
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spin-flip noise due to nonequilibrium spin accumulation
Liang Liu (刘亮), Jiasen Niu (牛佳森), Huiqiang Guo (郭会强), Jian Wei (危健), D. L. Li, J. F. Feng, X. F.

Han, J. M. D. Coey, and X.-G. Zhang
Phys. Rev. B 93, 180401 — Published  3 May 2016

DOI: 10.1103/PhysRevB.93.180401

http://dx.doi.org/10.1103/PhysRevB.93.180401


Spin-flip noise due to nonequilibrium spin accumulation

Liang LIU (刘亮), Jiasen NIU (牛佳森), Huiqiang GUO (郭会强), and Jian WEI (危健)∗

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China and
Collaborative Innovation Center of Quantum Matter, Beijing, China

D. L. Li, J. F. Feng,† and X. F. Han
Beijing National Laboratory of Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

J. M. D. Coey
CRANN and School of Physics, Trinity College, Dublin 2, Ireland

X.-G. Zhang‡

Department of Physics and the Quantum Theory Project, University of Florida, Gainesville 32611, USA
(Dated: April 19, 2016)

When current flows through a magnetic tunnel junction (MTJ), there is spin accumulation at
the electrode-barrier interfaces if the magnetic moments of the two ferromagnetic electrodes are not
aligned. Here we report that such nonequilibrium spin accumulation generates its own characteristic
low frequency noise (LFN). Past work viewed the LFN in MTJs as an equilibrium effect arising
from resistance fluctuations (SR) which a passively applied current (I) converts to measurable
voltage fluctuations (SV = I2SR). We treat the LFN associated with spin accumulation as a
nonequilibrium effect, and find that the noise power can be fitted in terms of the spin-polarized
current by SIf = aI coth( I

b
)− ab, resembling the form of the shot noise for a tunnel junction, but

with current now taking the role of the bias voltage, and spin-flip probability taking the role of
tunneling probability.

Low frequency noise (LFN), often appearing as 1/f
noise, is known to exist in both AlOx-based [1, 2] and
MgO-based MTJs [3, 4]. So far it was believed to be an
equilibrium noise such as that observed in various semi-
conductor devices and disordered metal films [5–7]. With
the assumption of equilibrium conductance or resistance
fluctuations, mobility and carrier number fluctuations are
the two apparent reasons while the microscopic origin
varies in different cases. However, the recent experi-
mental investigation [8] of excess shot noise induced by
nonequilibrium spin accumulation which is proportional
to the spin current, inspired us to reconsider the gen-
eral perception that the LFN in magnetic materials is an
essentially equilibrium phenomenon that has no explicit
connection to the spin-polarized current. Indeed, in the
following we show this general perception should be mod-
ified and the LFN in MTJs is driven by the spin-polarized
current, although the mechanism is totally different from
that in Ref. [8].

It was through LFN measurements that Hardner et
al. [9] first demonstrated the fluctuation-dissipation re-
lation (FDR) in a magnetic system, metallic giant mag-
netoresistance (GMR) multilayers where the LFN peaks
at magnetic fields maximizing the GMR derivative. The
connection of the FDR to the LFN was later extended to
MTJs [1] by assuming that magnetic fluctuations in the
FM electrodes cause the fluctuations of resistance [10].
For this reason such field-sensitive LFN is also called
magnetoresistive noise, sometimes simply called mag-
netic noise, which can be enhanced by annealing [11].

There is also a field-insensitive LFN ascribed to de-
fect motion or charge trapping in the barrier and/or at
the interface between the barrier and electrodes, some-
times called electronic noise, which decreases after an-
nealing [12]. This electronic noise is also called barrier
resistance noise, which is again an equilibrium effect.

