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In the nearest vicinity of the critical temperature, types I and II of conventional single-band
superconductors interchange at the Ginzburg-Landau parameter κ = 1/

√
2. At lower temperatures

this point unfolds into a narrow but finite interval of κ’s, shaping an inter-type (transitional) domain
in the (κ, T )-plane. In the present work, based on the extended Ginzburg-Landau formalism, we
show that the same picture of the two standard types with the transitional domain in between
applies also to multi-band superconductors. However, the inter-type domain notably widens in
the presence of multiple bands and can become extremely large when the system has a significant
disparity between the band parameters. It is concluded that many multi-band superconductors,
such as recently discovered borides and iron-based materials, can belong to the inter-type regime.

PACS numbers: 74.25.-q,74.25.Dw,74.25.Ha,74.70.Ad,74.70.Xa

I. INTRODUCTION

Observation of non-conventional vortex configurations
in MgB2

1 has ignited the interest to possible supercon-
ductivity types in multi-band superconductors, where
many carrier bands contribute to the condensate state.
In single-band materials the distinction between the
types is routinely explained by employing the Ginzburg-
Landau (GL) theory2–4 which distinguishes ideally dia-
magnetic type-I materials and type-II superconductors
that allow for the mixed state. Following this theory the
interchange between the types occurs when the GL pa-
rameter κ = λL/ξ crosses its critical value κ0 = 1/

√
2 (λL

is the London magnetic penetration depth, ξ is the GL
coherence length).3 A key difference that distinguishes
those types is the vortex-vortex interaction: it is repul-
sive in type II and attractive in type I superconductors.
At κ = κ0, referred to as the Bogomolnyi point, vor-
tices do not interact. This is a consequence of the fact
that the GL theory at this point reduces to a pair of
the first order self-dual Bogomolnyi equations.5,6 The
self-duality, first discussed in the context of cosmologi-
cal strings,5,7 leads to an infinite degeneracy of different
flux configurations,6,8,9 from which the absence of the
vortex-vortex interactions follows.

However, detailed experimental investigations10 as well
as theoretical calculations beyond the GL theory11–15

show that the GL dichotomy of the superconductivity
types is achieved only in the limit T → Tc (Tc is the crit-
ical temperature). At T < Tc the Bogomolnyi point un-
folds into a finite temperature-dependent interval of κ’s
(in this paper referred to as the inter-type/transitional
interval or domain), where superconductivity cannot be
attributed to one of the standard types. For example, su-
perconductors in this interval reveal the first order phase
transition between the Meissner and mixed states at Hc1

and, plausibly, between the mixed and normal states
at Hc2.11,15 Theoretical modeling, based on microscopic

BCS as well as on the Neumann-Tewordt (NT)16 theo-
ries, has led to a general perception that the key charac-
teristic of the transitional domain, that is responsible for
its non-standard properties, is the non-monotonic vortex-
vortex interaction: the long-range attraction combined
with the short-range repulsion.11,12,15 It was argued that
such attraction is a manifestation of non-local effects that
are not inherent to the GL theory.17 Being a few, and
outside the GL description, single-band materials in the
narrow inter-type domain are, as a rule, ignored in text-
books and the corresponding magnetic response remains
scarcely investigated to date.

Although the unconventional vortex patterns in MgB2
1

were also attributed to a long-range vortex attraction,
the proposed explanation was totally different. It was
conjectured in this case that it appears due to the inter-
play between different carrier bands or, more precisely,
due to a competition between different length-scales of
π- and σ-bands in MgB2.18 This explanation has led to a
controversial idea of a new superconductivity type found
only in multi-band systems.1,18

Critics of this concept pointed to similarities between
the flux configurations observed in MgB2 and in the
inter-type regime of single-band superconductors.17 They
also noted inconsistencies of the multi-component GL
equations19,20 employed for analysis of vortex matter in
MgB2, where the different band gaps were treated as
components of the Landau order parameter.18,21 In par-
ticular, it is well known that the Landau theory for phase
transitions relates the number of the order-parameter
components not to the number of bands but to the di-
mension of the corresponding irreducible representation
of the symmetry group.22,23

To this date it remains unclear if explanation of the
nonstandard vortex distributions in MgB2 requires a spe-
cific multi-band mechanism or the underlying physics
is similar to that of single-band superconductors in the
transitional interval.17 More generally, classifying super-
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conductivity types and their interchange in multi-band
systems remains an unresolved issue. In the present work
we address this problem with the extended GL (EGL)
formalism20,24 derived as the exact perturbation expan-
sion of the BCS theory over the small proximity to the
critical temperature τ = 1 − T/Tc to one order beyond
the standard GL approach. It is important that this cor-
rection not only improves the accuracy of the calculations
but also captures phenomena that cannot be described
within the standard GL theory. In particular, this con-
cerns the inter-type domain absent in the GL picture.

We demonstrate that unless the system has some ad-
ditional band symmetry,25 multi-band superconductors
obey the standard classification with the two supercon-
ductivity types and the transitional domain in between.
The inter-type behavior has the same origin for both
multi- and single-band superconductors, namely, it ap-
pears as a result of lifting the Bogomolnyi point degen-
eracy. However, the crucial difference of systems with
multiple bands is that the transitional domain notably
widens and can become extremely large when dispar-
ity between microscopic characteristics of contributing
bands is significant. Thus, many of multi-band super-
conductors can belong to the inter-type regime.

Presentation of our results is separated into two main
parts. In the first part (Sec. II) we discuss the transi-
tional domain in single-band superconductors. The EGL
formalism is formulated in the universal form indepen-
dent of the number of bands and thus analysis of the
single- and multi-band cases are qualitatively similar.
Presenting first a simpler single-band case helps to better
understand the phenomenon of the inter-type supercon-
ductivity and is also needed for highlighting similarities
and differences between the single- and multi-band super-
conductors. The current understanding of the inter-type
regime even in the single-band case remains sketchy and
contradictory and calls for revisiting the problem.

