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We analyze the interplay between superconductivity and the formation of bound pairs of fermions
(BCS-BEC crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak
attractive interaction, which extends to energies well above EF . The 2D case is special because
two-particle bound state forms at arbitrary weak interaction, and already at weak coupling one has
to distinguish between bound state formation and superconductivity. We briefly review the situation
in the one-band model and then consider two different two-band models – one with one hole band
and one electron band and another with two hole or two electron bands. In each case we obtain the
bound state energy 2E0 for two fermions in a vacuum and solve the set of coupled equations for the
pairing gaps and the chemical potentials to obtain the onset temperature of the pairing, Tins and the
quasiparticle dispersion at T = 0. We then compute the superfluid stiffness ρs(T = 0) and obtain
the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios
of E0 and EF in the other band. We show that, at EF � E0, the behavior of both two-band models
is BCS-like in the sense that Tc ≈ Tins � EF and ∆ ∼ Tc. At EF < E0, the two models behave
differently: in the model with two hole/two electron bands, Tins ∼ E0/ log E0

EF
, ∆ ∼ (E0EF )1/2, and

Tc ∼ EF , like in the one-band model. In between Tins and Tc the system displays preformed pair
behavior. In the model with one hole and one electron band, Tc remains of order Tins, and both
remain finite at EF = 0 and of order E0. The preformed pair behavior still does exist in this model
because Tc is numerically smaller than Tins. For both models we re-express Tins in terms of the fully
renormalized two-particle scattering amplitude by extending to two-band case the method pioneered
by Gorkov and Melik-Barkhudarov back in 1961. We apply our results for the model with a hole
and an electron band to Fe-pnictides and Fe-chalcogenides in which superconducting gap has been
detected on the bands which do not cross the Fermi level, and to FeSe, in which superconducting
gap is comparable to the Fermi energy. We apply the results for the model with two electron bands
to Nb-doped SrTiO3 and argue that our theory explains rapid increase of Tc when both bands start
crossing the Fermi level.

PACS numbers:

I. INTRODUCTION

The discovery of superconductivity in Fe-pnictides
and later in Fe-chalcogenides opened up several new di-
rections in the study of non-phononic mechanisms of
electronic pairing in multi-band correlated electron sys-
tems1,2. Two issues were brought about by recent angle-
resolved photoemission and other experiments in Fe-
based superconductors (FeSCs). First, in recent exper-
iments on LiFe1−xCoxAs, Miao et al. observed3 a fi-
nite superconductive gap of 4− 5meV on the hole band,
which is located below the Fermi level, with the top of
the band at 4-8meV away from EF . Moreover, the gap
on this hole band is larger than the gaps on electron
bands, which cross the Fermi level. A similar observa-
tion has been reported for FeTe0.6Se0.4

4, where super-
conductivity with the gap ∆ = 1.3meV has been ob-
served on an electron band which lies above the Fermi
level, with the bottom of the band at 0.7 meV away from
EF . Second, recent photoemission measurements have
demonstrated that in almost all Fe-based supperconduc-
tors either electron or hole pockets are more tiny than
previously thought and the corresponding dispersions ei-

ther barely cross the Fermi level or are fully located below
or above it5. The ”extreme” case in this respect is FeSe.
In this material Fermi energies on all hole and electron
pockets are small and are comparable to the magnitudes
of the superconducting gaps (the reported EF on differ-
ent bands vary between 4 and 10 meV, while the gaps
are 3-5meV6,7).

The observation of a sizable superconducting gap on
a band which does not cross the Fermi level was orig-
inally interpreted3 as the indication that the pairing in
the FeSCs is a strong coupling phenomenon for which the
pairing gap is not confined to the Fermi surface and devel-
ops at all momenta in the Brillouin zone. Later, however,
the experiments were re-interpreted8 in a more conven-
tional weak/moderate coupling scenario, as the conse-
quence of the fact that in FsSCs the pairing interaction
primarily ”hopes” a pair of fermions with momenta k and
−k from one band to the other9,10. In this situation, the
gap on the band, which does not cross the Fermi level is
determined by the density of states at EF of the band
which does cross the Fermi level. A solution of the cou-
pled set of BCS gap equations for fermions in the two
bands then shows that one crossing is sufficient to obtain
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FIG. 1: Energy scales relevant to the interplay between the
formation of bound pairs of fermions and true superconduc-
tivity in 2D Fermionic systems with weak attractive pairing
interaction. Λ is the upper energy cutoff, EF is the Fermi
energy, and E0 is the energy of a bound state of two fermions
in a vacuum, i.e., at µ = 0. At weak coupling, E0 � Λ. We
assume that EF is also small and can be tuned by doping to
be either larger or smaller than E0. We show that in one-band
model and in two band model with two hole or two electron
bands, the system displays BCS-like behavior at EF � E0

and BEC-like behavior at EF � E0. In the latter case, bound
pais develop at Tins ∼ E0/ log E0

EF
but the true superconduc-

tivity with full phase coherence develops at Tc ∼ EF . In
between Tins and Tc the system displays preformed pair be-
havior and the spectral function displays pseudogap behavior.
In the two-band model with one hole and one electron pocket,
Tins and Tc also split when EF gets smaller than E0, but both
remain of order E0 even when EF vanishes. Still, supercon-
ducting Tc in this limit is several times smaller than Tins, so
there is a wide temperature range of preformed pair behavior.

BCS instability already at weak coupling8. This reason-
ing also naturally explains why the gap is larger on a
band which does not cross the Fermi level.

The observation of superconductivity with ∆ ∼ EF
brought FeSCs into the orbit of long-standing discussion
about the interplay between superconductivity and the
formation of the bound pair of two fermions. This issue
has been discussed in the condensed matter context11–27.
and also for optical lattices of ultracold atoms28,29. The
phenomenon in which bound pairs of fermions form at
a higher Tins and condense at a smaller Tc is often
termed Bose-Einstein condensation (BEC) because the
condensation of preformed pairs (i.e., the development of
a macroscopic condensate) bears a direct analogy with
BEC of bosons in a Bose gas. When ∆ and Tc are much
smaller than EF , bound pairs and true superconductivity
develop at almost the same temperature, i.e., Tc ≈ Tins.
However, when EF gets smaller, superconducting Tc is
generally smaller than the onset temperature for bound
state formation.

In the present communication, we discuss supercon-
ductivity vs bound state formation in 2D systems with
weak attractive interaction U in the proper symmetry
channel. ( s+− for the two-band model for FeSCs). We
consider the situation when U remains energy indepen-

dent up to an energy Λ, which well exceeds EF , see Fig.1.
Elementary quantum mechanics shows that in 2D, two
fermions with dispersion k2/(2m) form a bound state at
arbitrary small attraction U , and the bound state energy
is 2E0, where E0 ∼ Λe−2/λ, and λ = mU/(2π) is a di-
mensionless coupling. We analyze the evolution of the
system behavior and the interplay between Tc and Tins
by varying the ratio EF /E0 while keeping both EF and
E0 well below Λ.

We briefly review BCS-BEC crossover in the one-band
two-dimensional (2D) model and consider two different
two-band models.

The first model, which we apply to FeSCs, consists
of one hole and one electron band. We follow usual path
and consider the case when the dominant pairing interac-
tion is weak inter-band pair hopping interaction U > 0, in
which case superconducting state has s+− symmetry. We
use the same computational procedure as in the studies
of one-band model.11,13–15,20,26,27 Namely, we first obtain
the bound state energy 2E0 for two fermions in a vacuum.
Then we consider the actual system with a non-zero den-
sity of carriers in one of the bands n = 2N0EF , where N0

is a 2D density of states at low energies, and solve the
set of coupled equations for the chemical potential µ(T )
and the pairing gaps at a finite T . The solution of the
linearized gap equations yields the onset temperature of
the pairing Tins. The solution of non-linear gap equa-
tions at T = 0 yields the pairing gaps ∆h,e. We next use
the values of ∆h,e and µ at T = 0 as inputs and compute
superfluid stiffness ρs(T = 0). For definiteness, we con-
sider the case when the chemical potential at T = 0 in
the would be normal state is at the bottom of the electron
band but crosses the hole band i.e., the Fermi energy is
zero for the electron band but finite for the hole band.

We present the results in the two limits when EF is
either larger or smaller than E0 and in the case when
EF = E0. We show that in all cases the pairing gap de-
velops on both bands and is larger on the electron band
(the one which does not cross the Fermi level). This
agrees qualitatively but not quantitatively with the re-
sults obtained previously within the conventional BCS
theory8,30, neglecting the renormalization of the chemical
potential. We argue, however, that the renormalization
of the chemical potential by both a finite temperature
and a finite gap is not a small perturbation when the
bare chemical potential touches the bottom of the elec-
tron band.

We argue that the onset temperature of the pairing,
Tins (the one obtained by solving the set of equations
for the pairing gaps and the chemical potentials) evolves

when EF /E0 changes and is of order E
1/3
F E

2/3
0 when

EF � E0 and of order E0 when EF � E0. We fur-
ther ague that superconducting Tc is of order Tins for
arbitrary EF /E0, but is numerically smaller than Tins.
The numerical smallness implies that there exists a finite
range of temperatures between Tins and Tc, where pairs
are already formed but their phases are random and there
is no superconductivity (the ”preformed pairs” regime).
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FIG. 2: The onset temperature Tins for the bound state formation and the superconducting transition temperature Tc in the
three models that we consider – the model with one electron band (a), with one electron band and one hole band (b), and with
two electron bands (c). For all three cases we plot Tins and Tc in units of EF , as functions of E0/EF , where E0 is the bound
state energy for two free fermions in 2D. Dashed lines show Tc and Tins in the intermediate regime EF /E0 = O(1), where
we didn’t obtain the explicit formulas. The highest superconducting Tc at small EF is for the model with one hole and one
electron pockets. In this model both Tins and Tc are of order E0 at large E0/EF .

The emergence of the bound pairs at Tins > Tc and the
existence of the preformed pairs regime is often associ-
ated with the crossover from BCS to BEC behavior. Such
crossover has been studied in detail in the finite T anal-
ysis of 3D one-band model (Ref.15). The temperatures
Tins and Tc were found to differ strongly at EF � E0:
Tins ∼ E0/ log E0

EF
� EF , while Tc ∼ EF , i.e., the ratio

Tc/Tins vanishes at EF → 0. The behavior in the 2D case
is quite similar (see below). In our two-band model the
behavior is similar to the one-band model in that Tins
becomes parametrically larger than EF at EF � E0,
but differs in that Tc remains finite and of the same or-
der as order Tins even at EF → 0. The reason, as we
argue below, is that the development of the pairing gap
below Tins reconstructs the fermionic dispersion and cre-
ates images, with opposite dispersion, of original hole
and electron bands. This in turn gives rise to the shift
of fermionic density from the filled hole band and empty
electron band into these image bands. As a consequence,
there appear new hole-like and electron-like bands with
a finite density of carriers in each band, proportional to
Tins. Superconducting Tc scales with this density and
is a fraction of Tins. We show that preformed pair be-
havior still exists at EF � E0, but only because Tc, set
by superconducting stiffness, is numerically smaller than
Tins.

We next consider the two-band model consisting of two
electron bands. We again assume that the dominant pair-
ing interaction is inter-band pair hopping U > 0 and that
the chemical potential is at or near the bottom of one of
the bands, but crosses the dispersion of the other band
at some finite EF . We show that, at EF � E0, the
behavior of this model is nearly identical to that in the

model with a hole and an electron band. However, in
the opposite limit EF << E0, the behavior of the model
with two electron bands differs qualitatively from that of
the model with a hole and an electron band and is quite
similar to the behavior of the 2D one-band model in the
BEC limit. Namely, Tins ∼ E0/ log E0

EF
and Tc ∼ EF ,

such that the ratio Tc/Tins vanishes at EF = 0. The
reason is that for the two bands with the same sign of
dispersion, there are no free carriers at EF → 0, hence
the pairing cannot create images of the original bands.
Indeed, we show that in the model with two electron
bands, the pairing gap ∆, which is responsible for the
Fermi surface reconstruction, scales at T = 0 as

√
E0EF

and vanishes at EF = 0. The same behavior holds at
T = 0 in the 2D one-band model.11,13

Superconductivity in a system with two electron bands
is realized experimentally in Nb-doped SrTiO3 and, pos-
sibly, in heterostructures of LaAlO3 and SrTiO3 (see
Refs.22,23,31 and references therein). The Fermi energy
in one of the bands is finite already at zero doping
and EF is likely much larger than E0. The other elec-
tron band is above the chemical potential at zero dop-
ing, but the chemical potential µ moves up with dop-
ing and enters this band once it exceeds the critical
value µ∗. The data indicate32,33 that, when this hap-
pens, Tc rapidly increases. To analyze this behavior we
compute Tc for µ 6= µ∗. We show that Tc indeed in-
creases when µ exceeds µ∗, and the rate of the increase
is (1 − µ∗/µ)(EF /E0)2/3, i.e., it is enhanced by a large
ratio of EF /E0.