However, we find that MTJs driven far away from
equilibrium can have a characteristic LFN distinct from
that described by the FDR. Instead, in the presence of
nonequilibrium spin accumulation, the noise power spec-
tral density (PSD) of the LFN exhibits shot noise like
dependence on the total current (for an introduction of
shot noise can refer to Ref. [13]),

SIf
γ = aI coth

(
I

b

)
− ab, (1)

where SI is the current noise PSD, a and b are fitting
parameters that depend on temperature and magnetic
field, and the power law exponent γ is close to 1 (and
will be considered to be 1 unless otherwise mentioned).
This dependence on I cannot be trivially converted to a
dependence on bias voltage V because the I-V charac-
teristic (IVC) is highly nonlinear. In contrast, when the
1/f noise in MTJs is treated as an equilibrium resistive
noise, its PSD can be described as [5–7]

SR/R
2 = SV /V

2 = α/Afγ , (2)

where A is the junction area (sometimes the volume
of the FM electrode is used depending on whether the
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source of the noise is at the interface [4] or inside the
electrode [2, 3]), α is an empirical parameter [14], and
again the power law exponent γ is close to 1. In con-
ventional LFN theory, ohmic devices with linear I-V
characteristic (IVC) are considered and the applied cur-
rent (I) is merely used to convert the resistance fluc-
tuations (SR) to measurable voltage fluctuations, i.e.,
SV = V 2SR/R

2 = I2SR. In other words, current itself
does not introduce any noise beyond serving as a probe
for the equilibrium resistance noise, in contrast to Eq. (1)
where current explicitly affects LFN owing to nonequilib-
rium spin accumulation.

The nonequilibrium spin accumulation is illustrated
schematically in Fig. 1c, and Fig. 1a shows a simple
schematic of a MTJ stack with the free layer, barrier,
reference layer and exchange bias layers. With ideal sym-
metry filtering of the MgO barrier at large bias, majority
∆1 electrons dominate the tunnel process [15, 16], while
∆5 electrons are blocked by the MgO barrier [17]. In
the high-resistance antiparallel (AP) state (indicated in
Fig. 1b), since there are no available minority ∆1 states
on the right side, to have a finite current the ∆1 electrons
from left side need to be spin-flipped into the majority
∆1 states on the right side. This spin-flip process gener-
ates current (Ispin−flip = Itunnel in the ideal case) as well
as current noise, and could contribute to the reduction
of tunnel magnetoresistance ratio with increasing bias as
more spin-flip processes can be activated. A finite chem-
ical potential difference ∆µ between up and down-spin
∆1 states can be assumed to describe the nonequilib-
rium spin accumulation at the interface, which is current-
dependent instead of voltage-dependent [18].

This unusual result of spin-flip noise following Eq.(1)
also sheds new light on the unsatisfactory FDR inter-
pretation of previous magnetic noise measurements [3, 4,
21, 22]. Initially the quasi-equilibrium assumption was
introduced for MTJs with low magnetoresistance (MR)
and small nonlinearity of the IVC [1], based solely on the
observation of 1/f noise, as 1/f noise is usually found in
equilibrium systems. However, the quadratic bias depen-
dence for equilibrium resistive noise suggested by Eq. (2),
SV ∝ V 2, was rarely verified except for the electronic
noise at low bias [23, 24]. Nevertheless, α estimated
at some arbitrarily chosen bias was used to character-
ize the magnetoresistive noise. Then following FDR one
expects a linear relation between α and the derivative
of MR ((1/R)dR/dH) [1, 24], or the magnetoresistance-
sensitivity product MSP (≡ (∆R/R2)(dR/dH)) [3, 4, 21,
22]. This expected linear relation exists only within a
limited field range, which is unsatisfactory and puzzling.
Compared to α, Eq.(1) gives a more accurate description
of the noise power over the entire bias range, and the
fitting parameter a (see Fig. 4) may replace α to some
extent in the FDR.