The second part of the paper (Sec. III) extends our
consideration to the multi-band case. Here explicit cal-
culations are done for a two-band superconductor, where
most of results can be obtained analytically. We argue
that qualitatively similar conclusions hold also for any
number of carrier bands.

For the convenience of the reader technical details of
our calculations are given in Appendices.

II. SINGLE-BAND SYSTEMS

Let us briefly summarize the past achievements and re-
lated problems in description of the inter-type regime in
single-band superconductors. Studying the transitional
domain between types I and II requires an approach
going beyond the GL theory. Solving equations of the
fully microscopic formalism is very demanding numeri-
cally due to inhomogeneity of the mixed state. This is
the reason why microscopic analysis has been performed
only for few selected problems, in particular, to calcu-

late outer boundaries of the transitional domain:13,14 the
upper boundary is determined by the onset of the long-
range vortex-vortex attraction and the lower one is set
by appearance/disappearance of the mixed state.

A compromise between the microscopic theory and the
GL approach is the Neumann-Tewordt (NT) theory,16

which has been used to obtain most of currently known
results on the inter-type superconducting behavior. This
formalism was originally derived from the so-called local
approximation for the BCS theory and yields the free en-
ergy functional, where the GL contribution is augmented
by the terms with higher order derivatives and higher
non-linearity. The NT approach was used to calculate
outer boundaries of the transitional domain11,12,15 but
also demonstrated the presence of other boundaries intro-
ducing subdivisions in the transitional domain and inter-
type superconducting behavior. Unfortunately, conse-
quences of such subdivisions did not receive much at-
tention in the literature.

However, the NT theory has several fundamental diffi-
culties. First, highly non-linear equations of this formal-
ism are in fact not much simpler than the original micro-
scopic theory.16,26–28 Second, it may lead to nonphysical
results such as a rapidly oscillating order parameter in
the single-vortex solution.27,28 In order to simplify the
analysis, the NT equations were linearized by seeking its
solution in the form of a small correction to the solu-
tion of the GL equations.11,12 Corrections to the GL free
energy were also obtained by substituting the GL solu-
tion directly into the NT functional.15 However, results
of both approaches for the boundaries of the inter-type
domain were considerably different (see Tab. I). This
must be taken into consideration together with the fact
that the nonphysical results of the full NT equations can
also cast doubts on their linearized version.

Here we revisit the problem of the inter-type super-
conductivity in single-band materials using the EGL for-
malism20,24 derived perturbatively (in τ = 1 − T/Tc).
An essential advantage of our approach is the possibility
to obtain universal analytical expressions for the char-
acteristics of the transitional domain in both single- and
multi-band systems. As mentioned above, accounting for
the terms beyond the standard GL approach in the τ -
expansion allows one to access novel physics not captured
in the GL picture. The accuracy of the EGL formalism
is established by comparing with the results of the full
microscopic theory, which was done in Refs. 20 and 24 for
some pertinent quantities, as well as with the available
experimental data, see Fig. 2 below.

A. Criteria for interchange of types I and II

We start the analysis of the transitional domain with
the general remark that the superconductivity types are
related to the way how the magnetic field penetrates the
bulk superconductor and produces a non-uniform config-
uration of the flux/condensate. Specifying such a con-
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figuration is not important in the extreme cases where
κ � 1 or κ � 1, neither in the limit T → Tc. How-
ever, the situation changes for κ ∼ 1 and T < Tc, where
choosing different variants of a non-uniform magnetic
flux distribution gives rise to different scenarios of the
interchange between types I and II.

A criterion for such interchange utilizes the corre-
sponding Gibbs free energy: when it becomes smaller
than that of the Meissner state at the thermodynamic
critical field Hc, the flux/condensate configuration in
question can appear.4 The respective difference between
the Gibbs free energies is written as

G =

∫
g dr, g = f +

H2
c

8π
− HcB

4π
, (1)

where f is the free-energy density of the corresponding
non-uniform state and the magnetic field B is parallel to
the external magnetic field of value Hc. The onset of this
non-uniform state is found from the equation

G(κ, T ) = 0 (2)

that yields the corresponding GL critical parameter
κ∗(T ), hereafter referred to as a simply critical parame-
ter. On the (κ, T )-plane κ∗(T ) separates domains with
and without the flux/condensate configuration of inter-
est, that are called types II and I.

Several types of such non-uniform flux configurations
are traditionally employed in order to construct the crite-
rion of the type interchange. Most common is the domain
wall (interface) between superconductive (S) and normal
(N) phases.3,4 The interchange takes place when the sur-
face energy associated with the domain wall becomes
zero. Another criterion is obtained by considering the
superconductivity nucleation at the upper critical field
Hc2: here types I and II interchange when Hc2 = Hc.

3,4

The stability of a single Abrikosov vortex is also useful,
resulting in the interchange condition Hc1 = Hc.

3,4 In ad-
dition, it is also possible to associate the type interchange
with a certain property of a chosen flux configuration.
For example, in the context of the unconventional vortex
states, discussed in Introduction, one can consider inter-
action of two Abrikosov vortices that is repulsive in type
II and attractive in type I.3,4 The corresponding criterion
is a change of the sign of the vortex-vortex interaction or,
more precisely, of its long-range asymptote.

Within the standard GL theory the differences between
the above criteria are irrelevant: one obtains the same
temperature-independent critical parameter κ∗ = κ0.
Superconductivity types I and II are found at κ < κ0
and κ > κ0, respectively, while switching between types
I and II takes place sharply at κ = κ0. At this point
differences between types I and II disappear due to an
infinite topological degeneracy of the GL theory. This
degeneracy was first noted in the context of the so-called
Sarma solution,3 however, its comprehensive analysis was
done only later by Bogomolnyi in relation to the physics
of cosmic strings.5,6

As already mentioned in the Introduction, the clas-
sification based on the GL theory is strictly valid only
in the limit T → Tc. At T < Tc corrections to the
GL theory remove the degeneracy, leading to that differ-
ent criteria for the type interchange give different critical
parameters.11,13,15 In particular, conditions Hc = Hc2

and Hc = Hc1 correspond to κ∗2 and κ∗1, respectively.
The zero surface energy yields κ∗s whereas changing the
sign of the long-range vortex interaction gives κ∗li. All
temperature-dependent critical parameters converge to
κ0 at T → Tc, manifesting the degeneracy of the Bogo-
molnyi point (κ0, Tc). At T < Tc there is a finite inter-
val of κ’s where the superconducting magnetic response
cannot be classified as belonging to one of the standard
types. Thus, in the (κ, T )-plane superconductivity types
I and II are separated by the transitional (or inter-type)
domain.