We summarize our results for all three models in Fig.
2 and in the Table I.
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single-band 2 electron (hole) bands 1 electron and 1 hole bands

EF � E0 Tins ∼
√
EFE0, µ(Tins) ≈ EF Tins ∼ E1/3

F E
2/3
0 , µ1(Tins) ≈ EF Tins ∼ E1/3

F E
2/3
0 , µe(Tins) ≈ −0.5Tins

Tc ≈ Tins, ∆ = 2
√
EFE0 µ2(Tins) ≈ −0.5Tins, Tc ≈ Tins µh(Tins) ≈ EF , Tc ≈ Tins

∆ ≈ 1.78E
1/3
F E

2/3
0 ∆ ≈ 1.78E

1/3
F E

2/3
0 ,

EF � E0 Tins ≈ E0/ log E0
EF

, µ(Tins) ≈ −E0 Tins ∼ 4.5E0/ log E0
EF

, µ1(Tins) ≈ −2.3E0 Tins ∼ 1.13E0

(
1 + 0.22EF

E0

)
,

Tc ∼ EF /8� Tins, ∆ = 2
√
EFE0 µ2(Tins) ≈ −2.3E0, Tc ∼ EF /8� Tins, µh(Tins) ≈ 3EF /2, µe(Tins) ≈ −EF

2

∆ ≈
√

2EFE0 Tc ∼ 0.22Tins, ∆ = 1.76Tins

EF = E0 Tins = 1.09EF , µ(Tins) = −0.09EF Tins ∼ 0.9EF , µ1(Tins) = 0.1EF Tins = 1.35EF , µe(Tins) = −0.35EF

µ2(Tins) = −0.9EF , ∆ = 1.4EF µh(Tins) = 1.35EF , Tc ∼ 0.4EF

∆ = 2.4EF

TABLE I: The summary of the results for the onset temperature of the pairing, Tins, the actual superconducting transition
temperature, Tc, the gap magnitude at T = 0, ∆, and the chemical potentials, µi, for different ratios of the Fermi energy, EF ,
and the bound state energy of two fermions in a vacuum, E0. For the one band model, superconductivity is an ordinary s−wave.
For the two-band models, superconducting state has s±- symmetry (different signs of the gaps on the two bands). The gap
magnitudes on different bands are approximately the same in the two-band models, up to small corrections, but nevertheless
the gap on the band which doesn’t cross the chemical potential at T ≥ Tins is larger than that on the other band, which crosses
the chemical potential. The chemical potentials satisfy µh +µe = EF for the two band model with a hole and an electron band,
and µ1 − µ2 = EF for the model with two electron bands.

Another goal of our work is to compare the analysis
of BCS/BEC crossover with the approach put forward
by Gorkov and Melik-Barkhudarov (GMB) back in 1961
(Refs.35,36). GMB considered a one-band model with
attractive Hubbard interaction U at weak coupling in
D=3. They argued that superconductivity comes from
fermions with energies not exceeding EF , while all contri-
butions to the pairing susceptibility from fermions with
higher energies can be absorbed into the renormaliza-
tion of the original 4-fermion interaction into quantum-
mechanical scattering amplitude. GMB explicitly sepa-
rated the Cooper logarithm (associated with the presence
of a sharp Fermi surface at EF 6= 0) from the renormal-
ization of the interaction into the scattering amplitude
and obtained Tc = 0.277EF e

−π/(2|a|kF ), where a is the
s-wave scattering length. They argued that this is the
right formula for comparison with the experimental data
because the scattering length is the physically observable
parameter, while the interaction U is not.

The GMB analysis does not include phase fluctuations,
hence their instability temperature is the same as Tins,
re-expressed in terms of scattering amplitude. In the
original GMB analysis (which we review in Sec. V be-
low) |a|kF is assumed to be small, and no bound state
develops. We extend GMB analysis to one-band and two-
band models in 2D and will specifically consider the limit
EF < E0. In this limit, the scattering amplitude diverges
at the onset of bound state development at T ∼ E0

and changes sign at a smaller T . It is then a–priori
unclear whether the onset temperature of the pairing,
Tins, can be expressed via the 2D scattering amplitude
a2 (dimensionless in 2D) with EF in the prefactor, par-
ticularly given that the ratio Tins/EF tends to infinity
when EF = 0. We, however, show that GMB approach

remains valid even when EF < E0, and Tins can be ex-
plicitly expressed via the exact 2D scattering amplitude,
with EF in the prefactor.

The paper is organized as follows. In Sec.II we
review one-band 2D Fermi system with small EF . We
reproduce earlier results11,13,27 for the onset temperature
for the pairing, Tins, the pairing gap, the renormalized
chemical potential, and the spin stiffness. We argue that
superconducting Tc scales with EF and vanishes when
EF = 0. In Sec. III we consider in detail the case of
one hole and one electron bands, relevant to FeSCs. We
show that in this model both Tins and Tc remain finite
even when neither bands crosses the Fermi level. The
superconducting Tc is smaller than Tins in this case,
but the smallness is only numerical. In Sec. IV we
consider the case of two hole/two electron pockets and
show that that Tc remains non-zero as long as one of
the band crosses Fermi level but vanishes when EF = 0
for both bands. In Sec. V we review GMB formalism
and then apply it first to 2D one-band model and then
to 2D model with a hole and an electron band. In both
cases we show that the instability temperature TGMB

is precisely Tins, even when EF → 0. We present our
conclusions in Sec. VI. Discussion of some technical
details is moved into the Appendix.

In this work we only consider s−wave pairing (ordi-
nary s−wave and s+−) with angle-independent gap func-
tions. The extension to the cases when the gaps are
angle-dependent and have either symmetry-related or ac-
cidental nodes is straightforward, but requires separate,
more involved calculations.
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FIG. 3: The bare dispersion for the models considered in the present manuscript: (a) a one-band model of 2D fermions with
the parabolic dispersion and a positive bare chemical potential (i.e., a non-zero EF ); (b) a two-band model with one hole and
one electron band separated in the momentum space. For definiteness, we set the bare chemical potential such that it touches
the bottom of the electron band and crosses the hole band at a finite distance from its top; (c) a two-band model with two
electron bands separated in the momentum space. For definiteness we set the bare chemical potential to touch the bottom of
one band and cross the other.

II. ONE-BAND MODEL

To set the stage for the analysis of the two-band
model we first review pairing and superconductivity in
the 2D one-band model. Consider a set of 2D fermions
with the parabolic dispersion εk = k2

2m and chemical
potential µ0 = EF , see Fig.3(a). We assume that
fermions get paired by a weak attractive pairing inter-
action U(q,Ω), which for simplicity we approximate as
momentum and frequency independent U up to upper
momentum cutoff qmax and corresponding frequency cut-
off Λ = q2

max/(2m). For electron-phonon interaction Λ is
of the order of Debye frequency. The actual dispersion
does not have to be parabolic, however at weak coupling
energies relevant for the pairing are much smaller than Λ

and εk = k2

2m can be just viewed as the leading term in the
expansion of the lattice dispersion in small momentum.

We introduce the dimensionless parameter

λ = N0|U | =
m|U |

2π
, (1)

where N0 = m
2π is the density of states in 2D. We assume

that λ is small number. The conventional weak coupling
BCS analysis is valid when the attraction is confined to
energies much smaller than EF , i.e., when Λ� EF . We
consider the opposite situation when EF is much smaller
than the cutoff energy Λ.

For two fermions with 2D k2 dispersion in a vacuum
(i.e., at EF = 0), an arbitrary small attraction U gives
rise to the formation of a bound state37. The bound state
energy at T = 0 is 2E0, where

E0 = Λe−
2
λ (2)

The bound state develops at T0 = 1.13E0. The 2D

scattering amplitude a2 ∝ 1/ log T0

T diverges at T = T0

and changes sign from negative at T > T0 to positive at
T < T0. We consider the system at a non-zero EF , i.e.,
at a finite density of fermions n = mEF /π. We show
that the system behavior is different at EF � E0 and at
EF � E0.

A. The onset temperature of the pairing, the
pairing gap and the renormalization of the chemical

potential

The onset temperature of the pairing instability, Tins
(not necessary a true superconducting transition tem-
perature) is obtained by introducing infinitesimal pairing
vertex and dressing it by renormalizations to obtain the
pairing susceptibility. The temperature Tins is the one
at which the pairing susceptibility diverges. To logarith-
mical accuracy, one needs to keep only ladder series of
renormalizations in the particle-particle channel and ne-
glect all renormalizations coming from particle-hole chan-
nel because the first contain series of λ log Λ

Tins
while the

latter contain series in λ. We assume and then verify that
in all cases that we consider, Tins � Λ, hence log Λ

Tins
is

a large factor. However, as we will see, the ratio of Tins
EF

is small only when EF � E0 and is actually large in the
opposite limit EF � E0. Because temperature varia-
tion of the chemical potential µ(T ) in the normal state
holds in powers of Tins/EF , this variation generally can-
not be neglected, i.e., the equation for the pairing vertex
at T = Tins has to be combined with the equation for
the chemical potential µ(Tins). The latter follows from
the condition that the total number of fermions is con-
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served.13,15 The two coupled equations are (µ = µ(Tins))

1 =
λ

2

∫ Λ

0

dε
tanh ε−µ

2Tins

ε− µ

=
λ

2

(∫ µ

0

dx
tanh x

2Tins

x
+

∫ Λ

0

dx
tanh x

2Tins

x

)

EF =

∫ Λ

0

dε
1

e(ε−µ)/Tins + 1
= Tins log (1 + eµ/Tins)

(3)

At EF � E0, the solution of these equations yields

Tins = 1.13(ΛEF )1/2e−
1
λ ∼

√
EFE0

µ(Tins) ≈ EF (4)

In the opposite limit EF � E0 we obtain27

Tins =
E0

log E0

EF

µ(Tins) ≈ −E0 (5)

This behavior is rather similar to that in three-
dimensional case.15 The behavior of Tins and µ at in-
termediate EF ∼ E0 can be easily obtained numerically.

For EF = E0, Tins ≈ 1.09EF and µ(Tins) ≈ −0.09EF .
Note that at EF � E0, the instability temperature
Tins � EF , while at EF � E0, Tins � EF and µ(Tins)
is negative.

The prefactor 1.13 in Eq. (4) is in fact obtained by go-
ing beyond logarithmical accuracy in the particle-particle
channel. To get the correct prefactor one also needs to
include fermionic self-energy to order λ and the renormal-
ization of U by corrections from the particle-hole chan-
nel.35,36 These two renormalizations are not essential for
our consideration and in the bulk of the text we neglect
them. For completeness, however, we obtain the result
for Tins with the full prefactor in the Appendix.

The pairing gap ∆ and the renormalized chemical po-
tential µ at T < Tins are obtained by solving simulta-
neously the non-linear gap equation and the equation on
µ(T ). The set looks particularly simple at T = 0 (here
µ = µ(T = 0), ∆ = ∆(T = 0)):

1 =
λ

2

∫ Λ

0

dε
1√

(ε− µ)2 + ∆2
,

EF =
1

2

∫ Λ

0

dε

(
1− ε− µ√

(ε− µ)2 + ∆2

)
. (6)

Solving these equations we obtain at T = 0

µ+
√
µ2 + ∆2 = 2EF√

µ2 + ∆2 − µ = 2E0 (7)

hence

µ = EF − E0

∆ = 2
√
EFE0 (8)

k

EF k

)(2 22
insTT  

T~Tins

T<Tins

)~( insTT

FIG. 4: The dispersion in the one-band model. Red dashed
line – the bare dispersion (the one which the system would
have at T = 0 in the absence of the pairing). Black line – the
dispersion right above Tins, blue line – the dispersion below
Tins. The plot is for the case when the chemical potential µ is
already negative at T = Tins. Observe that the minimal gap
is
√

∆2 + µ2 and the minimum of the dispersion is at k = 0
rather than at kF .

These results were first obtained in Ref.13.
When EF � E0, the expressions for µ and ∆ are the

same as in BCS theory:

µ ≈ EF ,
∆ = 2(ΛEF )1/2e−

1
λ = 1.76Tins. (9)

In the opposite limit EF � E0,

µ ≈ −E0

∆ ∼ Tins
(
EF
E0

)1/2

log
E0

EF
. (10)

Observe that while ∆ = 2
√
EFE0 stays the same in both

limits, the ratio ∆/Tins changes: ∆ ∼ Tins at EF � E0

and ∆ � Tins at EF � E0. At EF = 0, ∆, Tins, and
∆/Tins all vanish. The vanishing of ∆ is easy to under-
stand – a finite gap would reconstruct fermionic disper-
sion and open up a hole band with a finite density of
carriers proportional to ∆, what is impossible at EF = 0
because the density of fermions is zero. A negative µ im-
plies that the Fermi momentum kF (defined as position

of the minimum of Ek =
√

(εk − µ)2 + ∆2) is zero. In
fact, the Fermi momentum shifts downwards already in
the normal state at a finite T because µ(T ) < EF . It
becomes zero at T = Tins at E0/EF ≈ 0.882. The down-
ward renormalization of kF has been recently obtained
in the study of superconductor-insulator transition.16

In Fig. 4 we plot the actual dispersion below and above
Tins along with the bare fermionic dispersion (the one
which the system would have at T = 0 in the absence
of the pairing). We emphasize that the gapping of exci-
tations above Tins (the black line in Fig. 4) is just the
consequence of the temperature variation of the chemical
potential and as such is not related to pairing.
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Ekin =

Epot =             +

k
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-k+

q

q_

_
2

2

q
 

q


q q
k+ _

2
q

-k+q
2
_

FIG. 5: Diagrammatic representation of the kinetic and
potential energy of a one-band superconductor. The sum
Ekin + Epot(q = 0) gives the condensation energy, and the
prefactor for the q2 term in Epot(q) determines the superfluid
stiffness.

B. Superconducting Tc

The temperature Tins appears in the ladder approxi-
mation as the transition temperature, but is actually only
the crossover temperature as pair formation by itself does
not break the gauge symmetry. To obtain the actual Tc,
at which the gauge symmetry is broken (i.e., the phases
of bound pairs order), one needs to treat the phase φ(r)
as fluctuating variable and compute the energy cost of
phase variation δE = (1/2)ρs(T )

∫
dr |∇φ|2 (see Refs.

[38,39] for a generic description of fluctuations in super-
conductors). The prefactor ρs(T ) is the superfluid stiff-
ness. In 2D, the superconducting transition temperature
Tc ∼ ρs(Tc) (see, e.g., Refs. [40,41]). The interplay be-
tween Tc and Tins depends on the ratio ρs(T = 0)/Tins.
If this ratio is large, the superfluid stiffness rapidly in-
creases below Tins. In this situation, Tc = Tins minus
a small correction, i.e., the phases of bound pairs order
almost immediately after the pairs develop (phase fluc-
tuations cost too much energy). If ρs(T = 0)/Tins is
small, ρs(T ) increases slowly below Tins and Tc is of or-

der ρs(T = 0)� Tins.
The superfluid stiffness ρs has been evaluated before

by looking at the diamagnetic tensor19,42,45,46. We show
below how one can extract the stiffness directly from the
d−dependent condensation energy.