The magnetic noise should be understood in the
context of the magnetoresistance, which for our
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FIG. 1. (color online) (a) A simple schematic of the MTJ
stack. (b) Magnetoresistance (MR) with field ramping up
(blue) and down (red) at a fixed bias current of 6.5 µA at 296
K for sample M8. The vertical dashed lines denote different
fields (ramping down) where noise measurements are shown in
Fig. 2. P, AP and P′ denote parallel, antiparallel, and another
parallel state respectively. The inset shows four continuous
runs near the free layer reversal field (ramping down) for sam-
ple M9. Three fields (-62 Oe, -64 Oe and -67 Oe) are chosen
for noise measurements shown in Fig. S2. (c) Schematic of the
spin accumulation in antiparallel state. With the assumption
of ideal symmetry filtering of the MgO barrier, the down-spin
∆1 electrons from the left side dominate the tunnel process
at large bias. In the right side there is no available down-spin
∆1 states, so these electrons undergo spin-flip scattering and
become the up-spin ∆1 states. The nonequilibrium spin accu-
mulation is characterized by chemical potential difference ∆µ
between up and down-spin ∆1 states. The DOS energy dia-
gram follows that of the calculated band dispersions [19, 20]
but not to the scale.

CoFeB/MgO/CoFeB MTJ sample is shown in Fig. 1b.
Measured with a small excitation current, the resistance
changes more than 200% from the P to AP states (P, AP
denote parallel, antiparallel states respectively). The ref-
erence layer is pinned by the synthetic antiferromagnetic
(SAF) layer, and its hysteresis loop is exchange biased
to around -800 Oe, above which the magnetization of the
reference layer also aligns with the applied field and an-
other parallel state P′ is resulted. The hysteresis loop
near zero field is due to the free layer. Details related to
sample fabrication and noise measurements can be found
in Ref [25 and 26], and data presented here are for similar
devices M8 and M9 on the same substrate.

Previous noise measurements and FDR analyses fo-
cused on the range of the magnetic field where refer-
ence layer reversal occurs (from AP to P′ as shown in
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FIG. 2. (color online) Bias dependence of normalized power
spectrum density

√
SV f (a) and α = ASV f/V

2 (b) at dif-
ferent magnetic field points and at 296 K. The current noise
SIf in (c) and (d) are derived by

√
SV f in (a) and dV/dI

in (e), which shows an almost linear dependence on the bias
current without saturation. The y scale in (c) is larger than
that in (d). In (e), nonlinearity around 0.4 V can be seen for
dV/dI. (f) Bias dependence of SIf in double-log scale. The
slope approaches one at high bias except for the P (200 Oe)
and P′ states (-1500 Oe). The solid lines are fits following
Eq. 1

Fig.S.1 and Fig. 4d). The derivative of the MR within
this range is not as large as near the free layer reversal
regime, allowing a quasi-equilibrium state to be assumed
and then the conventional Eq. (2) was applied to find α.
The results of such conventional analyses for our sam-
ples are shown in Figs. 2a and 2b. We see first increase
and then saturation of

√
SV f above roughly 0.4 V in

Fig. 2a. Indeed, the extracted parameter α = ASV f/V
2

is not a constant as required by the conventional theory,
but shows a strong dependence on the voltage as seen
in Fig. 2b (note the semi-log scale), indicating deviation
from the resistive noise picture. Similar suppression of α
with bias was observed in previous works but no modifi-
cation of the conventional analyses was made. [22, 27–29]
Even for the P (200 Oe) and P′ (-1500 Oe) states, where
electronic noise is supposed to dominate, we can still see
strong deviation from a constant α in Fig. 2b.

Rather than relying on the differences between the
magnetic and electronic noises to explain the data, we