B. Gibbs free energy difference

We calculate the Gibbs free-energy difference G in
Eqs. (1) and (2) using the EGL formalism.24 In this ap-
proach the free energy is given by a series in τ = 1−T/Tc,
obtained by expanding all pertinent physical quantities.
The spatial coordinates are scaled as τ1/2r, which intro-
duces the corresponding scaling into the spatial deriva-
tives. The gap function ∆ and the magnetic field B (or
the vector potential A) are represented in the form

∆ = τ1/2
(
Ψ + τψ + . . .

)
,

B = τ
(
B + τb + . . .

)
,

A = τ1/2
(
A + τa + . . .

)
. (3)

The free-energy density is found as24

f = τ2
(
f(0) + τ f(1) + . . .

)
, (4)

where the lowest-order contribution represents the stan-
dard GL free-energy functional

f(0) =
B2

8π
+ a
∣∣Ψ∣∣2 +

b

2

∣∣Ψ∣∣4 +K
∣∣DΨ

∣∣2, (5)

with D = ∇−i2eA/(~ c) the gauge-invariant derivative.
The leading-order corrections to the GL free energy are
split into two parts

f(1) = f
(1)
1 + f

(1)
2 , (6)

where the first part is given by

f
(1)
1 =

a

2

∣∣Ψ∣∣2 + 2K
∣∣DΨ

∣∣2 + b
∣∣Ψ∣∣4 +

b

36

e2~2

m2c2
B2
∣∣Ψ∣∣2

−Q
{∣∣D2Ψ

∣∣2 +
1

3
(rotB · i) +

4e2

~2c2
B2
∣∣Ψ∣∣2}

− L
2

{
8
∣∣Ψ|2∣∣DΨ

∣∣2 +
[
Ψ2(D∗Ψ∗)2 + c.c.

]}
− c

3

∣∣Ψ∣∣6, (7)
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and includes only the lowest-order contributions Ψ and
B (A) to the gap and field, respectively, while the second
part writes

f
(1)
2 =

(B · b)

4π
+
(
a+ b|Ψ|2

)
(Ψ∗ψ + c.c.)

+K
{(

DΨ ·D∗ψ∗ + c.c.
)
−
(
a · i

)}
, (8)

and contains also the leading corrections to the gap and
field, ψ and b (a). In Eqs. (7) and (8)

i = i
2e

~ c

(
ΨD∗Ψ∗ −Ψ∗DΨ

)
, (9)

where Kci is the lowest-order contribution to the super-
current density.

Coefficients in Eqs. (4) - (8) are obtained using a chosen
microscopic model of the charge-carrier states. In partic-
ular, for a spherical Fermi surface in the clean limit one
gets

a = −N(0), b = N(0)
7ζ(3)

8π2T 2
c

,

c = N(0)
93ζ(5)

128π4T 4
c

, K =
b

6
~2v2F ,

Q =
c

30
~4v4F , L =

c

9
~2v2F , (10)

where N(0) = mkF /(2π
2~2) is the density of the car-

rier states (DOS) at the Fermi surface with the Fermi-
momentum kF and Fermi-velocity vF = ~kF /m.

A stationary point of the functional given by Eq. (4)
yields the main equations of the formalism. The GL
equations are obtained as the stationary condition for
the lowest-order contribution to the free energy, i.e.,

δF(0)

δΨ
=
δF(0)

δA
= 0, (11)

where F(n) =
∫
f(n)dr, with n = 0, 1. Equations for ψ

and b (a) read

δF(1)

δΨ
=
δF(1)

δA
= 0. (12)

Notice, that δF(1)/δψ = 0 and δF(1)/δa = 0 also generate
the GL equations.

One can see that the leading correction to the free en-
ergy (i.e., the term ∼ τ3) can be rearranged at the sta-
tionary point so that the terms with ψ and b (a) are

excluded. This follows from that f
(1)
2 in Eq. (8) is lin-

early proportional to the functional derivatives δF(1)/δψ
and δF(1)/δa (up to some vanishing surface integrals)
that are zero by virtue of Eq. (12). Therefore, at the
stationary point the leading correction to free energy is
reduced to Eq. (7). Using solutions to the GL equations
(11), we find the free energy density from Eqs. (4) - (8)
and then calculate the Gibbs free energy difference given
by Eq. (1).

Calculating the Gibbs free energy difference up to the
leading correction to the GL result requires obtaining the
thermodynamic critical field Hc with the same accuracy,
which gives24

Hc = τ
(
H(0)
c + τH(1)

c + . . .
)
, (13)

where

H(0)
c =

√
4πa2

b
,

H
(1)
c

H
(0)
c

= −1

2
− ac

3b2
. (14)

It is convenient to do further calculations using the di-
mensionless quantities

r̃ =
r

λL
√

2
, Ã = κ

A

H
(0)
c λL

, B̃ = κ
√

2
B

H
(0)
c

,

Ψ̃ =
Ψ

Ψ0
, ĩ =

4πKλL
H

(0)
c

i, f̃ =
4πf

H
(0)2
c

,

g̃ =
4πg

H
(0)2
c

, G̃ =
4πG

H
(0)2
c (λL

√
2)3

, (15)

where

Ψ0 =

√
|a|
b
, λ2L =

~2c2b
32πe2K|a|

, κ =
λL
ξ

=
λL|a|
K

. (16)

Notice that as we use the τ -scaled spatial coordinates, the
GL coherence length ξ and the London penetration depth
λL are scaled accordingly. In the following we write the
dimensionless quantities introduced in Eq. (15) without
tilde unless it causes any confusion.