Within our model with local interaction U , δE is the
O(q2) term in the ground state energy of an effective
model described by the effective fermionic Hamiltonian
with the anomalous term

Hanom =

∫
d2r∆(r)c†↑(r)c

†
↓(r) + h.c

=
∑
k,q

∆(q)c†↑(k + q/2)c†↓(−k + q/2) + h.c

(11)

with ∆(r) = ∆eiφ(r) ≈ ∆ei(∇φ)r whose Fourier componet
∆(q) = ∆δ(q −∇φ).

The ground state energy is the sum of the kinetic and
the potential energy. The kinetic energy depends on
|∆(r)|2 = ∆2 and is not sensitive to phase fluctuations
(i.e., it does not have (∇φ)2 term) and is simply given
by the convolution of the quasiparticle dispersion with a
single fermionic Green’s function (see Fig.5). At T = 0

Ekin = 2N0

∫
dεkdω

2π
εkGs(k, ω) =

−2N0

∫
dεkdω

2π
εk

iω + (εk − µ)

ω2 + (εk − µ)2 + ∆2
(12)

where Gs is the normal of the superconducting Green’s
function.

The potential energy, on the other hand, does depend
on q. Within the model of Eq. (11) it is given by the sum
of the convolutions of two normal and two anomalous
Green’s functions with ∆ in the vertices18,38,42 (see Fig.
3). In the analytic form

Epot(q) = −∆2

∫
d2kdω

(2π)3
[Gs(k + q/2, ω)Gs(−k + q/2,−ω) + Fs(k + q/2, ω)Fs(−k + q/2,−ω)] , (13)

where Fs is the anomalous Green’s function. Integrating
over frequency in Eq.(13) we obtain at T = 0

Epot(q) = −∆2

|U |
+

∆2

4

∫
d2k

(εk+q/2 − εk−q/2)2

((εk − µ)2 + ∆2)
3/2

+ ...

= −∆2

|U |
+ q2 ∆2

8π

∫
dεk

εk

((εk − µ)2 + ∆2)
3/2

+ ...(14)

where dots stand for the terms of higher orders in q2.
The difference between Epot(q = 0)+Ekin in a supercon-
ductor and the kinetic energy in the normal state gives

the condensation energy Econd. To obtain Econd we eval-
uate the frequency integrals in (12) and (14) and write
the condensation energy as

Econd = −N0×[
E2
F +

∆2

2

∫ Λ

−µ

dx√
x2 + ∆2

(
1− 2(x+ µ)

x+
√
x2 + ∆2

)]
(15)

The integral over x is ultra-violet convergent and one can
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safely replace the upper limit by infinity. We then obtain

Econd = −N0

[
E2
F +

∆2

4
− µ

2

(
µ+

√
µ2 + ∆2

)]
(16)

Using µ = EF − E0 and ∆2 = 4EFE0 (see Eq. (8))

we immediately obtain µ +
√
µ2 + ∆2 = 2EF and

µ
(
µ+

√
µ2 + ∆2

)
/2 = E2

F − ∆2/4. Substituting into

(16) we obtain

Econd = −N0
∆2

2
= −N0E0EF (17)

no matter what the ratio EF /E0 is.
The prefactor for the q2 term in Eq.(14) determines

ρs(T = 0):

ρs(T = 0) = N0
∆2

8

∫
dεk

(
dεk
dk

)2
((εk − µ)2 + ∆2)

3/2
(18)

Using

∆2

((εk − µ)2 + ∆2)
3/2

= − d

dεk

(
1− εk − µ

((εk − µ)2 + ∆2)
1/2

)
(19)

and integrating by parts Eq.(18) we obtain

ρs(T = 0) =
N0

8

∫
dεk×(

1− εk − µ
((εk − µ)2 + ∆2)

1/2

)[
d

dεk

(
dεk
dk

)2
]

(20)

The term in square brackets is simply a constant (=
2/m), and the remaining integral gives exactly the to-
tal energy density equal to 2EF . As a result,

ρs =
EF
4π

(21)

This result is exact for the parabolic dispersion k2

2m ,

which we consider in this paper 43. The consideration
based on diamagnetic tensor shows (Refs.19,42,45,46) that
it also holds, up to corrections of order (E2

0 + E2
F )/Λ2,

for arbitrary lattice dispersion.
At EF � E0, ρs is parametically larger than Tins ∼

(EFE0)1/2. As the consequence, phase fluctuations are
costly and Tc ≈ Tins, i.e., fermionic pairs condense
almost immediately after they develop. In the oppo-
site limit EF � E0, ρs(T = 0) � Tins, and hence
Tc ∼ ρs(T = 0) � Tins. Using the criterium40 Tc =
(π/2)ρs(T ) and approximating ρs(T ) by ρs(T = 0), we
obtain an estimate Tc = EF /8. (A more accurate analy-
sis44 yields Tc ∼ EF / log (logE0/EF ).)

The superconducting transition temperature ap-
proaches zero as O(EF ) when EF → 0, while Tins ∼
E0/ log E0

EF
drops only logarithmically. The ratio Tc/Tins

scales as EF
E0

log E0

EF
and obviously vanishes when EF = 0.

E0/EF

T/E0

Tins

Tc

E0/EF

(a)T/EF Tins

Tc

(b)

FIG. 6: The onset temperature Tins for the bound state for-
mation and the superconducting transition temperature Tc in
the one-band model as functions of E0/EF . The tempera-
tures are normalized to EF (a) and E0(b). Dashed lines show
Tc and Tins in the intermediate regime EF /E0 = O(1), where
we didn’t obtain the explicit formulas. Observe that Tins

scales as E0/ logE0/EF at large E0/EF . This Tins increases
when plotted in units of EF and decreases when plotted in
units of E0.

In the temperature region between Tins and Tc the bound
pairs develop but remain incoherent.

The splitting between Tins and Tc once EF gets smaller
than Tins (BCS-BEC crossover) and the corresponding
preformed pairs behavior at Tins > T > Tc has been orig-
inally studied in 3D systems.14,15,20 The physics in 2D is
similar, however in 2D the splitting occurs already at
weak coupling, provided that EF is small enough. Also,
the distance between fermions in a bound pair (the co-

herence length ξ0) scales at ∆� |µ| as ξ0 ∼
(

1
m|µ|

)1/2

∼
1/(mE0)1/2. Like in 3D systems, this ξ0 is much smaller
than inter-fermion spacing (V/N)1/2 ∼∼ 1/(mEF )1/2.
On the other hand, ξ − 0 is much larger than the in-
teratomic distance a0 ∼ 1/(mΛ)1/2 ∼ 1/qmax, where
qmax = (2mΛ)1/2. (the ratio ξ0/a0 ∼ (Λ/E0)1/2 � 1).
As a result, fermions in a bound pair are on average
located much farther away from each other than inter-
atomic spacing. Hence, the pairs cannot be viewed as
nearest-neighbor ”molecules” in the real space.

We summarize the results for the one-band model in
Fig. 6, where we plot Tins ad Tc in units of EF and E0,
in both cases as functions of E0/EF .

Our results for both Tc and Tins differ from Refs.8,30.
In these references Tc was found to remain finite at
EF = 0. The authors of8,30 solved BCS-like equations,
hence their Tc is in fact the onset temperature for the
pairing, Tins. Still, we found that even this temperature
vanishes at EF = 0, once one includes into consideration
temperature variation of the chemical potential.

C. The density of states at T = 0

In a conventional BCS superconductor with EF � Tc,
µ(T = 0) is positive, and the density of states (DOS) at
T = 0 is, for electron dispersion
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N(ω) = − 1

π
Im

∫
d2k

4π2
Gs(k, ω) =

∫
d2k

4π2

(
u2
kδ(ω − Ek) + v2

kδ(ω + Ek)
)

=
N0

2

(
2ω√

ω2 −∆2
θ(ω −∆)− ω −

√
ω2 −∆2

√
ω2 −∆2

θ
(
ω −

√
µ2 + ∆2

))

+
N0

2

(
2|ω|√
ω2 −∆2

θ(−ω −∆)− |ω|+
√
ω2 −∆2

√
ω2 −∆2

θ
(
−ω −

√
µ2 + ∆2

))
, (22)

where Ek =
√

(εk − µ)2 + ∆2, N0 = m/(2π), θ(x) = 1
for x > 0, µ = µ(T = 0), and

u2
k =

1

2

(
1 +

εk − µ√
(εk − µ)2 + ∆2

)
,

v2
k =

1

2

(
1− εk − µ√

(εk − µ)2 + ∆2

)
, (23)

This N(ω) vanishes at |ω| < ∆, has a square-root singu-

larity 1/
√
|ω −∆| above the gap, and drops by a finite

amount at |ω| =
√
µ2 + ∆2 + 0, when |ω| crosses the

edge of the band. The DOS is nearly symmetric between
positive and negative ω, at least for ∆ < ω � EF .

In our case, this behavior holds for the case EF � E0,
but not for EF � E0. In the latter case, µ(T = 0) is
negative (µ(T = 0) ≈ −E0), and the DOS is given by

N(ω) = − 1

π
Im

∫
d2k

4π2
Gs(k, ω)

= Im

∫
d2k

4π2

(
u2
kδ(ω − Ek) + v2

kδ(ω + Ek)
)

=
N0

2

(
ω +
√
ω2 −∆2

√
ω2 −∆2

)
θ
(
ω −

√
µ2 + ∆2

)
(24)

+
N0

2

(
|ω| −

√
ω2 −∆2

√
ω2 −∆2

)
θ
(
−ω −

√
µ2 + ∆2

)
,

where µ = µ(T = 0). This N(ω) vanishes at

|ω| <
√
µ2 + ∆2 and jumps to a finite value at |ω| =√

µ2 + ∆2 + 0. Because µ ≈ −E0, is much larger

than ∆ = 2(EFE0)1/2, the coherence factors u2
k and

v2
k are quite different: u2

k ≈ 1 for all momenta, while

v2
k ≈ ∆2

4(εk+|µ|) is small. As the result, N(ω) in (24) is

highly anisotropic between positive and negative frequen-
cies – it is approaches N0 at large positive frequencies and
scales as N0∆2/(4ω2) at large negative frequencies. We
plot the DOS at zero temperature for EF � E0 in Fig.
7. Because only negative frequencies are probed in pho-
toemission experiments, the features associated with the
bound state development below Tins are weak and dis-
appear at EF → 0. This last feature has been also found
in the recent study of superconductor-insulator transi-
tion.16

 / E0

-3 -2 -1 0 1 2 3
DO

S (
ar

b.
 un

its
)

0

0.5

1

 / E0

-3 -2.5 -2 -1.5 -1 -0.5 0

DO
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arb
. u

nit
s)

0

0.05
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FIG. 7: The DOS in the single-band model at T = 0 for
EF � E0. We set EF = 0.1E0, in which case µ = −9EF

and ∆ = 2
√
E0EF ≈ 6.3EF . We added the fermionic damp-

ing γ = 0.001EF . In the clean limit, the density of states
vanishes at |ω| <

√
µ2 + ∆2 and jumps to a finite value at

|ω| =
√
µ2 + ∆2 + 0 (see Eq. (24)). Due to the difference

between coherence factors, the DOS is strongly particle-hole
anisotropic and has much larger value at positive frequencies,
unobservable in photoemission experiments. At large |ω|, the
DOS tends to a finite value at positive ω and vanishes as 1/ω2

at negative ω. To make the power-law suppression of the DOS
at negative ω more visible, we plot the negative frequency re-
gion separately in the inset.

Note in passing that within our approximate treat-
ment, based on the effective quadratic Hamiltonian, the
DOS vanishes below |ω| = (µ2 + ∆2)1/2 already at
T < Tins. A more accurate treatment would require
one to compute the imaginary part of the fermionic self-
energy at a finite temperature and analyze the feed-
back on this self-energy from the development of the
bound pairs. On general grounds, the density of states at
|ω| < (µ2 + ∆2)1/2 should remain finite at temperatures
between Tins and Tc, as no symmetry is broken in this T
range. Below Tc, however, the true gap develops at these
frequencies and the DOS should be as in Fig. 7.

III. TWO-BAND MODEL WITH ONE HOLE
AND ONE ELECTRON BAND

We now extend the analysis to two-band models. We
consider two models – one with a hole and an electron



10

band, and one with two hole/two electron bands In both
cases we assume, to make presentation compact, that the
dominant pairing interaction U(q,Ω) is the pair hopping
between fermions on the two bands. The repulsive in-
teraction of this type gives rise to s+− pairing with the
phase shift by π between ∆’s on the two bands.

In this section we consider the model with one band
with hole-like dispersion εhk = EF,h − k2

2mh
and another

with electron-like dispersion εek = k2

2me
−EF,e. This model

is relevant to FeSCs, at least, at a qualitative level. The
Fermi energies EF,h and EF,e and the masses mh and
me are generally not equivalent. We keep EF,h and EF,e
different, but set mh = me = m to simplify the formulas.

BCS analysis of the pairing in multi-band models with
two electron bands and two or three hole bands, as in
FeSCs, has been presented in series of recent publica-
tions8,30. In particular, Ref.8 considered the case of
two hole bands, only one of which crosses the Fermi
level. A FS-constrained superconductivity in this last
case emerges due to interaction between the hole band
with EF,h > 0 and the electron band(s). Ref.8 has
demonstrated that the presence of the additional hole
band increases Tc, despite that this band is full located
below the Fermi level.

We analyze different physics – the crossover in the sys-
tem behavior once the largest EF becomes smaller than
the two-particle bound state energy E0. This physics has
not been analyzed before, to the best of our knowledge.
We restrict to one hole and one electron band because
the inclusion of additional bands affects the details of
the analysis but does not qualitatively affect BCS-BEC
crossover. Like in the previous Section, we set the upper
energy cutoff at Λ� EF,i (i = h, e), approximate U(q,Ω)
by a constant below the cutoff, and set the dimension-
less coupling coupling λ = mU/(2π) to be small. We set
U > 0, in which case superconducting order parameter
has s+− symmetry. As our goal is to analyze BCS-BEC
crossover, we consider the particular case when EF,e = 0,
see Fig.3(b). The extension of the analysis to small but
finite EF,e (positive or negative) is straightforward and
does not bring qualitatively new physics.