find that Eq. (1) fits equally well for all cases at differ-
ent fields without the need to make a distinction between
different types, as shown in Figs. 2c and 2d (note the dif-
ferent y scales). Here we have taken into account quanti-
tatively the nonlinear IVC (as demonstrated by dV/dI in
Fig. 2e) and plot the current noise SIf = SV f/(dV/dI)2.
The striking feature is that there is no longer saturation,
suggesting that SIf , rather than SV f , represents the in-
trinsic noise. This current noise increases linearly with
I above a threshold value, corresponding to the fitting
parameter b for each case, e.g., about 25 µA for -800
Oe. In Fig. 2f, SIf versus I is replotted in double-log
scale, such that all data points can be presented and
the power exponent of I can be identified. We can see
at high bias the slope approaches 1, except for the 200
Oe (P) and -1500 Oe (P′) data, for which the noise is
smaller and the slope is close to 2. These two limiting
cases can be described well by Eq. (1) since for I/b� 1,
coth(I/b) ≈ (I/b)−1 + (I/b)/3, then SIf ≈ aI2/3b; and
for I/b � 1, coth(I/b) ≈ 1, then SIf ≈ a(I − b). In
fact, even for the 200 Oe (P) data, SIf ∝ I2 fits bet-
ter than the conventional SV f ∝ V 2 (See Fig.S1 in the
Supplementary Material).

The similarity between the observed SIf scaling and
the shot noise formula for a tunnel junction is striking.
The latter is of the form [4, 13, 30]

SI =
4kBT

dV/dI
+ 2F

[
eI coth

(
eV

2kBT

)
− 2kBT

dV/dI

]
, (3)

where F is the Fano factor , kB is the Boltzmann con-
stant. However, there are fundamental differences be-
tween the observed SI and electronic shot noise, the most
important ones being that the noise power in Eq. (3) is
independent of the frequency and its scaling with the
voltage applied on the junction. In sharp contrast, in
Eq. (1) the noise power scales with 1/f and depends
only on the current, excluding a possible tunneling ori-
gin. There is no thermal noise term in Eq. (1) while it
is the first term in Eq. (3) and is always there even if
the shot noise is absent (when F = 0, the second term
disappears). A simple model is described in the Sup-
plementary Material where Eq. (1) is derived from the
consideration of spin accumulation and a spin-flip cur-
rent in the AP state, as already illustrated in Fig. 1c.
This model differs from past theoretical proposals that
via spin-transfer torque, spin-current noise can cause en-
hanced magnetization fluctuations at high current den-
sity which are reflected by resistance noise. [31, 32] Here
we assume a continuous distribution of spin-flip scatter-
ing rates and individual particle nature(angular moment
is quantized) of the spin-flip events that lead to both the
1/f dependence and the shot noise like features.

We observe a similar bias dependence of SIf near the
free layer reversal regime, where derivative of MR is large
and stationary noise measurement was previously consid-
ered very difficult[11]. Indeed, as shown in the inset of
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FIG. 3. (color online) Bias dependence of normalized power
spectrum density SIf at different temperatures: (a) 296 K;
(b) 78 K; (c) 50 K; (d) 17 K. The solid lines are fits following
Eq. 1. The 400 Oe data at 17 K are not shown because
the 1/f noise is too small to be reliably extracted from the
background noise.

Fig. 1b, there are discontinuous resistance jumps likely
due to domain wall jumps instead of reversible domain
rotations. However, we find that when the field is stabi-
lized with an electromagnet, the resistance can be stable
for a sufficiently long time for noise measurements, see
Fig. S2 in the Supplementary Material.

If FDR were strictly followed, the PSD of equilibrium
noise should scale linearly with the thermal fluctuation
energy kBT [3, 4, 21, 22]. This linear dependence of α
on temperature was not observed, instead, thermal acti-
vation at high temperature and saturation at low tem-
perature were observed for P and AP states [2, 27], and
the saturation is suspected to be due to quantum tun-
neling [2]. In general [5–7], LFN is not expected to scale
linearly with temperature because the usual microscopic
origins of the 1/f noise, such as activation of scattering
due to defects or impurities, do not have linear tempera-
ture dependence.