The density of the Gibbs free energy difference is given
by the expansion

g = τ2
(
g(0) + τg(1) + . . .

)
, (17)

where in the lowest order we have the GL contribution

g(0) =
1

2

(
B

κ
√

2
− 1

)2

+
1

2κ2
|DΨ|2 − |Ψ|2 +

1

2
|Ψ|4,

(18)

(now we have D = ∇+ iA) while the leading correction
writes

g(1) =

(
B

κ
√

2
− 1

)[
1

2
+ c̃

]
−
∣∣Ψ∣∣2

2
+

∣∣DΨ
∣∣2

κ2
+
∣∣Ψ∣∣4

+
Q̃

4κ4

{∣∣D2Ψ
∣∣2 +

1

3
(rotB)2 + B2

∣∣Ψ∣∣2}
+
L̃

4κ2

{
8
∣∣Ψ∣∣2∣∣DΨ

∣∣2 +
[
Ψ2(D∗Ψ∗)2 + c.c.

]}
+ c̃

∣∣Ψ∣∣6, (19)

with the dimensionless coefficients

c̃ =
ca

3b2
, Q̃ =

Qa
K2

, L̃ =
L a
bK

. (20)
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Since we are interested in the near-Bogomolnyi regime, it
is also useful to introduce the expansion over δκ = κ−κ0,
following the suggestion of Ref. 15. Expanding Eq. (2)
with respect to δκ we obtain

G = τ2
(
G(0) +

dG(0)

dκ
δκ+ G(1) τ + . . .

)
, (21)

and the coefficients in this expansion are calculated at
κ = κ0, i.e., we incorporate a solution to the GL formal-
ism at κ0 where it is reduced to the first-order Bogomol-
nyi equations. The terms ∝ τ δκ are neglected in Eq. (21)
because both quantities δκ and τ are of the same order
of magnitude, δκ ∼ τ .

The derivative dG(0)/dκ contains the direct contribu-
tion coming from the explicit appearance of κ in the
expression for g(0) (the partial derivative below) and
the indirect one related to the derivatives dΨ/dκ and
dA/dκ. However, one can immediately see that the indi-
rect contribution is equal zero. Namely, the correspond-
ing terms in the integrand are proportional to δG(0)/δΨ
and δG(0)/δA. These terms disappear because the func-
tional derivatives of G(0) are equal to the corresponding
functional derivatives of F(0) that are zero at the station-
ary point, see Eq. (11). The final expression for dG(0)/dκ
reads

dG(0)

dκ
=

∫
∂g(0)

∂κ
dr, (22)

with

∂g(0)

∂κ
= − B

κ2
√

2

(
B

κ
√

2
− 1

)
− 1

κ3
∣∣DΨ

∣∣2. (23)

At κ = κ0 solutions to the GL equations are obtained us-
ing the Bogomolnyi self-duality equations (A13) - (A14),
that are also used to simplify the integrals in G. After
straightforward but lengthy calculations one obtains for
G the following general expression:

G =τ2
{
−
√

2 I δκ+ τ
[(

1− c̃+ 2Q̃
)
I

+
(

2 L̃ − c̃− 5

3
Q̃
)
J
]

+ . . .
}
, (24)

with

I =

∫
|Ψ|2

(
1− |Ψ|2

)
dr, J =

∫
|Ψ|4

(
1− |Ψ|2

)
dr. (25)

Details of the solving procedure for the relevant non-
uniform flux configurations are discussed in Appen-
dices B and C. It is important that the lowest-order
term G(0) is zero for any solution of the GL equations at
κ = κ0, manifesting the degeneracy of the Bogomolnyi
point. Thus, Eq. (24) comprises only two contributions,
∝ δκ and ∝ τ .

C. Critical GL parameters

Substituting Eq. (24) into Eq. (2) one obtains the gen-
eral expression for critical parameters up to the leading
correction in τ , i.e.,

κ∗ = κ0

{
1 + τ

[
1− c̃+ 2Q̃+

J
I

(
2 L̃ − c̃− 5

3
Q̃
)]}

.

(26)

This expression generalizes our earlier result for the N-S
wall solution24 to an arbitrary flux configuration. The
dimensionless constants in Eq. (26) are calculated from
Eq. (10), which gives

c̃ = −0.227, L̃ = −0.454, Q̃ = −0.817. (27)

These constants do not depend on the material parame-
ters Tc, N(0) and vF , which points to the robustness of
the approach: one can generally expect that the results
are not very sensitive to details of a particular micro-
scopic model, at least for weak disorder.

Using Eq. (26), we calculate the critical parameters
for the above criteria of the type interchange. The first
criterion is based on the appearance of a flat N-S domain
wall. The corresponding solution, outlined in Appendix
B, yields J /I = 0.559. The critical parameter is thus
obtained as

κ∗s = κ0(1− 0.027τ). (28)

The condition Hc = Hc1 is related to the thermody-
namic stability of an isolated Abrikosov vortex, the solu-
tion to which yields J /I = 0.735, see Appendix C. The
corresponding critical parameter is

κ∗1 = κ0(1 + 0.093τ). (29)

The condition of changing the sign of the long-range
vortex-vortex interaction is calculated using G for the
state with two single-quantum vortices separated by dis-
tance R. Details and the asymptote of G at large R
are given in Appendix C. Using those results we find
J /I → 2 (R→∞) and then the critical parameter reads

κ∗li = κ0(1 + 0.95τ). (30)

Finally, onset of the superconductivity nucleation is
defined by the condition Hc2 = Hc. In order to solve this
equation, one can find the upper critical field Hc2 using
the condition of the first appearance of a non-zero gap.
Alternatively, one can use Eq. (26) and utilize the fact
that in the limit B → Hc2 the order parameter Ψ van-
ishes. Then, as follows from Eq. (25), the integrands for
I and J are reduced respectively to |Ψ|2 and |Ψ|4. Thus,
in this limit one obtains J/I → 0 and the corresponding
critical parameter writes

κ∗2 = κ0(1− 0.407τ). (31)
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hhh
dκ∗li
dτ

dκ∗1
dτ

dκ∗s
dτ

dκ∗2
dτ

EGL 0.6726 0.066 -0.019 -0.288

NT-111 0.675 0.065 -0.019 -0.288

NT-215 -0.163 -0.242 -0.254 -0.290

TABLE I. The τ -derivative of the critical parameter κ∗ cal-
culated for the different interchange criteria mentioned in the
text: comparison between the results of the EGL formalism
and NT calculations from Refs. 11 and 15.