The analysis of the bound state energy for two particles
at EF ≡ 0 does not differ from that in previous Section,
and the result is that the scattering amplitude diverges
at T0 = 1.13E0, where, like before, E0 = Λe−2/λ. The
bound state energy at T = 0 is 2E0.

The onset temperature for the pairing at a finite EF is
obtained by solving simultaneously the linearized equa-
tions for ∆e and ∆h and the equations for the chemical
potentials µe(T ) and µh(T ), subject to µe(T ) + µh(T ) =
EF . The equation for the chemical potential follows for
the conservation of the total number of fermions. The

set of equations is (µe = µe(Tins), µh = µh(Tins)):

∆e = −λ
2

∆h

∫ Λ

−µh

dx

x
tanh

x

2Tins

∆h = −λ
2

∆e

∫ Λ

−µe

dx

x
tanh

x

2Tins

µe = T log
1 + e−µh/T

1 + eµe/T

µe + µh = EF . (25)

The first two equations reduce to

4

λ2
=

∫ Λ

−µe

dx

x
tanh

x

2Tins
×
∫ Λ

−µh

dx

x
tanh

x

2Tins
(26)

Below Tins, ∆e and ∆h become non-zero and one has to
consider non-linear gap equations and modify the equa-
tion for the chemical potential. At T = 0 the set of
equations becomes [µh = µh(T = 0), µe = µe(T = 0)]:

∆h = −λ
2

∆e log
2Λ√

µ2
e + ∆2

e − µe

∆e = −λ
2

∆h log
2Λ√

µ2
h + ∆2

h − µh√
µ2
h + ∆2

h + µh − 2EF = µe +
√
µ2
e + ∆2

e

µh + µe = EF (27)

A. The case EF � E0

We assume and then verify that in this situation
Tins � EF and for all T ≤ Tins, µh ≈ EF , while
µe ∼ Tins Under these assumptions, the equations on
the chemical potentials in (25) yield

µe(Tins) = Tins log

√
5− 1

2
= −0.48Tins,

µh(Tins) = EF − µe(Tins) (28)

Substituting these values of the chemical potentials into
the first two equations in (25) we obtain after simple
algebra

∆e = −λ
2

∆h

[
2 log

1.13Λ

Tins
− 2

λ
+ log

EF
E0

]
∆h = −λ

2
∆e log

1.13DΛ

Tins
(29)

where D = 0.79 (logD = −
∫ |µe|/2T

0
dx tanh x

x ). Combin-

ing the two equations and introducing Z = log 1.13DΛ
Tins

,
we obtain at small λ,

Z =
2

λ
− 1

3
log

EF
D2E0

+O(λ). (30)
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Hence

Tins = 1.13D1/3E
1/3
F E

2/3
0 = 1.04E

1/3
F E

2/3
0 (31)

This expression is valid when λ logEF /E0 � 1. At even
larger EF ≤ Λ, when λ logEF /E0 = O(1), Tins is given
by

Tins ∼ Λ

(
EF
Λ

)1/4

e−
√

2
λ (32)

The ratio of the gaps on electron and hole bands at
T = Tins − 0 is

∆e

∆h
≈ −

(
1 +

λ

6
log

EF
E0

)
(33)

We see that the gap on the electron band, which touches
the Fermi level, is larger than the gap on the hole band,
which crosses Fermi level. The ratio of ∆e/∆h increases

when EF gets larger and approaches
√

2 when EF be-
comes of order Λ.

At T = 0, solution of the set (27) at EF � E0 but
λ logEF /E0 � 1 shows that the ratio of ∆e and ∆h

remains the same as in Eq. (33), i.e., up to subleading
terms ∆e(T = 0) = −∆h(T = 0) = ∆. Solving for the
chemical potentials we then find

µe(T = 0) = − ∆

2
√

2
, µh(T = 0) = EF−µe(T = 0) (34)

Substituting this into the first two equations in Eq. (27)
and solving for ∆ we obtain

∆ = 25/6E
1/3
F E

2/3
0 = 1.78E

1/3
F E

2/3
0 (35)

The minimum energy on the hole band is Eh = ∆, at
k ≈ kF . The minimum energy on the electron band is at
k = 0, and Ee =

√
µ2
e(T = 0) + ∆2 = 3∆/2

√
2 = 1.06∆.

For the ratio of the minimal energy to Tins we then have,
up to corrections of order λ logEF /E0,

Ee
Tins

= 1.71,
Eh
Tins

= 1.81 (36)

Note that both ratios are rather close to BCS values,
although our consideration includes the renormalization
of the chemical potential, neglected in BCS theory.

B. The case EF = E0

To establish the bridge to the case of small EF /E0,
consider the intermediate case when EF is compara-
ble to E0. To be specific, we just set EF = E0, al-
though the analysis can be easily extended to arbitrary
EF /E0 ∼ O(1). Because EF is now the only relevant
low-energy scale, we express Tins = aEF , µe(Tins) =

bEF , µh(Tins) = EF (1−b). Substituting this into Eq.(25)
and using the fact that

2

λ

∫ Λ

0

tanh x
2Tins

x
=

2

λ
log 1.13Λ/Tins = 1− 2

λ
log

a

1.13
,

(37)
we obtain, to leading order in λ, the set of two equations
on the prefactors a and b:

b = a log
1 + e

b−1
a

1 + e
b
a

2 log
a

1.13
=

∫ b
2a

0

dy
tanh y

y
+

∫ 1−b
2a

0

dy
tanh y

y
(38)

Solving the set we obtain Tins = 1.351EF , µe(Tins) =
−0.349EF and µh(Tins) = 1.349EF . As expected, the
chemical potential µe becomes negative at a finite tem-
perature.

At T = 0 the renormalized chemical potentials µh(T =
0) and µe(T = 0) and the gaps ∆h and ∆e are also of
order EF . We express ∆h = chEF ,∆e = ceEF , µe(T =
0) = b̄EF , µh(T = 0) = EF (1− b̄). Substituting into Eq.
(27) we obtain to leading order λ, ch = −ce = c, i.e.,
∆e ≈ −∆h. [For non-equal masses mh and me, ∆h =

∆ (me/mh)
1/4

, ∆e = −∆ (mh/me)
1/4

]. The prefactors
c and b̄ are the solutions of(√

b̄2 + c2 − b̄
)
∗
(√

(1− b̄)2 + c2 − (1− b̄)
)

= 4√
(1− b̄)2 + c2 −

√
b̄2 + c2 = 1 + 2b̄ (39)

Solving this set we find b̄ = −0.34 and c = 2.43, i.e.,
µe(T = 0) = −0.34EF , µh(T = 0) = 1.34EF , and ∆h ≈
−∆e = 2.43EF . We see that µe and µh change little
between T = Tins and T = 0.

Because µe is negative, the minimal excitation energy
for the electron band is (formh = me) Ee =

√
µ2
e + ∆2 ≈

2.45EF . For the hole band, µh positive and the minimal
energy is Eh = ∆. We emphasize that the minimal en-
ergy Ee is larger than Eh, despite that the gaps ∆e and
∆h have equal magnitudes. The ratios of the minimal
energy and Tins are

Ee
Tins

= 1.82,
Eh
Tins

= 1.80 (40)

Both are a bit larger than the BCS value of 1.76.

C. The case EF � E0

We assume and then verify that in this limit the onset
temperature for the pairing Tins and the gaps ∆h and
∆e become progressively larger than EF , while µh and
µe remain of order EF . Assuming that Tins � EF and
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solving (25) for Tins, we then immediately obtain

Tins = 1.13Λe−
2
λ +

EF
4

+O(λ) ≈ 1.13E0

(
1 + 0.22

EF
E0

)
= T0

(
1 + 0.22

EF
E0

)
(41)

Note that this differs from BCS formula because the ex-
ponent contains 2/λ rather than 1/λ. The reason is that
only fermions with energies above EF contribute to the
logarithm. Solving the last two equations from Eq. (25),
we obtain for the chemical potentials at T = Tins

µe(Tins) ≈ −
EF
2
, µh(Tins) ≈

3EF
2

(42)

Solving next for the gaps and the chemical potentials
at T = 0 we obtain (for mh = me) that the µe and µh
move only little below Tins, while ∆h ≈ −∆e = ∆ is
related to Tins by the same formula as in BCS theory,
i.e.,

∆ = 1.76Tins � EF

µh ≈
3EF

2
, µe ≈ −

EF
2

(43)

The results for Tins,∆, and the chemical potential are
all consistent with what we assumed a-priori, hence the
computational procedure is self-consistent.

In Fig. 8 we plot the dispersions of fermions from hole
and electron bands at T > Tins and T � Tins along with
the bare dispersions (the one the system would have at
T = 0 in the absence of the pairing). The figure is for
the case EF < E0, the dispersion at EF > E0 is quite
similat. Observe that the minimal energy of a fermion
on the hole band (often associated with the ”gap”) is√

∆2
e + µ2

e, while the minimal energy of a fermion on the
electron band is just |∆h| ≈ |∆e|, i.e., it is smaller.

Returning to Eq. (41), we notice that the temper-
ature Tins is only slightly higher than T0 = 1.13E0, at
which the scattering amplitude for two particles in a vac-
uum diverges (to obtain T0 one just has to set EF = 0
in Eq.(41)). Like in the one-band case, this poses the
question what is the actual Tc in this situation, because
the development of the two-particle bound state does not
generally imply the breaking of U(1) gauge (phase) sym-
metry. To understand what Tc is we need to compute
superconducting stiffness. This is what we do next.

D. Superconducting Tc

We express U(1) order parameters ∆e and ∆h as
∆e−φh and ∆e−φe (we recall that, for equal masses
mh = me, the magnitudes of ∆e and ∆h are equal, up
to small corrections). In the equilibrium φe − φh = π.
To obtain the superfluid stiffness at T = 0 we need
two ingredients45,46: the gradient terms in the energy
(∇φh)2, (∇φe)2, and (∇φh)(∇φe), and the mixing term

k

EF k

h
222 ee 

)~( insh TT

T~Tins

T<Tins

)~( inse TT

FIG. 8: Fermionic dispersions for the two-band model with
one hole and one electron band in the limit EF � E0. Red
dashed line – the bare dispersions (the one which the system
would have at T = 0 in the absence of the pairing). Black
lines – the dispersions right above Tins, blue lines – the disper-
sion below Tins. The chemical potential for the electron band
is negative, and the minimal gap is

√
∆2

e + µ2. For the hole
band, the chemical potential is positive and the dispersion
±
√

∆2
h + (k2/(2m)− µh)2 is non-monotonic, with the mini-

mal energy ∆h at kF =
√

2mµh. Note that this kF is larger
than the bare kF,0 =

√
2mEF .
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FIG. 9: Diagrammatic representation of the two-loop diagram
for the potential energy Epot(q) in two-band models with a
constant inter-band interaction U (the dashed line). Dark
and light lines represent fermions from two different bands.
The prefactor for q2 term in Epot(q) determines the superfluid
stiffness. For a constant (i.e., angle-independent) U , the q2

term appear by expanding GG or FF terms either on the
right side of on the left side of each diagram, but there is no
cross-term from taking linear in q terms on the right and on
the left.

∆e∆
∗
h + ∆∗e∆h ∝ cos (φe − φh). The last term is impor-

tant when the stiffnesses on the hole and the electron
bands substantially differ in magnitude because it gener-
ates the mass for phase fluctuations on the band with a
smaller stiffness once the phase of the gap on the band
with a larger stiffness gets ordered.

The prefactors for the gradient terms can be evaluated
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in the same way as in the one-band model, by allowing
the phases to vary as ei(∇φ)r, i.e., by taking the Fourier
transform ∆(q) = ∆δ(q −∇φ), and evaluating the pref-
actors for the q2 terms in the potential energy (see Sec.
II). The cross term ∇φh∇φe could potentially come from
the two-loop diagram shown in Fig.9. There are no sym-
metry restrictions which would prevent the cross term
to be present51, however, in our case the prefactor for
∇φh∇φe contains the integral

∫
dkdp(qk)(qp)U(k − p)

(k is near an electron band, p is near the hole band),
which vanishes because we set U(k − p) to be indepen-
dent on the angle between k and p. The gradient part of
the energy then comes solely from the bubbles made by
fermions from the same band and is given by

δEgr =
1

2
ρhs (∇φh)2 +

1

2
ρes(∇φe)2 (44)

The two-loop diagram, shown in Fig.9, however, gives
rise to the mixed term ∆e∆

∗
h + ∆∗e∆h. To see this we

evaluate this diagram at q = 0. The sum of Gs(k)Gs(−k)
and Fs(k)Fs(−k) terms in the right and in the left gives
exactly 1/U , hence

δEmix =
1

U
(∆e∆

∗
h + ∆∗e∆h) =

∆2

U
cos (φe − φh) (45)

Without loss of generality we can assume that in equilib-
rium φe = 0, φh = π (note that the overall sign in (44) is
negative in equilibrium). Expanding in (45) to quadratic
order in deviations of φe,h from the equilibrium values
and combining (44) and (45), we obtain fluctuation part
of the energy in the form

δEfl =
1

2

[
ρhs (∇φ̃h)2 + ρes(∇φ̃e)2 +

∆2

U

(
φ̃e − φ̃h

)2
]
,

(46)

where φ̃e,h are deviations from equilibrium values. This
δEfl can be treated as an effective Hamiltonian for fluctu-

ations of φ̃ in the sense that 〈φ̃2〉 ∝
∫
dφ̃e−δEfl/T . This

effective Hamiltonian can be also obtained by starting
with fermionic Hamiltonian with 4-fermion interaction
in the Cooper channel and using Hubbard-Stratonovich
transformation to re-express the partition function as the
integral over bosonic variables ∆e,h(r) = |∆|eiφe,h(r) (see
Refs.21,45–48).

