thermodynamics found in the literature [15–20].
Our formalism can also recover the bosonic contributions
to the superfluid density ρs ∼ Kii (0,q → 0) found in
Refs. [21, 22]. This calculation introduced a phase twist
Q → 0 that is equivalent to our counterpart calculation
after the replacementAµ → Q. Since ρs is a purely trans-
verse quantity, this prior work did not need to include
collective mode contributions emphasized in the present
formalism. In this way our results reproduce and extend
previous explorations of Gaussian fluctuations, now es-
tablishing consistency with the compressibility sum rule.

Amplitude and Phase fluctuations.– While not ex-
plicitly discussed, amplitude fluctuations of the gap were
implicitly included in the compressibility sum rule argu-
ments presented in this paper. These are often ignored,
although they have been introduced in the literature via
an alternative parameterization of the gap, by writing
∆ = ρei2φ, where ρ = |∆| and 2φ = arg∆ are respec-
tively the amplitude and phase of the order parameter.
Including amplitude fluctuations by setting ρ = ρ0 + δρ
and integrating out both ∂µφ and δρ fluctuations results
in a different gauge invariant formulation but one which
is equivalent to the η fluctuation used above. It should
be noted that while amplitude fluctuations result in a

contribution to electrodynamic (and thermodynamic) re-
sponse, phase fluctuations alone are sufficient to restore
gauge invariance at both the mean-field and fluctuation
levels. We note, however, that by neglecting amplitude
fluctuations, the compressibility sum rule will be violated
and this violation is apparent even at the mean field level
of strict BCS theory.

Discussion.– In this paper we have presented a path
integral formulation for superfluids and superconductors
which: (1) allows for a consistent calculation of (gauge
invariant) electrodynamic and thermodynamic response
at any desired level of approximation, and (2) gives the
full gauge invariant response kernel for beyond mean-field
physics. The consistency of our formulation is apparent
in the compressibility sum rule which related electrody-
namics and thermodynamics. This sum rule is not sat-
isfied at the BCS level in the path integral formalism if
Gaussian fluctuations are invoked as in GRGF; instead
a consistent treatment involves finding the saddle point
solution in the presence of a vector potential. Our way
of introducing collective mode effects is closer in spirit
to earlier self consistency schemes [33–35] derived using
strict BCS theory.

We stress an important physical implication of the
current scheme. Within the conventional path integral
approach, Gaussian fluctuations are needed to arrive at
gauge invariant electrodynamics. One might posit that
there ought to be fluctuation contributions to thermody-
namics. Specifically, in a neutral superfluid these collec-
tive modes would seem to require power law contribu-
tions, say in the specific heat. We argue here, despite
some controversy in the literature [13], including these
correction terms in strict BCS theory is unphysical, as
they are inconsistent with the compressibility sum rule.

Within the present formalism, the next level approx-
imation, involving Gaussian fluctuations then emerges
as a true beyond-BCS theory in which there are inter-
related (by the compressibility sum rule) contributions to
both thermodynamics and the electromagnetic response.
This beyond-BCS level of approximation provides a start-
ing point for studying strongly correlated superfluids. It
should be viewed as an alternative to schemes which build
on a correlation self energy and theWard-Takahashi iden-
tity [8].

This approach provides a promising new route to bench
marking beyond-BCS calculations derived from path in-
tegral approaches. There are indications from the super-
fluid density at the Gaussian level that possibly unphys-
ical non-monotonicities appear [22]. These may also be
present when comparing with density correlation func-
tions which are measured in Bragg scattering experi-
ments. Nevertheless it will be interesting to look at these
higher level (Gaussian) corrections in a variety of phys-
ical contexts, including, for example, their role in topo-
logical [10–12] or disordered [26] superfluids. Quite gen-
erally, this work should be viewed as providing a new
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paradigm for exploring beyond-BCS physics using path
integral techniques.
Note Added.– After the submission of our

manuscript, a preprint appeared [36] that consid-
ered electrodynamic response at the Gaussian level. Our
more general framework includes their results at the

Gaussian fluctuation level, where S
(2)
fl = 1

2Tr ln
[
Q̃ab

mf

]

presented above.
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