One can check that an independent calculation based on
a solution to the linearized GL equation for the order
parameter yields the same result.

Equations (28) - (31) illustrate that different criteria
of the type interchange produce different critical param-
eters at T < Tc. This difference has been noticed earlier
in the analysis based on the NT theory.11,15 However, as
mentioned above, there was no agreement on the values
of the critical parameters obtained by different versions
of the linearization procedure. In Tab. I we provide a
summary of the results obtained in the present and ear-
lier works. One can see that our values for the critical
parameters coincides with those of Ref. 11, denoted as
”NT-1” in Tab. I. However, results of the other ap-
proach15 (”NT-2”) are notably different for all critical
parameters with the exception of κ∗2.

The accuracy of our approach is further confirmed by
the comparison with the microscopic calculations shown
in Fig. 1 which plots results for κ∗li obtained by the
EGL and Eilenberger equations.13 The results of the full
non-linear NT theory are also provided.29 The micro-
scopic data are obtained with numerical uncertainties,
illustrated in Fig. 1 by the trust interval between two
solid curves. At higher temperatures, 0.7 . T/Tc . 1,
all three approaches yield close values, converging to κ0
in the GL limit T → Tc. However, when the temper-
ature is lowered, T/Tc . 0.7, the NT theory starts to
deviate notably from the microscopic solution. On the
contrary, the EGL line remains in a good quantitative
agreement with the microscopic theory at temperatures
down to T/Tc ∼ 0.3. The EGL approach demonstrates
a wider validity domain than the non-linear NT theory.
This is because the accuracy of the solution to the non-
linear NT theory exceeds the accuracy of its derivation
procedure, as was mentioned already in Ref. 28.

D. Transitional domain: outer boundaries

Mutual deviations of the critical parameters at T < Tc
introduce the transitional domain between types I and
II in the (κ, T )-plane. Its boundaries are defined by
the maximal and minimal critical parameters. Equa-
tions (29) - (31) give the transitional interval as [κ∗2, κ

∗
li].

These boundaries can be extracted from the magne-
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ext. Ginzburg-Landau
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Neumann-Tewordt

K
li

T /T
c

*

FIG. 1. (Color online) The critical parameter κ∗
li (controlling

the long-range vortex-vortex attraction) as calculated from
Eq. (30), from the Eilenberger equations13, and from the NT
approach.29 Numerical uncertainties in microscopic calcula-
tions are given by the trust interval (shaded area between the
upper and lower curves). The standard GL result κ = κ0 is
represented by the dashed line for reference.
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H
c

type(I

-(
4π
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H
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-(
4π
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H
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T

FIG. 2. (Color online) Boundaries of the transitional (inter-
type) domain for single-band superconductors. The upper
and lower lines represent κ∗

li and κ∗
2, given by Eqs. (30) and

(31), respectively. Symbols show the collection of different
experimental data reported in Ref. 10 and extracted from the
qualitative changes of the magnetization curve M(H), see the
illustrative sketches given in the three small left panels.

tization measured for different κ10 (see also the review
in Ref. 17). In experiments changing κ was achieved in
led alloys by varying a thallium content and in TaN sam-
ples by nitrogen doping, while remaining in the nearly
clean regime. Reported changes of the field dependence
of the magnetization M(H) are schematically illustrated
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FIG. 3. (Color online) Left panel: the Gibbs free-energy dif-
ference for an isolated N -quantum vortex normalized by N
versus the deviation of the GL parameter δκ = κ − κ0 at
T = 0.7Tc and H = Hc. Right panel: the derivative dκ∗

1,N/dτ
as a function of the number of the flux quanta N . Dotted lines
display the τ -derivatives of κ∗

1 and κ∗
s .

in the left panels in Fig. 2. Inside the transitional domain
M(H) has a jump at H∗c and a non-zero tail at larger
fields H∗c < H < Hc2. The tail disappears at κ < κ∗2
and the magnetization acquires the standard type-I ap-
pearance. At κ > κ∗li, the jump in the magnetization
is absent as expected for type II. Such a magnetization
pattern is referred to as type-II/1 in the literature and
the related explanations are usually reduced to the long-
range attraction between Abrikosov vortices,17 which is
true only to some extent and ignores other important as-
pects of the inter-type superconductivity (see the next
subsection).

The critical parameters κ∗2 and κ∗li, obtained for differ-
ent materials, are shown in Fig. 2 together with theoret-
ical results given by Eqs. (30) and (31). One sees that
at T/Tc & 0.4 all experimental data for both κ∗2 and κ∗li
are almost linearly dependent on T/Tc in excellent agree-
ment with the EGL theory, which can be regarded as a
further confirmation of its accuracy (see Fig. 1).

E. Transitional domain: internal structure

As noted above, the physics of the transitional domain
is commonly restricted to the long-range vortex-vortex
attraction. This, however, contradicts to the observation
that other critical parameters exist inside this domain
with the corresponding changes of admissible inter-type
flux patterns. Moreover, the number of such internal crit-
ical parameters is infinite due to the infinite degeneracy
of the Bogomolnyi point. A comprehensive study of all
possible flux configurations and the corresponding subdo-
mains is beyond the scope of this work. However, as an
illustration we consider a simple example of the states
that generate an infinite set of the critical parameters,
namely, vortices that carry an arbitrary number N ≥ 1
of elementary magnetic-flux quanta (multi-quantum or
giant vortices). Such vortices are known to be unstable
in type-II superconductors but this changes in the inter-
type regime.