Transforming into the momentum space and evaluat-
ing 〈|φ̃e,h(k)|2〉, we obtain

〈|φ̃e(k)|2〉 =
T
(
k2ρhs + ∆2

U

)
k4ρesρ

h
s + ∆2

U k2 (ρes + ρhs )

〈|φ̃h(k)|2〉 =
T
(
k2ρes + ∆2

U

)
k4ρesρ

h
s + ∆2

U k2 (ρes + ρhs )
(47)

If the mixing term was absent (i.e., if there was no ∆2/U

term in (47)), we would have 〈|φ̃e(k)|2〉 = T/(ρesk
2) and

〈|φ̃h(k)|2〉 = T/(ρhsk
2), i.e., phase fluctuations of ∆e and

∆h would be decoupled and the actual Tc, below which
the system displays full coherence, would be determined
by the smaller of the two stiffnesses. The presence of
the mixed term changes the situation because now the
ordering of one φ̃ produces the mass term for fluctuations
of the other phase variable. To estimate Tc we need to
look at the small momentum asymptotic of Eq.(47) where

〈|φ̃e(k)|2〉 = 〈|φ̃h(k)|2〉 =
T

(ρhs + ρes) k
2
. (48)

Hence Tc is determined by the combined stiffness ρcomb =
ρes + ρhs . When ρcomb � Tins, phase fluctuations
are costly and Tc almost coincides with Tins. When
ρcomb � Tins, we again use the approximate criterium
Tc ≈ (π/2)ρcomb(T ) = 1.57ρcomb(0).

We now proceed with the calculations of ρes and ρhs .
The q−dependent part of the energy for each band is
again given by the sum of the convolutions of normal and
anomalous Green’s functions with the total momentum q,
with ∆ in the vertices, i.e., by the integrals of ∆2(Gs(k+
q/2)Gs(−k + q/2) + Fs(k + q/2)Fs(−k + q/2)) (see Eq.
( 13)). Each stiffness at T = 0 is then given by Eq. (18)
with µ = µe or µh, i.e.,

ρes(T = 0) =
∆2
e

8π

∫ Λ

0

dε
ε

((ε− µe)2 + ∆2
e)

3/2

ρhs (T = 0) =
∆2
h

8π

∫ Λ

0

dε
ε

((ε− µh)2 + ∆2
h)3/2

. (49)

Using the same manipulations as in Sec. II B, one can
relate ρhs and ρes to the total number of fermions in the
hole and the electron band, Nh and Ne. The two are
given by

Ne = N0

∫ Λ

0

dε

(
1− ε− µe√

(ε− µe)2 + ∆2
e

)

Nh = N0

∫ Λ

0

dε

(
1 +

ε− µh√
(ε− µh)2 + ∆2

h

)
, (50)

and the relations are

Ne
N0

= 8πρes,
Nh
N0

= 2Λ− 8πρhs (51)

The conservation of the total number of particles implies
that Nh +Ne = 2N0(Λ− EF ), hence

ρhs − ρes =
EF
4π

(52)

This condition, however, only specifies the difference be-
tween ρhs and ρes, the combined stiffness ρcomb is not fixed
and depends on the ratio EF /E0, as we see below.

At EF � E0 we obtained from Eq.(49), using ∆� EF
and µe(T = 0) = − ∆

2
√

2
, µh(T = 0) = EF −µe(T = 0) ≈

EF :

ρhs (T = 0) ≈ EF
4π

,

ρes(T = 0) ≈ 0.71
∆h

8π
= 0.05Tins � ρhs (T = 0),(53)
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where, we remind, Tins ∼ ∆ ∼ (EFE
2
0)1/3 � EF .

Adding the two stiffnesses, we find ρcomb(T = 0) ≈
EF /(4π) � Tins. The inequality ρcomb � Tins implies
that phase fluctuations are costly and hence Tc ≈ Tins.

Note in passing that at EF � E0, T/(ρcombk
2) behav-

ior of the the Fourier transform of the correlation func-
tion for phase fluctuations holds in the full momentum
range where the gradient expansion is applicable. In-
deed, gradient expansion holds when k is smaller that
inverse superconducting coherence length ξ−1 = ∆/vF .
Comparing the mixed term ∆2/U with even the larger
k2ρhs ∼ k2EF , we find that at k ∼ ξ−1, k2ρhs ∼ m∆2 is
already parametrically smaller than ∆2/U ∼ (m∆2)/λ.
Hence Eq. (47) is valid for all k < ξ−1.

At EF = E0 we obtain from Eq.(49), using the results
for ∆e,h and µe,h from Sec. III B,

ρhs (T = 0) = 2.05
EF
4π

, ρes(T = 0) = 1.05
EF
4π

(54)

Observe that ρhs (T = 0) − ρes(T = 0) = EF /(4π), as
it should be, according to (52). Combining the two we
obtain ρcomb = 3.1EF /(4π). Using Tc ≈ 1.57ρcomb we
obtain Tc ≈ 0.39EF . The onset temperature for the
pair formation is Tins = 1.35EF ≈ 3.49Tc. We see that
now Tins is substantially larger than Tc, hence already
at EF = E0 the system should display preformed pair
behavior in a wide range of temperatures.

Finally, at EF � E0 the chemical potentials µe,h ∼ EF
are parametrically smaller than ∆. In this situation we
obtain from Eq.(49)

ρhs ≈ ρes ≈
∆2

8π

∫ ∞
0

dε
ε

(ε2 + ∆2)3/2
=

∆

8π
= 0.07Tins.

(55)
Hence

ρcomb = 0.14Tins, Tc ≈ 0.22Tins (56)

This holds even when EF = 0, i.e., when the electron
band is empty. The stiffnesses ρhs and ρes are equal in this
limit, as required by (52) but each remains non-zero and
of order Tins. As the consequence, Tc remains finite and
also of order Tins. Still, because numerically Tc � Tins,
there exists a sizable temperature range of preformed pair
behavior.

Because now Tins almost coincides with the temper-
ature T0 of bound state formation for two particles
in a vacuum, the change of system behavior between
EF � E0 and EF � E0 can be interpreted as BEC
phenomenon. We emphasize, however, that the ratio of
Tins
Tc

remains finite at EF → 0, in distinction to ordinary
BCS-BEC crossover, where this ratio tends to infinity
when EF vanishes.13

The still existence of a finite Tc at vanishing EF is in
variance with the situation in the one-band model and,
as we will see in the next Section, also with the two-band
model with two electron/two hole bands. There, Tc van-
ishes when EF = 0 on both bands. The difference can

E0/EF

T/E0

Tins

Tc

(b)

E0/EF

(a)T/EF
Tins

Tc

FIG. 10: The onset temperature Tins for the bound state
formation and the superconducting transition temperature Tc

in the two-band model with one hole and one electron Fermi
surface, as functions of E0/EF . The temperatures are in units
of EF (a) and E0 (b). Observe that both Tins and Tc scale
as E0 at large E0/EF .

be easily understood because in the other two models
there are no carriers at EF = 0 to form superconduct-
ing condensate, hence the gap must vanish at EF = 0,
otherwise there would appear an image band at nega-
tive energies with a finite density of carriers in it. In
the model with a hole and an electron band there is
charge reservoir in the hole band, and the charge den-
sity can be re-distributed into the image bands even at
EF = 0. The image of the electron band appears at nega-
tive energies E = −

√
∆2
e + (εek − µe)2. The states in this

new band are filled by electrons, and their total density

is given by N0

∫
dεk

(
1− εek−µe√

∆2
e+(εek−µe)2

)
∼ ∆ ∼ Tins.

The electrons from the filled states in this image band
can form superconducting condensate, and, because all
energy scales are of order Tins, superconducting Tc is
also a fraction of Tins.

Note also that at EF � E0, the Fourier transform of
the correlation function for phase fluctuations is given
by T/(ρcombk

2) = T/(2ρhsk
2) at the lowest k, but crosses

over to a similar but not identical expression at larger
k, which are still smaller than ξ−1. The reasoning is
that k2ρhs ≈ k2ρes becomes comparabvle to the mixing
term ∆2/U at ktyp ∼ ξ−1(EF /λE0)1/2, which, at small
enough EF , is smaller than ξ−1. In between ktyp and
ξ−1, the correlation function scales as T/(ρhsk

2), i.e., the
functional form is the same as at the smallest k but the
prefactor differs by 2.

Our results for Tc and Tins in the model with one hole
and one electron pocket are summarized in Fig. 10. Like
in Fig. 6, we plot Tc and Tins in units of either E0 or EF ,
both times as functions of E0/EF . We re-iterate that the
key result for this model is that both Tins and Tc scale
as E0 at large E0/EF .

E. The density of states at T = 0

The DOS in the model with one hole and one electron
band is different from that in the one-band model be-
cause now fermionic excitations in the normal state exist
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at both positive and negative frequencies. In the main
parts of the two panels in Fig.11 we show the behav-
ior of the DOS at T = 0 separately for hole and elec-
tron bands, E0 = EF and E0 � EF , respectively The
behavior of the DOS on the electron band is very sim-
ilar to that in the one-band model (see Eq. (24) and

Fig.6). Namely, the DOS vanishes at |ω| <
√

∆2
e + µ2

e

and jumps to a finite value at |ω| =
√

∆2
e + µ2

e + 0. The
DOS is highly anisotropic between negative and positive
frequencies due to anisotropy of coherence factors. It is
much larger at positive frequencies, where it tends to a fi-
nite value at large ω. At negative frequencies, the discon-
tinuity is weaker (and rapidly suppressed by a fermionic
damping), and the DOS falls off as 1/ω2 for larger nega-
tive frequencies. On the hole band, the DOS vanishes at
|ω| < |∆h| and has a BCS-like square-root singularity at
|ω| = |∆h|+ 0, symmetric between negative and positive
frequencies. At larger |ω|, the DOS on the hole band has

a discontinuity at |ω| =
√

∆2
h + µ2

h − 0, when |ω| crosses
the edge of the band and the corresponding momentum
k = 0 (see Eq. (22); for hole dispersion positive and
negative frequencies in (22) have to be interchanged). In
the normal state this would be van-Hove discontinuity
at the top of the hole band. In a superconductor, the
discontinuity holds for both positive and negative ω, but
the coherence factor is much larger for a positive ω. At
higher frequencies, the DOS on the hole band tends to a
finite value at negative frequencies and scales as 1/ω2 at
positive frequencies.

In the insets of Fig.11 we show the total (combined)
DOS for E0 = EF and E0 � EF . Observe that DOS
tends to a finite value at both positive and negative fre-
quencies.

IV. TWO-BAND MODEL WITH TWO
ELECTRON BANDS

In this section we analyze the model with two bands of
equal type. The results are identical for the model with
two hole bands and for the one with two electron bands.
For definiteness we consider the model with two electron
bands as in Fig.3(c). We consider the same electronic
configuration at T = 0 as for one hole/one electron band
model. Namely, we set the chemical potential to touch
the bottom of one of the bands and cross the other band,
i.e. the Fermi energy to zero in one band (band 2) and
finite in the other (band 1). At the end of this Section
we consider how the onset temperature for the pairing
evolves when we move the chemical potential such that
both bands cross the Fermi level. Like in the previous
section, we restrict with inter-band (pair-hopping) pair-
ing interaction.

The behavior of Tins,∆, µ, and ρs in the model with
two electron bands (and in a more general model with
intra-band pairing interaction) has been discussed ana-
lytically in Refs.52 for the case when EF � E0. The set
of equations for Tins,∆, and µ has been solved numer-
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FIG. 11: The DOS at T = 0 for the model with one hole
and one electron pocket. Panel (a) – E0 = EF , panel (b) –
E0 = 10EB . For E0 = EF , µe = −0.34EF , µh = 1.34EF ,
and ∆h ≈ −∆e = 2.43EF . For EF = 0.1E0, µh ≈ 3EF

2
,

µe ≈ −EF
2

, and ∆e ≈ −∆h ≈ 20.3EF . To cut the singu-
larities and make other features of DOS visible, we added
fermionic damping γ = 0.001EF . Main figures – the DOS
separately for the hole band (dashed blue) and the electron
band (dashed red). For the hole band, the DOS has a square-
root singularity at |ω| = |∆h| + 0, symmetric between neg-
ative and positive frequencies, and van-Hove discontinuity
at |ω| =

√
∆2

h + µ2
h + 0 (see Eq. (22); for hole dispersion

positive and negative frequencies in (22) have to be inter-
changed). The latter is stronger for positive frequencies, due
to anisotropy of coherence factors. For EF = 0.1E0, the
singularity and the discontinuity are almost undistinguish-
able. For the electron band, the DOS jumps to finite value at
|ω| =

√
∆2

e + µ2
e + 0 and is highly anisotropic between nega-

tive and positive frequencies, again due to anisotropy of the
coherence factors (see Eq. (24)). For EF = 0.1E0, ∆ >> µe,
and the DOS right after the jumps are large, of order ∆/µe.
Insets – the total DOS. Observe that at large frequencies the
total DOS tends to a finite value for both positive and nega-
tive ω.

ically for arbitrary EF /E0 (Refs.20,26). When the com-
parison is possible, our results agree with these works,
but we also present new analytical results for Tins,∆, µ,
and the superfluid stiffness for the cases when EF ∼ E0

and EF < E0. The pairing at EF � E0 has been consid-
ered recently in Refs.22,31. Our results agree with these
earlier works modulo that they computed Tins without
including into consideration the temperature dependence
of the chemical potential in the band 2, while we argue
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that this renormalization is O(1) effect.
The analysis of the bound state energy for two particles

at EF ≡ 0 does not differ from that in previous Sections,
and the result is that the scattering amplitude diverges
at T0 = 1.13E0, where, like before, E0 = Λe−2/λ. The
bound state energy at T = 0 is 2E0.