LFN at four different temperatures, 296, 78, 50, and 17
K are presented for four characteristic magnetic states:
HΛ, P, AP, and P′ in Fig. 3. HΛ is the field where LFN
shows a broad peak, which is close to the exchange bias
field Hex (also called pinning field) of the reference layer,
and changes with temperature. For clarity, data at other
fields are not presented in Fig. 3 but all fitted param-
eters are summarized in Fig. 4. From 296 K to 78 K,
for all three fields except that for the P′ state, one can
clearly see the decrease of the noise. The decrease of
LFN is especially clear for the HΛ state, which moves
from around -700 Oe to -900 Oe, as can be inferred in
Fig. 4a (the fitting parameter a indicates the amplitude
of the LFN). The typical AP state also moves from -300

FIG. 4. (color online) Field dependence of the fitting parame-
ters a (a) and b (b) following Eq. 1 at different temperatures.
Note that HΛ, the position of the broad peak, moves when
temperature decreases from 296 K to 78 K. The MR measured
with small bias (d) and field derivative of MR (c) at different
temperatures.

Oe to -400 Oe and then to -500 Oe with decreasing tem-
perature (see MR in Fig. 4d). In fact, the increase of
LFN at -2000 Oe (P′ state) from 296 K to 78 K should
be explained by the change of magnetic state.

With our model, the decrease of LFN with temperature
implies that the spin-flip rate is reduced and the total
tunnel current is reduced as well. This is qualitatively
consistent with the reduction of SIf with bias (Figs. 3a
and b, as well as Fig. 4a) and with the resistance increase
in the AP state (Fig. 4d). Below 78 K, the noise decreases
slowly and the the AP state resistance increases slowly as
well. The noise decrease is clearer for the HΛ state, where
the activation energy for spin-flip is minimized [1, 33–
35]. Below 17 K the γ parameter started increasing from
1 (see Fig.S3 in the Supplementary Material), thus SIf
is no longer good to characterize LFN and this requires
further study.

Clear field dependence of LFN, indicated by the fit-
ting parameters a and b as shown in Fig. 4, excludes any
influence of interband scattering [29] which is field inde-
pendent and bias dependent. In addition, observation of
full electronic shot noise at higher frequencies excludes
any influence by localized states within the barrier which
would lead to a reduction of the Fano factor. Compared
with the electronic shot noise, fitting parameter a rep-
resents the particle-like feature of spin-flip noise, resem-
bling charge e and to some extent plays the role of the
empirical parameter α. There is indeed some correlation
between a and the field derivative of MR (dR/dH), as
can be seen from the similarity between Figs. 4a and 4c,
although their temperature dependence is not the same.
Note that a is determined within a wide current range
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while dR/dH is measured at zero bias limit. The param-
eter b resembles kBT in the expression of electronic shot
noise. It indicates the threshold current above which a
linear dependence of I is prominent, i.e., the nonequi-
librium noise due to spin accumulation dominates. In
Fig. 4b, b is higher in P and P′ states since when ∆1

majority electrons can tunnel to ∆1 majority available
states, there is no spin accumulation and Ispin−flip can
not dominate Itunnel. There is little temperature de-
pendence for b until 17 K where two small local min-
ima appear near the reversal fields, which may be again
explained by that the activation energy barrier for spin-
flip process is minimized near the reversal fields, thus
Ispin−flip is enhanced.

In conclusion, we find that the 1/f noise in MTJs is
better described by the current noise SIf with bias de-
pendence similar to shot noise, rather than by the con-
ventional resistance noise (SV = I2SR). The origin of
this noise is traced to spin accumulation at the interface
and the subsequent spin-flip current due to the highly
spin-polarized tunneling current. The particle nature of
individual spin-flip events and the time-scale distribution
of such events combine to generate a spin-flip shot noise
that is distinct from the shot noise of a tunnel junction
and has the 1/f frequency scaling. Our result may shed
new light on spin injection, spin detection, and other
spin-dependent devices involving spin accumulation, as
well as for pseudospin devices. Finally we would also like
to mention the differences between our LFN model and
the shot noise model in Ref. [8]: they assumed no spin-
flip, here we requires spin-flip to generate noise; they
assumed that current noise (charge) and spin induced
excess current noise (spin) can be separated and there
should be finite current noise at zero bias, here spin ac-
cumulation is related to charge current and in the ideal
case Ispin−flip = Itunnel so no noise is expected at zero
bias.
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