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

κ
0

κ

T/T
c

κ
li
*

κ
2
*

κ
1
*

κ
s
*

(b)

typevIItransitional
domain

typevI

multi-quantavvorticesv

attractivevatvlongvranges

single-quantumvvortices

novsinglevvortices

FIG. 4. (Color online) Internal structure of the transitional
(inter-type) domain [κ∗

2(T ), κ∗
li(T )] as following from analysis

of different isolated-vortex solutions. The subdivision in the
three subdomains is dictated by the presence of critical pa-
rameters κ∗

1,N (T ) displaying stability of N -quantum vortices
in the interval [κ∗

s(T ), κ∗
1(T )].

The procedure of solving the GL equations at the Bo-
gomolnyi point for an isolated vortex with an arbitrary N
is outlined in Appendix C. Using obtained solutions, we
calculate the corresponding integrals I and J and then
critical parameters κ∗1,N , that control the appearance of

N -quantum vortices, from Eq. (26). The left panel in
Fig. 3 shows the Gibbs free energy difference for an iso-
lated N-quantum vortex divided by N in order to see its
stability with respect to the decay into smaller vortices.

Figure 3 demonstrates that for large δκ > 0 an
Abrikosov vortex (N = 1) has the lowest energy, as ex-
pected in type II. For large negative δκ < 0 the Gibbs
energy difference is positive for any N and, therefore,
any isolated vortex is unstable, as expected in type I.
However, when δκ ∼ 0, isolated vortices with N > 1 be-
come stable. For any value of N there is an interval of
δκ’s where GN (δκ)/N has the lowest value among all the
other isolated vortex states and, thus, the N -quantum
vortex is most stable in this interval. This is further il-
lustrated by the right panel of Fig. 3 which shows the
derivative (tangent) κ∗′1,N = dκ∗1,N/dτ as a function of
N . This function decreases monotonously from κ∗1 to κ∗s.
Thus, the appearance of multi-quantum vortex states in-
troduces an infinite set of critical parameters inside the
transitional domain, κ∗s < · · · < κ∗1,N < · · · < κ∗1,2 < κ∗1
(κ∗1,1 ≡ κ∗1), splitting it into an infinite number of subdo-
mains.

In interval κ∗1 < κ < κ∗li the Meissner state is unsta-
ble with respect to the formation of Abrikosov vortices
at fields H > Hc,1 (Hc,1 < Hc). At κ < κ∗1 an isolated
Abrikosov vortex is less stable then the Meissner state.
However, for κ∗1,2 < κ < κ∗1 a single two-quantum vor-
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tex becomes more favorable thermodynamically than the
Meissner state at fields H > HN=2

c1 , with HN=2
c1 < Hc

being the lower critical field for the two-quantum vortex.
We note that the condition HN

c1 = Hc defines critical pa-
rameter κ∗1,N . At κ < κ∗1,2 the energy of both single- and
two-quantum vortices are higher than that of the Meiss-
ner state and thus we arrive at the subdomain where
an isolated vortex with N = 3 becomes most favorable
for H > HN=3

c1 . When κ decreases further towards κ∗s,
the system sequentially passes through subdomains with
larger and large N . Finally, at κ < κ∗s isolated vor-
tices become unstable for all N and the representation
of the mixed state as a set of weakly interacting vortices
is not applicable anymore. We note, however, that at
κ∗2 < κ < κ∗s a spatially nonuniform mixed state with a
non-zero penetrating magnetic flux is still possible, fol-
lowing that Hc < Hc2.

Obtained results are illustrated by a sketch in Fig. 4,
where three sectors are distinguished: the upper one,
where a single Abrikosov vortex represents the only sta-
ble variant of an isolated vortex solution, the lower one,
where isolated vortices are not possible, and the middle
sector, divided into infinitely many parts, where multi-
quantum vortices can exist.

It should be noted that some properties of the mixed
state remain degenerate even at T < Tc, at least in this
order of the τ -expansion. For example, critical parameter
κ∗li,N that corresponds to changing the sign of the long-
range interaction between two N -quantum vortices has
the same value κ∗li for all N (see also the last paper in
Ref. 11).

We stress again that this analysis of the subdomain
structure based on the consideration of isolated multi-
quantum vortices is only an illustration. It is, however,
sufficient to highlight inadequacy of the assumption that
the physics of the magnetic inter-type response is reduced
to the single property of the long-range attraction be-
tween single-quantum (Abrikosov) vortices.

III. MULTI-BAND SUPERCONDUCTORS

A. GL theory of multi-band materials

Before extending the consideration to multi-band su-
perconductors, we have to make sure that the Bogomol-
nyi point does exist here. In fact, its existence follows
from the microscopic derivation of the GL theory for
multi-band materials19,20,30,31 for the most common case
when they do not possess some additional symmetry be-
tween contributing bands. Then superconductivity is de-
scribed by a single-component order parameter Ψ, that
determines all the band-gap functions in the lowest order
in τ as

−→
∆(0) = Ψ

−→
ξ , (32)

where
−→
∆(0) = (∆

(0)
1 , . . . ,∆

(0)
M )T is the vector of the band-

gap components, M is the total number of bands, and
−→
ξ

is an eigenvector of a matrix that controls the equation
for Tc (referred to as the linearized gap equation).20,30

If a system possesses additional symmetry between the
carrier bands, several such eigenvectors may exist, which
is defined by the dimensionality of the irreducible rep-
resentation of the symmetry group.22,23 Thus, what de-
termines the number of the order-parameter components
is the dimensionality of the representation and not the
number of the contributing bands. When no such addi-
tional symmetry exists, a solution of the linearized gap
equation is not degenerate and the system has a single
order parameter associated with the single eigenvector of
the matrix in the linearized gap equation.30

This order parameter satisfies the standard single-
component GL equation

aΨ + b |Ψ|2Ψ−KD2Ψ = 0, (33)

however, its coefficients incorporate contributions of all
bands

a =
∑
n

ξ2nan, b =
∑
n

ξ4nbn, K =
∑
n

ξ2nKn, (34)

where an, bn and Kn are obtained for band n. If con-
sidering the clean limit and spherical Fermi surfaces for
each band, these coefficients are given by Eq. (10) with
the band density of states Nn(0) and band Fermi velocity
vFn.