The onset temperature for the pairing at a finite EF is
obtained by solving simultaneously the linearized equa-
tions for ∆1 and ∆2 and the equations for the chemi-
cal potentials µ1(T ) and µ2(T ), subject, in this case, to
µ1(T ) − µ2(T ) = EF . The set of equations is (µ1 =
µ1(Tins), µ2 = µ2(Tins)):

∆1 = −λ
2

∆2

∫ Λ

−µ2

dx

x
tanh

x

2Tins

∆2 = −λ
2

∆1

∫ Λ

−µ1

dx

x
tanh

x

2Tins

EF = T log
[(

1 + eµ1/T
)
×
(

1 + eµ2/T
)]

µ1 − µ2 = EF (57)

The first two equations reduce to

4

λ2
=

∫ Λ

−µ1

dx

x
tanh

x

2Tins
×
∫ Λ

−µ2

dx

x
tanh

x

2Tins
(58)

Below Tins, ∆1 and ∆2 become non-zero and one has to
consider non-linear gap equations and modify the equa-
tion for the chemical potential. At T = 0 we have
[µ1 = µ1(T = 0), µ2 = µ2(T = 0)]:

∆1 = −λ
2

∆2 log
2Λ√

µ2
2 + ∆2

2 − µ2

∆2 = −λ
2

∆1 log
2Λ√

µ2
1 + ∆2

1 − µ1

2EF =
√
µ2

1 + ∆2
1 +

√
µ2

2 + ∆2
2 + µ1 + µ2

µ1 − µ2 = EF (59)

A. The case EF � E0

Like we did in the previous Section, we assume and
then verify that Tins � EF and that at T = Tins,
µ1 ≈ EF , while µ2 ∼ Tins Under these assumptions,
the equations on the chemical potentials in (57) yield
(µ1,2 ≡ µ1,2(Tins))

µ2 = T log

(
1

1 + eµ2T

)
, µ1 = EF + µ2 (60)

Solving for µ2 we obtain

µ2 = Tins log

√
5− 1

2
= −0.48Tins, µ1 = EF − 0.48Tins

(61)

This is the same result as Eq. (28). Substituting these
results into the first two equations in (25) we obtain after
simple algebra

∆2 = −λ
2

∆1

[
2 log

1.13Λ

Tins
− 2

λ
+ log

EF
E0

]
∆1 = −λ

2
∆2 log

1.13DΛ

Tins
(62)

where D = 0.79. Solving the set we obtain

Tins = 1.13D1/3E
1/3
F E

2/3
0 = 1.04E

1/3
F E

2/3
0 (63)

in full similarity with Eq. (31) for the model with a hole
and an electron pocket. Like in that case, Eq. (63) is
valid when λ logEF /E0 � 1. At even larger EF ≤ Λ,
when λ logEF /E0 = O(1), Tins is given by

Tins ∼ Λ

(
EF
Λ

)1/4

e−
√

2
λ (64)

The ratio of the gaps on electron and hole bands at
T = Tins − 0 is

∆2

∆1
≈ −

(
1 +

λ

6
log

EF
E0

)
(65)

We see that the gap on the band which touches the Fermi
level is larger than the gap on the band, which crosses
Fermi level, in full agreement with the case of one hole
and one electron band. This result holds even when the
full band 2 is located above the Fermi level. The ratio
of ∆2/∆1 increases when EF gets larger and approaches√

2 when EF becomes of order Λ.
At T = 0, the solution of the set (59) at EF � E0

but λ logEF /E0 � 1 shows that the ratio of ∆1 and ∆2

remains the same as in Eq. (65), i.e., up to subleading
terms ∆1(T = 0) = −∆2(T = 0) = ∆. Solving for the
chemical potentials we then find (µ1,2 ≡ µ1,2(T = 0))

µ2 = − ∆

2
√

2
, µ1 = EF + µ2 (66)

Substituting this into the first two equations in Eq. (59)
and solving for ∆ we obtain

∆ = 25/6E
1/3
F E

2/3
0 = 1.78E

1/3
F E

2/3
0 (67)

B. The case EF = E0

Like we did in the previous section, we express Tins =
aEF , µ1(Tins) = bEF , µ2(Tins) = EF (b−1). Substituting
these relations into Eq.(57) and using the fact that

2

λ

∫ Λ

0

tanh x
2Tins

x
=

2

λ
log 1.13Λ/Tins = 1− 2

λ
log

a

1.13
,

(68)
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we obtain, to leading order in λ, the set of two equations
on a and b:

1 = a log
[(

1 + e
b−1
a

)
×
(

1 + e
b
a

)]
2 log

a

1.13
=

∫ b
2a

0

dy
tanh y

y
+

∫ b−1
2a

0

dy
tanh y

y
(69)

Solving the set we obtain Tins = 0.924EF , µ1(Tins) =
0.115EF , and µ2(Tins) = −0.885EF . As expected, the
chemical potential µ2 becomes negative at a finite tem-
perature.

At T = 0 we express ∆ = c̄EF , µ1(T = 0) =
b̄EF , µ2(T = 0) = (b̄ − 1)EF . Substituting into Eq.
(59) we obtain the set of two equations(√

b̄2 + c̄2 − b̄
)
×
(√

(b̄− 1)2 + c̄2 + (1− b̄)
)

= 4√
(b̄− 1)2 + c̄2 +

√
b̄2 + c2 = 3− 2b̄ (70)

Solving this set we find c̄ = 1.38 and b̄ = −0.05, i.e.,
µ1(T = 0) = −0.05EF , µ2(T = 0) = −1.05EF , and ∆1 ≈
−∆2 = 1.38EF . We see that µ1 changes from a slightly
positive to a slightly negative value between T = Tins
and T = 0.

C. The case EF � E0

We assume and then verify that at small EF both µ1

and µ2 become negative at T = Tins, and each exceeds
EF by magnitude. Solving Eq. (57) under these assump-
tions we obtain

µ1(Tins) = −Tins
2

log
Tins
EF

+
EF
2
,

µ2(Tins) = −Tins
2

log
Tins
EF
− EF

2
(71)

Substituting these chemical potential into the equation
for Tins an solving it, we obtain

Tins =
4.52E0

log E0

EF

(72)

This Tins has the same functional form as Tins for the
one-band model in the same limit EF � E0. This Tins
scales as E0, up to a logarithmic factor, but still vanishes
at EF = 0 due to logarithmic suppression.

Plugging Tins from (72) back into (71) we obtain µ1 ≈
µ2 ≈ −2.51E0, what justifies the assumption we made.

Solving next for the gaps and chemical potentials at
T = 0, we obtain (for mh = me) that µ1 ≈ µ2 ≈ −E0,
while ∆1 ≈ −∆2 = ∆, where

∆ =
√

2
√
EFE0 � Tins (73)

The expression for the gap also agrees, up to an overall
factor, with that in the one-band model.

k

EF

k

T~Tins

T<Tins

)~(1 insTT )~(2 insTT

)(2 2
1

2
1 insTT  

)(2 2
2

2
2 insTT  

FIG. 12: Fermionic dispersions for the two-band model with
two electron bands in the limit EF � E0. Red dashed line
– the bare dispersions (the one which the system would have
at T = 0 in the absence of the pairing). Black lines – the
dispersions right above Tins, blue lines – the dispersion below
Tins. The chemical potentials for both bands are now negative
at T ≥ Tins and in the BEC state below Tins, and the minimal
gaps on each band is

√
∆2 + µ2. The minimum of dispersion

on both bands is at k = 0. This is very similar to the behavior
of the one-band model (see Fig. 4).

In Fig. 12 we plot the actual dispersion of the two elec-
tron bands below Tins for the case EF � E0, along with
the bare dispersion. We see that the system behavior is
very similar to that in the one-band model (see Fig. 4
for comparison).

To understand what Tc is we again need to compute
superconducting stiffness.

D. Superconducting Tc

We follow the same logics as in the previous section,
i.e., introduce coordinate-dependent phases of the gaps
on the two electron bands φ1(r) and φ2(r), compute the
prefactors for the gradient term in the ground state en-
ergy Egr = (1/2)ρs,1(∇φ1)2 + (1/2)ρs,2(∇φ2)2 and the
mixing term (∆2/U) cos (φ1 − φ2). Performing the same
calculations as in the previous Section, we find that Tc is
determined by the combined stiffness ρcomb = ρs,1 +ρs,2.

The stiffnesses ρs,1 and ρs,2 are expressed via ∆1,2 and
µ1,2 by the same formulas as we obtained in the previous
two Sections:

ρs,1(T = 0) =
∆2

1

8π

∫ Λ

0

dε
ε

((ε− µ1)2 + ∆2
1)3/2

ρs,2(T = 0) =
∆2

2

8π

∫ Λ

0

dε
ε

((ε− µ2)2 + ∆2
2)3/2

. (74)

The two stiffnesses are again related to the number
of fermions in each band via N1 = 8πN0ρs,1, N2 =
8πN0ρs,2. Accordingly,

ρcomb = ρs,1 + ρs,2 =
EF
4π

(75)
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At EF � E0, ρcomb � Tins, hence Tc ≈ Tins. The two
individual stiffnesses are

ρe,2(T = 0) ≈ 0.03∆ = 0.05Tins � EF

ρs,1(T = 0) ≈ EF
4π

. (76)

This result is essentially identical to the one for the model
with a hole and an electron pocket in the same limit.

For EF = E0, we obtain from Eq.(74), using the results
for ∆e,h and µe,h from Sec. IV B,

ρs,1(T = 0) = 0.053EF ,

ρs,2(T = 0) = 0.027EF ,

ρcomb(T = 0) = 0.08EF ≡
EF
4π

(77)

Treating 1/(4π) as a small parameter and using the
same estimate of the actual Tc as before we obtain
Tc ≈ 0.125EF . The onset temperature for the pair for-
mation is Tins = 0.924EF ≈ 7.4Tc. Hence the system
again displays preformed pair behavior in a wide range
of temperatures. .

Finally, for EF � E0, both µ1 and µ2 tend to −E0,
the gap behaves as ∆2

1 = ∆2
2 = 2EFE0. Substituting

into Eq.(74) we obtain

ρs,1 ≈ ρs,2 =
EF
8π

, ρcomb =
EF
4π

(78)

Hence Tc ∼ EF and is parametrically smaller than
Tins ∼ E0/ log (E0/EF ), i.e., there is a parametrically
wide range of preformed pair behavior. This behavior is
quite similar to the one in the canonical BEC regime, but
we caution that Tins is still smaller by a large logarithm
than the temperature T0 ∼ E0 at which a bound state of
two fermions emerges in a vacuum.

We summarize the results for the model with two elec-
tron bands in Fig. 13. The behavior of Tc and Tins in this
model is quite similar to that in the model with one elec-
tron bands. A similar behavior also holds in the models
with one or two hole bands.

E. The density of states at T = 0

The DOS at T = 0 in the model with two electron
bands is quite similar to that in the one-band model.
Namely, the DOS is highly anisotropic and is much larger
at positive frequencies than at negative frequencies. For
EF � E0, the chemical potentials are large and negative
on both bands, and the DOS on each band is zero at |ω| <√
µ2 + ∆2, displays a discontinuity at |ω| =

√
µ2 + ∆2 +

0, and at large negative frequencies scales as 1/ω2 (see
Eq. (22)). We show the DOS for this model for EF = E0

and EF = 0.1E0 in Fig. 14

E0/EF

T/E0

Tins

Tc

(b)

E0/EF

(a)T/EF Tins

Tc

FIG. 13: The onset temperature Tins for the bound state
formation and the superconducting transition temperature Tc

in the two-band model with two electron bands, as functions
of E0/EF . The temperatures are normalized to EF (a) and
to E0 (b). Like in the case of one-band model, Tins scales as
E0/ logE0/EF at large E0/EF , while Tc scales as EF .

F. Evolution of Tins and Tc with the filing of the
second band and comparison with the experiments

on Nb-doped SrTiO3

Like we said in the Introduction, superconductivity in
the model with two electron bands is realized experimen-
tally in Nb-doped SrTiO3 and, possibly, in heterostruc-
tures of LaAlO3 and SrTiO3 (see Ref.31 and references
therein). The Fermi energy in the band 1 is finite al-
ready at zero doping, and EF is likely larger than E0, in
which case Tc ≈ Tins. The band 2 is above the chemical
potential at zero doping, but the chemical potential at
T = 0 moves up with doping and enters the band 2 once
it exceeds the critical value.

The experiments have found that superconducting Tc
rapidly increases when the chemical potential enters the
band 2. This has been detected in Nb-doped SrTiO3

(Ref. [32]) and in LaAlO3/SrTiO3 heterostructures (Ref.
[33]).

To verify whether this effect can be explained within
our theory, we extend our approach to the case when EF
is finite in both bands. To make notations more conve-
nient, in this subsection we use µ instead of EF (see Fig.
3.) We count µ from the bottom of the band 1, hence
the bare chemical potential µ0 (the one at T = 0 and
∆ = 0) coincides with EF in this band. We assume that
at T = 0 the chemical potential in the band 2 is µ0−µ∗.
At zero doping µ∗ > µ0. At a finite doping, µ0 increases
and crosses µ∗ at some finite doping. Once µ0 gets larger
than µ∗, the chemical potential enters the band 2. We
set µ0 = µ∗ + ε, assume that |ε| � µ0, and obtain the
correction to Tc to first order in ε.

At a finite temperature, the chemical potentials in the
two bands satisfy µ1 = µ0−ε+µ2 and the condition that
the total number of particles is conserved reads

µ0 + ε = T log
[
(1 + eµ1/T )× (1 + eµ2/T )

]
(79)

The onset temperature for the pairing, Tins ≈ Tc is ob-
tained by solving the set of linearized gap equations for
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FIG. 14: The DOS at T = 0 for the model with two electron
bands. Panel (a) – E0 = EF , panel (b) – E0 = 10EB . For
E0 = EF , µ1 = −0.05EF , µ2 = −1.05EF , and ∆1 ≈ −∆e =
1.38EF . For EF = 0.1E0, µ1 ≈ −24.6EF , µ2 ≈ −25.6EF ,
and ∆1 ≈ ∆2 = 4.47EF . We introduced the damping γ =
0.001EF to make all features of the DOS visible. Main figures
– the DOS for each band (dashed red and blue lines). Insets –
the total DOS. In the clean limit, the DOS has a discontinuity
at |ω| =

√
∆2

i + µ2
i + 0 (i = 1, 2), like in the one-band model.

At E0 = EF , DOS on band 1 is large immediately after the
jump because µ1 is very small. The DOS for each band is
anisotropic between negative and positive frequencies due to
anisotropy of the coherence factors. At large frequencies, the
DOS tends to a finite value for positive ω and scales as 1/ω2

for negative ω. The arrow in panel (b) indicates the position
of the would be discontinuity at a negative frequency.

∆1 and ∆2. The set has the same form as in Eq. (57):

∆1 = −λ
2

∆2

∫ Λ

−µ2

dx

x
tanh

x

2Tins

∆2 = −λ
2

∆1

∫ Λ

−µ1

dx

x
tanh

x

2Tins
(80)

We assume that µ0 � E0. The analysis in Sec. (IV A)
for µ∗ = µ0 shows that Tins � µ0, and, by continuity, we
assume that this remains true for µ∗ ≈ µ0. One easily
make sure that for such Tins, µ1(Tins) ≈ µ0 � Tins. Eq.
(79) then reduces to

µ2 − 2ε = −Tins log (1 + eµ2/Tins) (81)

Solving this equation we find

µ2 = −Tins log
2√

5− 1
+

4ε√
5(
√

5− 1)
(82)

Solving then the linearized gap equation to first order in
ε we obtain after a simple algebra

Tins(ε) = Tins(0) +
2ε

3
√

5(
√

5− 1)
(83)

where Tins(0) = 1.04E
2/3
0 µ

1/3
0 . Re-expressing this result

back in terms of µ0 and µ∗ we obtain

Tins(ε) = Tins(0)

[
1 + 0.23

µ0 − µ∗

µ0

(
µ0

E0

)2/3
]

(84)

We see that Tins and hence Tc ≈ Tins increases once
µ0 gets larger than µ∗, and the slope is controlled by
the large factor (µ0/E0)2/3, i.e., the relative increase is
parametrically large. By the same reason, Tc rapidly de-
creases when µ0 is smaller than µ. That Tc increases once
µ0 gets larger than µ∗ has been earlier found numerically
in BCS calculations in Ref. [22,31]. Our results are con-
sistent with this work, however we emphasize that (i)
our analytical result, Eq. (84) shows that the slope of Tc
vs µ0 − µ∗ is parametrically enhanced at µ0 � E0 and
(ii) ”pure” BCS calculation neglects the thermal evolu-
tion of the chemical potential, while in our analysis this
renormalization is included and plays an important role.

A rapid increase of Tc once the band 2 gets populated
in consistent with the data32,33. At the same time, our
Tc is continuous as a function of µ, i.e., we didn’t find a
jump in Tc at a critical doping, as suggested in e.g.,34.

V. THE GMB FORMALISM

A somewhat different approach to superconductivity
in a situation when EF is much smaller than the upper
energy cutoff for the pairing interaction was put forward
by GMB in Ref. [35]. They considered weak coupling
3D case and argued that, from the physics point of view,
Tc has to be expressed in terms of observable quantum-
mechanical scattering amplitude taken in the limit of
zero momentum (the scattering length, a) rather than in
terms of unobservable interaction potential U . The rela-
tion between U with a is obtained by solving Schrödinger
equation for one particle in a field U of another particle.
Diagrammatically, this amounts to summing up ladder
series vertex correction diagrams in the particle-particle
channel for two particles in a vacuum, i.e., for zero chem-
ical potential. To first order in U , a = mU/(4π) and the
dimensionless coupling constant λ = m|U |/(2π2) (in 3D)
equals to (2|a|kF )/π. However, beyond leading order, λ
and (2|a|kF )/π are not equivalent.

GMB have demonstrated that, with logarithmic accu-
racy, the equation for Tc in terms of a is obtained by
summing up the same ladder series as in the BCS theory,
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however, two modifications have to be made simultane-
ously: (i) U has to be replaced by 4πa/m, and (ii) in
each ladder cross-section one has to subtract from the
product of the two Green’s functions Gk,ωG−k,−ω the
same GG term taken at zero chemical potential. As the
result of these modifications, the kernel in the gap equa-
tion is cut at energies of order EF , and EF appears as a
prefactor in the formula for Tc, once the exponent con-
tains π/(2|a|kF ) instead of 1/λ. GMB went further than
logarithmic approximation and obtained the exact weak
coupling formula Tc = 0.277EF e

−π/(2|a|kF ) by adding the
leading renormalizations from the particle-hole channel.
We discuss these renormalizations in the Appendix. The
GMB approach does not include phase fluctuations and
hence the instability temperature obtained in this ap-
proach is actually the onset temperature for the pairing,
Tins.

Below we discuss the extension of GMB approach to
2D case and show how our Tins can be re-expressed in
terms of the physical scattering amplitude. We obtain
Tins in the form Tins = EF ∗ f(a), where a is the scat-
tering amplitude (dimensionless in 2D). These formulas
are useful if a is known from some other experiment. We
show that in the proper limits Tins >> EF because f(a)
is large.

We consider one-band model and two-band model with

one hole and one electron pocket. The analysis of the
model with two electron pockets is equivalent to that
of the one-band model. We show that GMB approach
is applicable for arbitrary ratio of EF /E0, including the
regime where Tins is close to the temperature T0, at which
the scattering amplitude diverges.

To set the stage, we first briefly review GMB approach
in 3D and then consider 2D cases.

A. Original GMB consideration, weak coupling
D = 3 case

To keep presentation short, we only restrict with the
ladder series and neglect contributions from the particle-
hole channel, i.e., will not try to reproduce the exact
prefactor for Tins.

GMB argued that to properly express Tins in terms of
observable variables, one has to consider simultaneously
the ladder series for the pairing vertex Φ in terms of bare
Φ0 and ladder series for the vertex function Γ = 4π|a|/m
for two particles in a vacuum in terms of the interaction
U . The ladder series are easily obtained diagrammati-
cally and reduce to

Φ = Φ0

[
1 + Πpp(EF )|U |+ (Πpp(EF )U)

2
+ ...

]
=

Φ0

1− |U |Πpp(EF )

Γ = |U |
[
1 + Πpp(0)|U |+ (Πpp(0)U)

2
+ ...

]
=

|U |
1− |U |Πpp(0)

, (85)

where

Πpp(µ) = T
∑
ωm

∫
d3k/(2π3)G(k, ω)G(−k,−ω) = T

∑
ωm

∫
d3k/(2π3)(ω2

m + (εk − µ)2)−1. (86)

Expressing |U | in terms of Γ as |U | = Γ/(1 + ΓΠpp(0))
and substituting into the expression for Φ we obtain

Φ =
Φ∗0

1− Γ (Πpp(EF )−Πpp(0))
(87)

where Φ∗0 = Φ0(1 + ΓΠpp(0)) ∼ Φ0. Eq. (87) can be
viewed as the sum of ladder series for Φ with |U | re-
placed by Γ = 4π|a|/m and the term with zero chemical
potential subtracted from

∫
GG.

With these modifications, the equation for the insta-
bility temperature in terms of |a| becomes:

1 =
2|a|kF
π

∫ Λ

0

dε

(
ε

EF

)1/2
[

tanh ε−EF
2Tc

ε− EF
−

tanh ε
2Tc

ε

]
(88)

We remind that we consider the case EF � Λ. One can
easily check that the integral over ε now converges at ε ∼
EF , so the upper limit of integration doesn’t matter any
longer. The evaluation of the integral yields, at |a|kF �
1,

Tc = 0.61EF e
− π

2|a|kF (89)

This equation re-expresses Tins in 3D in terms of the fully
renormalized s-wave scattering length. The renormaliza-
tions from the particle-hole channel further change the
prefactor to 0.277 (Ref.35).

One can easily check that Eq. (89) coincides with the
conventional BCS result for Tins in 3D. Indeed, from the
first equation in (85) we obtain Tins in 3D directly in
terms of U :

Tins = Λ̃e−
1
λ̃ (90)
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where λ̃ == m|U |kF /(2π2) (dimensionless coupling con-

stant in 3D) and Λ̃ = 0.61EF e

√
Λ
EF . Using the weak-

coupling relation between akF and λ̃:

2|a|kF
π

≈ λ̃

(
1 + λ̃

√
Λ

EF

)
(91)

one can easily verify that Eqs. (89) and (90) are equiva-
lent, as they indeed should be.

We emphasize that, although Eqs. (89) and (90) are
identical, the physics behind GMB approach in 3D is
the separation of scales: fermions with energies below
EF are the only ones which contribute to superconduc-
tivity, while fermions with energies above EF renormal-
ize the interaction between low-energy fermions into the
quantum-mechanical scattering amplitude.

B. Extension of GMB formalism to 2D

We now extend this approach to 2D case. We consider
separately one-band and two-band models.

1. One-band model

We first consider the case EF > E0, when bound pairs
do not develop prior to superconductivity and the scat-
tering amplitude is small at weak coupling, and then ex-
tend the analysis to the case EF < E0.

In the 2D case the scattering amplitude, which we label
a2, is dimensionless. To first order in U < 0 we still have
a2 = mU/(4π). Keeping a2 as a small parameter and
performing GMB computation of Tins in 2D, we obtain

Tins = 1.13EF e
− 1
|a2| (92)

This equation is the 2D analog of Eq. (89). It expresses
Tins in terms of the 2D scattering amplitude, which is an
observable variable.

Eq. (92) is the same as Eq. (4) for Tins in terms of
U , as we now demonstrate. Summing up ladder series
of renormalizations which convert U into ma2/(4π), we
obtain

1

a2
= log

1.13Λ

T
− 2

λ
(93)

where, we remind, λ = m|U |/(2π). At EF > E0, Tins ∼
(EFE0)1/2 � E0, hence at a2 is negative at T ∼ Tins,
like the interaction U . Substituting 1/|a2| = −1/a2 from
Eq.(93) into Eq.(92) we obtain

Tins = 1.13(ΛEF )1/2e−
1
λ (94)

This coincides with Eq. (4).
In the opposite limit EF � E0, the temperature Tins

is larger than EF , hence the temperature dependence

of the chemical potential µ must be included into the
GMB-type analysis. Performing the same calculation as
before and treating a2 as some temperature-dependent
parameter, not necessary a small one, we obtain, using
µ = −T log T/EF :

log log
Tins
EF

=
1

a2
(95)

or

Tins = EF e
e1/a2

(96)

This formula again expresses Tins in terms of the scat-
tering amplitude a, with EF as the overall factor.

Eq. (96) looks simple, but one should keep in
mind that the scattering amplitude a2 by itself de-
pends on temperature. In view of this, Tins is actu-
ally the solution of the transcendental equation T =
EF exp (exp (1/a2(T ))), in which a2(T ) should be treated
as input function, extracted from independent measure-
ments.

We now demonstrate that, although Tins in Eq.(96)
contains EF � E0 as the overall factor, this Tins coin-
cides with that in Eq.(5), once a2 is re-expressed back in
terms of λ. To see this we substitute 1/a2 from Eq.(93)
into Eq.(95) and obtain

log
Tins
EF

= e−
2
λ e

log 1.13Λ
Tins =

E0

Tins
(97)

or

Tins =
E0

log E0

EF

(98)

This is the same expression as Eq.(5) as it indeed should
be.

Note that a2 is actually positive at T = Tins because
Tins is smaller than T0 = 1.13E0 at which a bound state
forms in a vacuum. Taken at a face value, this would re-
ply that the interaction becomes repulsive. However, one
can easily verify that a2(Tins) changes sign exactly when
µ(Tins) crosses zero. As a result,

∫
(GG(µ)−GG(0)) be-

comes negative simultaneously with the sign change of a
and the product a2 ∗

∫
(GG(µ)−GG(0)) in the denomi-

nator of (87) remains positive.
The case when Tins ≈ T0 actually requires more so-

phisticated treatment because the scattering amplitude
is large at T = Tins and the corrections to the ladder
diagrams, which we neglected, may become relevant. We
will not pursue this case nor discuss the mathematical
details how to properly extend the ladder series for the
scattering amplitude in Eq.(93) to the case when a in
Eq.(93) changes sign. We just consider the agreement
between Eqs. (96) and (5) is the evidence that Eq. (93)
can be used even when a2 is not small.

C. Two-band model

We now extend GMB analysis to the two band model
with a hole and an electron bands.
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The inter-band scattering amplitude ahe is again ob-
tained by summing up ladder diagrams for the vertex
function for the two particles in a vacuum. Inter-band
scattering is reproduced in odd orders in the interaction.
We set mh = me to simplify calculations, sum up odd
terms in the ladder series, and obtain

ahe =
λ

2

1

1− λ2

4 Π2
(99)

where Π = log 1.13Λ/T is the particle-particle polariza-
tion operator at µ = 0. We remind that λ = m|U |/(2π)
in 2D.

Expressing λ in terms of ahe as

λ =
4ahe

1 +
√

1 + 4a2
heΠ

2
(100)

and substituting this back into the set of linearized equa-
tions for ∆1 and ∆e, Eqs. (25), we obtain after a simple
algebra the equation for Tins as a function of ahe:

2 + 2
√

1 + 4a2
heΠ

2 = 4a2
he

(
ΠeΠh −Π2

)
(101)

where

Πe =

∫ Λ

−µe
dε

tanh ε
2T

ε

Πh =

∫ Λ

−µe
dε

tanh ε
2T

ε
(102)

The r.h.s. of Eq.(101) can be re-written as(
ΠeΠh −Π2

)
= Π̃eΠ̃h + Π

(
Π̃eΠ̃h

)
(103)

and

Π̃e = Πe −Π =

∫ µe

0

dε
tanh ε

2T

ε

Π̃h = Πh −Π =

∫ µh

0

dε
tanh ε

2T

ε

(104)

Each Π̃ is
∫

(GG(µ) − GG(0)), i.e., it is the difference
between the particle-particle polarization operator at a
finite chemical potential µe,h and the one at µ = 0. The
chemical potentials µe,h are at most of order EF , hence
the integrals in Eq.(104) come from energies below EF ,
like in the original GMB analysis.