The fact that the GL theory is single-component means
that all conclusions of this theory for single-band super-
conductors hold in the multi-band case as well. In par-
ticular, multi-band superconductors follow the standard
picture of two superconductivity types separated by the
infinitely degenerate Bogomolnyi point. One can also ex-
pect that at T < Tc the degeneracy is lifted, giving rise to
the inter-type superconductivity in a finite transitional
interval (domain) of κ’s. However, in order to confirm
this, one needs to go beyond the standard GL theory,
now with the account of the multi-band structure.

B. Gibbs free energy difference

As in the single-band case, we start with Eqs. (1) and
(2). However, now the Gibbs free-energy difference G
must be calculated using the EGL formalism for multi-
band superconductors.20 Although the EGL approach
applies, in principle, to an arbitrary number of bands,
here we restrict our analysis to two-band systems, where
most of pertinent quantities can be obtained in the ex-
plicit analytical form.

As before, G is calculated by means of the perturba-
tion expansion over τ , which is achieved by expanding
all relevant physical quantities. In particular, the vector
gap function writes as

−→
∆ = τ1/2

(−→
∆(0) + τ

−→
∆(1) + τ2

−→
∆(2) . . .

)
, (35)
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where
−→
∆(0) is given by Eq. (32), while

−→
∆(1) and

−→
∆(2) are

corrections in the next two orders in τ . The τ -expansion
for the magnetic field is given by Eq. (3). The free-energy
density is obtained as20

f = τ2
(
τ−1f(−1) + f(0) + τ f(1) + . . .

)
, (36)

where the lowest-order contribution reads

f(−1) =
〈−→

∆(0)
∣∣Ľ∣∣−→∆(0)

〉
, (37)

with 〈· · · 〉 denoting the scalar product of vectors in the
band space. Here Ľ for a two-band system is given by

Ľ =
1

G

(
g22 −GN1(0)A −g12

−g12 g11 −GN2(0)A

)
, (38)

where gnm = gmn are the coupling constants (assumed
real), G = g11g22 − g212, and

A = ln

(
2eγ~ωc
πTc

)
, (39)

with ωc the cut-off frequency. At the stationary point the
contribution f(−1) disappear due to the (linearized gap)
equation

Ľ
−→
∆(0) = 0, (40)

which determines Tc and the eigenvector
−→
ξ . The next-

order contribution to the free energy density is the GL
functional

f(0) =
B2

8π
+
(〈−→

∆(0)
∣∣Ľ∣∣−→∆(1)

〉
+ c.c.

)
+
∑
n

[
an|∆(0)

n |2 +
bn
2
|∆(0)

n |4 +Kn
∣∣D∆(0)

n

∣∣2].
(41)

The leading correction to the GL functional is obtained
in the form

f(1) =

(
B · b

)
4π

+
(〈−→

∆(0)
∣∣Ľ∣∣−→∆(2)

〉
+ c.c.

)
+
〈−→
∆(1)

∣∣Ľ∣∣−→∆(1)
〉

+
∑
n

f(1)n . (42)

As in the single-band case it is convenient to split the

band-dependent quantities f
(1)
n into two parts

f(1)n = f
(1)
n,1 + f

(1)
n,2, (43)

where f
(1)
n,1 contains only the lowest order contributions

to the band gap and the magnetic field

f
(1)
n,1 =

an
2
|∆(0)

n |2 + 2Kn
∣∣D∆(0)

n

∣∣2 +
bn
36

e2~2

m2c2
B2
∣∣∆(0)

n

∣∣2
+ bn|∆(0)

n |4 −Qn
{∣∣D2∆(0)

n

∣∣2 +
1

3

(
rotB · in

)
+

4e2

~2c2
B2
∣∣∆(0)

n

∣∣2}− Ln
2

{
8 |∆(0)

n |2
∣∣D∆(0)

n

∣∣2
+
[
∆(0)2
n (D∗∆(0)∗

n )2 + c.c.
]}
− cn

3

∣∣∆(0)
n

∣∣6, (44)

while f
(1)
n,2 includes also the leading corrections to the

band gap and the field

f
(1)
n,2 =

(
an + bn

∣∣∆(0)
n

∣∣2)(∆(0)∗
n ∆(1)

n + c.c.
)

+Kn
[(
D∆(0)

n ·D
∗∆(1)∗

n + c.c.
)
−
(
a · in

)]
. (45)

Here we use the notation

in = i
2e

~ c

(
∆(0)
n D∗∆(0)∗

n −∆(0)∗
n D∆(0)

n

)
, (46)

and coefficients Qn, Ln and cn are calculated for each
band separately, similarly to an, bn and Kn discussed
above.

The obtained free energy functional contains addi-
tional terms that are not present in the single-band
case. One extra contribution is found in Eq. (41) mixing
−→
∆(0) with

−→
∆(1). Equation (42) includes two more such

terms: one mixes
−→
∆(0) with

−→
∆(2) and the other reads

〈
−→
∆(1)|Ľ|

−→
∆(1)〉. However, both mixing contributions are

zero by virtue of Eq. (40). The last of the extra terms

does not disappear, 〈
−→
∆(1)|Ľ|

−→
∆(1)〉 6= 0. Nevertheless, it

can be calculated explicitly without solving equations for−→
∆(1). In order to do this we write the leading correction
to the gap as the expansion

−→
∆(1) = ψ

−→
ξ + φ−→η , (47)

where −→η and
−→
ξ must be linearly independent. Using

Eqs. (32), (40), and (47), one finds

〈
−→
∆(1)|Ľ|

−→
∆(1)〉 = |φ|2 〈−→η |Ľ|−→η 〉. (48)

where φ is related to Ψ by a simple algebraic expression20

φ = − G

4g12

(
αΨ + βΨ

∣∣Ψ∣∣2 + ΓD2Ψ
)
, (49)

with

α =
∑
n

ξnηnan, β =
∑
n

ξ3nηnbn, Γ =
∑
n

ξnηnKn. (50)

It remains to note that a sum of (B ·b)/(4π) and
∑
n f

(1)
n,2

disappears as previously in the single-band case. Thus,
in order to calculate G in the two lowest non-vanishing
orders, we need only to know solutions Ψ and B (A) to
the GL equation (33).