At small E0/EF , Tins is smaller than EF , µe =
−0.48Tins and µe ≈ EF � Tins (see Eq.(28)). Then

Π̃e = O(1), while Π̃h ≈ log (1.13EF /Tins) � 1 In this

situation, ΠeΠh −Π2 ≈ ΠΠ̃h. Substituting this into Eq.
(101) we obtain that, up to an overall factor,

Tins = EF e
−

1+
√

1+a2
12Π2

2a2
he

Π (105)

This is the transcendental equation on Tins with tem-
perature dependence in the r.h.s. coming from Π =
log 1.13Λ/Tins and from ahe = ahe(T ). The latter again
should be treated as input parameter, extracted from in-
dependent measurements.

It is straightforward to verify that Tins in Eq.(105) is
the same as we obtained in Eq. (31) earlier in terms of
the coupling λ (or, equivalently, in terms of E0). To see
this, we re-express ahe back in terms of λ. This converts
Eq. (105) into

Tins = EF e
−

4

(
1−λ

2Π2

4

)
λ2Π = EF e

− 4
λ2Π

Λ

Tins
(106)

hence, up to constant prefactors,

log
(ΛEF )1/2

T
log

Λ

T
=

2

λ2
(107)

Using log Λ = (2/λ) + logE0 we obtain after simple al-

gebra, Tins ∼ E1/3
F E

2/3
0 , what agrees with Eq.(31).

In the opposite limit E0 > EF , we use the fact that
Tins � EF , µe ≈ −EF /2, µh ≈ 3EF /2, and obtain

Π̃e ≈ −EF /(4Tins) and Π̃h ≈ 3EF /(4Tins). Substituting

into Eq.(101) and using the fact that Π� 1, while Π̃e,h

are small, we obtain

Tins =
EF
2

2a2
heΠ

1 +
√

1 + 4a2
heΠ

2
(108)

Using next the fact that at small EF , Tins is close to T0 at
which the scattering amplitude diverges, i.e, aheΠ � 1,
we can further approximate Eq.(108) to

Tins = EF
ahe
2

(109)

Note that in the two-band case ahe remains positive (like
U) for arbitrary EF /E0 because even at EF → 0, Tins is
larger than T0, see (41).

Eq. (109) expresses Tins at EF � E0 in terms of EF
and 2D inter-band scattering amplitude, which, again,
should be considered as temperature dependent input
function.

One can easily demonstrate that Eq. (109) coincides
with Eq.(41). For this we note that, when ahe is large, it
can be expressed via the coupling λ (or, equivalently, via
E0) as

ahe ≈
1

2 log b
, (110)

where b log b ≈ (EF /4E0). For small EF /E0, log b ≈
EF /4E0, hence ahe ≈ 2E0/EF . Substituting this into
Eq. (109), we obtain Tins ≈ E0. This coincides with
Eq.(41) up to corrections which we neglected by approx-
imating ahe by 2E0/EF .
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VI. CONCLUSIONS

In this paper we considered the interplay between
superconductivity and formation of bound pairs of
fermions in multi-band 2D fermionic systems (BCS-BEC
crossover). In two spatial dimensions a bound state de-
velops already at weak coupling, and BCS-BEC crossover
can be analyzed already at weak coupling, when calcu-
lations are fully under control. We reviewed the situa-
tion in one-band model and considered two different two-
band models, one with one hole and one electron band
and the other with two hole or two electron bands The
first model is relevant to experiments on Fe-pnictides and
Fe-chalcogenides, particularly on FeSe, the second one is
used to describe Nb-doped SrTiO3.

For each model we solved self-consistently the equa-
tions for the gaps and the chemical potentials on the two
bands and obtained the onset temperature of the pairing,
Tins, and the chemical potentials and the pairing gaps
below Tins. We computed superfluid stiffnesses and used
them to estimate the actual superconducting Tc below
which U(1) gauge symmetry is spontaneously broken.

In a one-band model, the system displays BCS behav-
ior when the Fermi energy EF exceeds the energy, E0, of a
bound state of two fermions in a vacuum. In this regime,
(i) Tins ∼ (EFE0)1/2 is parameterically larger than E0,
i.e., the pairing emerges at a much higher T than would-
be the temperature for the bound state formation in a
vacuum, and (ii) the superfluid stiffness ρs = EF /(4π)
is parametically larger than Tins, hence phase fluctua-
tions are costly near Tins. As the consequence, phase
coherence sets in almost immediately after bound pairs
form. In the opposite limit E0 � EF , the pairing de-
velops at Tins � EF , while the actual Tc is determined
by phase fluctuations and is of order EF . In between
Tins and Tc bound pairs develop but remain incoherent,
and the fermionic spectral function displays a pseudogap
behavior, when the spectral weight gradually transforms
from zero energy to an energy of order of the pairing gap
∆ ∼ (EFE0)1/2. This is a typical system behavior in the
BEC regime. The only difference with the ”canonical”
BEC behavior in 3D, where strong coupling is a must,
is that in our weak coupling model bound pairs are not
tightly bound molecules because the two fermions in a
pair are separated on average at distances by a distance
well above the interatomic spacing. We argud that the
fermionic spectral function is highly non-symmetric in
the preformed pairs regime.

We next considered the two-band model with one hole
and one electron band. For definiteness we set EF = 0 on
the electron band, but kept EF finite on the hole band.
We found that the behavior of this model is different in
several aspects from that in the one-band model. There
is again a crossover from BCS-like behavior at EF � E0

to BEC-like behavior at EF � E0 with Tins > Tc. How-
ever, in distinction to the one-band case, the actual Tc,
below which long-range superconducting order develops,
remains finite and of order Tins even when EF = 0 on

both bands. The reason for a finite Tc is that the filled
hole band acts as a reservoir of fermions. The pairing
reconstructs fermionic dispersion and transforms some
spectral weight into the newly created hole band below
the original electron band and electron band above the
original hole band. A finite density of fermions in these
two bands gives rise to a finite Tc even when the bare
Fermi level is exactly at the bottom of the electron band
and at the top of the hole band.

We also considered the model with two hole/two elec-
tron bands. We found that the behavior in this model
is similar to that in the one-band model. Namely, BCS-
BEC crossover occurs when the largest of the two EF ’s
becomes comparable to E0. When the ratio EF /E0 is
large, the system displays BCS-like behavior, when it is
small, the system displays the same BEC-type behavior
as in the one-band model, namely Tc scales with EF and
is parametrically smaller than Tins.

Finally, we re-expressed Tins in terms of the 2D scatter-
ing amplitude, which is a physical observable, in distinc-
tion to U . For this, we extended to D = 2 the approach
put forward by Gorkov and Melik Barkhudarov back in
1961 for D = 3 case. We obtained the explicit formu-
las for Tins in terms of the 2D dimensionless scattering
amplitude a2 for the one-band model and for the model
with one hole and one electron band, and demonstrated
that these formulas are valid not only in the BCS limit
but also in the BEC limit, when the scattering amplitude
is not small. One distinction between 2D and 3D cases
is that in our 2D case the scattering amplitude a2(T ) is
temperature dependent, hence the formulas relating Tins
and a2(Tins) are transcendental equations, which have to
be solved with a2(T ) taken from a separate measurement.

Our results confirm earlier BCS analysis by several
groups8,30 that in the one hole/one electron band model
Tc doesn’t tend to zero if EF on one band vanishes, and it
remains finite even when one of the bands is located en-
tirely below or entirely above the Fermi level. However,
previous works identified Tins with Tc, while we show
that Tc ≈ Tins only when EF � E0, while at EF < E0

Tc is numerically substantially smaller than Tins. Our
results for Tins also differ from these earlier works be-
cause they neglected the temperature dependence of the
chemical potential.

We summarize our results for all three models in Fig.
2 and in Table I. Our results show that the case of one
hole and one electron pocket is the ”best case” scenario
for higher superconducting Tc at small EF , because for
this case phase fluctuations do not reduce Tc more than
by a numerical factor. For a system with a single hole or
electron band and for a system with two hole or two elec-
tron bands, phase fluctuations reduce Tc parametrically
compared to the onset temperature of pair formation.

With respect to applications to Fe-based superconduc-
tors, our results do confirm that Tc does not vanish when
one of hole bands sinks below the Fermi level ot moves
as a whole above the Fermi level. Furthermore, the
gap on this band is generally higher than that on the
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bands which cross the Fermi level. The gap ratio is non-
universal and depends on the mass ratio and/or presence
of additional bands. That the gap is larger on the band
that does not cross the Fermi level is consistent with the
experimental results reported for LiFe1−xCoxAs in Ref.3

and for FeTe0.6Se0.4 in Ref.4. We note in passing that
one does not need to invoke a highly unconventional con-
cept of the ultra-strong pairing at all momenta in the
Brillouin zone3 to explain the data.

Our analysis for the case EF ≤ E0 may be relevant
to FeSe. In this material Fermi energies on all bands
are only a few meV , and are comparable to Tc. For the
two-band model, we found that Tins and Tc do differ
by a sizable factor, and there exists an intermediate T
range of preformed pair behavior. Recent experiments
on FeSe have been interpreted50 in terms of pre-formed
pairs which appear at about twice Tc. This is exciting
possibility and the theoretical study of the interplay be-
tween Tins and Tc in the full multi-band model for FeSe
is clearly called for.

Finally, our analysis of the model with two electron
pockets one of which has a finite EF and for the other
the Fermi level is near its bottom, may be relevant to
superconductivity in Nb-doped SrTiO3 (Refs.22,23,31,32)
and LaAlO3/SrTiO3 heterostructures (Ref. [33]). These
materials contain two electron bands, and the Fermi level
passes through the bottom of one of the bands upon
doping. Experiments have found32,33 that Tc rapidly in-
creases once the chemical potential moves up and crosses
both bands. We reproduced this result in our theory –
we found that Tc increases when the chemical potential
moves into the second band, and the slope of the in-
crease of Tc contains a large parameter. We, however,
didn’t find a jump in Tc at a critical doping, as some
other experiments suggest34.
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VII. APPENDIX

In this Appendix we obtain the exact prefactor for Tins
in Eqs. (4) and (5). To compute it, one needs to go
beyond ladder approximation and include the fermionic
self-energy to order λ and the corrections to U from the
particle-hole channel.

FIG. 15: Hartree-Fock diagrams for the self-energy.

FIG. 16: Second order diagrams for the renormalization of
the irreducible pairing interaction due to contributions from
the particle-hole channel.

The fermionic self-energy to order λ comes from
Hartree and Fock diagrams in Fig. 15. This self-energy
renormalizes fermionic dispersion and the chemical po-
tential, and also changes fermionic residue to Z < 1.
The correction to Z originates from frequency-dependent
part of the fermionic self-energy Σ(k, ω). The latter is
non-zero in our model, despite that the interaction is
approximated by the static U , because we set the sharp
frequency cutoff at energy scale Λ (and momentum cutoff
at εk = Λ).

We assume that the renormalization of µ at T = 0 is
already incorporated into EF . The remaining one-loop
self-energy has the form

Σ(k, ω) = iω
λ

4
fω

(ω
Λ
,
εk
Λ

)
− εk

λ

2π
fε

(ω
Λ
,
εk
Λ

)
, (111)

where the scaling functions satisfy fω(0, 0) = fε(0, 0) =
1. We define the sign of the self-energy via G−1(k, ω) =
iω − εk + Σ(k, ω). The self-energy comes from inter-
nal frequency and momentum of order of the upper cut-
off and only weakly depends on EF � Λ. The scal-
ing functions fω and fε can be straightforwardly ob-
tained numerically. However, for our purposes we will
need the renormalization of the fermionic propagator
only at ω ∼ εk ∼ Tins � Λ. At these energies the
scaling functions can be approximated by their values at
ω = εk = 0. The full Green function to order λ in this
energy/momentum range is then

G(k, ω) =
Z

ω −
(
k2

2m∗ − EF
) , (112)

where

Z = 1− λ

4
, m∗ = m

(
1 +

λ

4
− λ

2π

)
(113)

Substituting the Green’s function from (112) into
the ladder diagrams, we immediately obtain that the
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fermionic self-energy changes the dimensionless coupling
λ into

λ̃ = λm∗Z2 = λ

(
1− λπ + 2

4π

)
(114)

The renormalization of the irreducible pairing inter-
action to order λ comes from particle-hole channel and
generally involves four diagrams, each contains a particle-
hole bubble (Fig. 16). For a constant interaction U the
first three diagrams in Fig. 6 cancel out and only the
last, exchange diagram contributes. In 2D the contribu-
tion from this diagram to the irreducible coupling (i.e.,
the correction to U) is a constant, equal to Uλ, when
relevant transferred frequency is much smaller than EF .
At a higher frequency Ω the renormalization from the
exchange diagram is additionally reduced by EF /Ω. Ac-
cordingly, the renormalization of U by the particle-hole
bubble is only relevant at EF � E0, when Tins � EF .
In this regime, the effective coupling constant is

λeff = λ̃(1− λ) = λ

(
1− λ5π + 2

4π

)
(115)

In the opposite limit, EF � E0, Tins � EF , and the
renormalization from particle-hole channel can be ne-
glected. In this regime, the effective coupling is

λeff = λ̃ = λ

(
1− λπ + 2

4π

)
(116)

Collecting all renormalizations to order λ and substitut-
ing into Eqs. (4) and (5), we obtain for Tins at EF � E0,

Tins = 1.13(ΛEF )1/2e−1/λ̃ = 0.276(ΛEF )1/2e−1/λ

(117)
The prefactor differs somewhat from that in Ref. [35b].
At EF � E0 we have

Tins = 1.13
Λ

logE0/EF
e−2/

˜̃
λ = 0.751

E0

logE0/EF
(118)
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