For two contributing bands the eigenvalue problem for
the matrix Ľ is solved analytically and the eigenvector

can be chosen as
−→
ξ T = (S−1/2, S1/2), where

S =
1

2λ12

[
λ22 −

λ11
η

+

√(
λ22 −

λ11
η

)2
+ 4

λ212
η

]
, (51)

with the dimensionless coupling constant λnm =
gnmN(0), N(0) =

∑
iNi(0), and η = N2(0)/N1(0).

The other vector in the expansion (47) is chosen as



10

−→η T = (S−1/2,−S1/2). Then the coefficients that ap-
pear in the final expression for the free energy density
are given by

a =
a1
S

+ Sa2, b =
b1
S2

+ S2b2, K =
K1

S
+ SK2,

α =
a1
S
− Sa2, β =

b1
S2
− S2b2, Γ =

K1

S
− SK2,

c =
c1
S3

+ S3c2, Q =
Q1

S
+ SQ2, L =

L1

S2
+ S2L2,

c̄ =
ca

3b2
, Q̄ =

Qa
K2

, L̄ =
La
bK

, Ḡ =
Ga

4g12
,

ᾱ =
α

a
− Γ

K
, β̄ =

β

b
− Γ

K
. (52)

One more quantity needed to calculate the Gibbs free-
energy difference in Eqs. (1) and (2) is the thermody-
namic critical field Hc. Its expression differs from the
single-band case. While its τ -expansion is still given by

Eq. (13), with H
(0)
c defined by Eq. (14) and constants a

and b taken from Eq. (52), its leading correction H
(1)
c has

additional contributions, i.e.,

H(1)
c = H(0)

c

[
− 1

2
− c̄− Ḡ(ᾱ− β̄)2

]
. (53)

In the following we also employ the dimensionless quanti-
ties introduced by Eqs. (15) and (16), with the difference
that the coefficients are now defined by Eq. (52).

The τ -expansion of the Gibbs free energy difference is
defined by Eq. (17), with g(0) given by Eq. (18) (with
multi-band coefficients) and with the leading correction

g(1) =

(
B

κ
√

2
− 1

)[
1

2
+ c̄+ Ḡ

(
ᾱ− β̄

)2]
+

1

κ2
|DΨ|2

− 1

2
|Ψ|2 + |Ψ|4 + c̄ |Ψ|6 + Ḡ|Ψ|2

(
ᾱ− β̄|Ψ|2

)2
+
Q̄

4κ4

{∣∣D2Ψ
∣∣2 +

1

3
(rotB)2 + B2|Ψ|2

}
+
L̄

4κ2

{
8 |Ψ|2

∣∣DΨ
∣∣2 +

[
Ψ2(D∗Ψ∗)2 + c.c.

]}
.

(54)

As in the single-band case we employ the expansion with
respect to δκ = κ−κ0 and finally, in the lowest and next
orders in τ , obtain

G =τ2
{
−
√

2Iδκ+ τ
[(

1− c̄+ 2Q̄+ Ḡ β̄

×
(
2ᾱ− β̄

))
I +

(
2L̄ − c̄− 5

3
Q̄ − Ḡβ̄2

)
J
]}
, (55)

where I and J are as previously given by Eq. (25). One
notes that in the dimensionless units solutions of the GL
theory for both single- and two-band systems are the
same, which is a significant advantage of the EGL for-
malism.

Equation (55) differs from its single-band counterpart
(24) in two respects. First, the coefficients c̄, L̄ and Q̄

comprise contributions of two bands and so are different
from c̃, L̃ and Q̃. Second, there are extra terms ∝ Ḡ
which are related to the difference between the spatial
profiles of the band gap functions ∆n

20 and, thus, to the
interplay of different band characteristic lengths.

C. Critical parameters

Using G of Eq. (55), we resolve Eq. (2) and obtain
the general expression for critical parameter κ∗ in the
two-band case as

κ∗ =κ0

{
1 + τ

[
1− c̄+ 2Q̄+ Ḡβ̄

(
2ᾱ− β̄

)
+
J
I

(
2L̄ − c̄− 5

3
Q̄ − Ḡβ̄2

)]}
. (56)

Similarly to Eq. (26) this expression is generally related
to any non-uniform flux configuration and thus defines
the inter-type domain with all its subdomains in the two-
band case. However, the parameters entering Eq. (56) are
not reduced to universal numbers any more but read as

c̄ =c̃

(
1 + ηS6

)(
1 + ηS2

)(
1 + ηS4

)2 ,

Q̄ =Q̃

(
1 + ηγ4S2

)(
1 + ηS2

)(
1 + ηγ2S2

)2 ,

L̄ =L̃
(
1 + ηγ2S4

)(
1 + ηS2

)(
1 + ηγ2S2

)(
1 + ηS4

) ,
ᾱ =

1− ηS2

1 + ηS2
− 1− ηγ2S2

1 + ηγ2S2
,

β̄ =
1− ηS4

1 + ηS4
− 1− ηγ2S2

1 + ηγ2S2
,

Ḡ =− λ11λ22 − λ212
4λ12 S

1 + ηS2

1 + η
, (57)

where γ = vF,2/vF,1 is the ratio of the band Fermi veloci-

ties, and c̃, Q̃ and L̃ are given by Eq. (20). One sees that
κ∗ in Eq. (56) depends on five microscopic parameters:
three dimensionless coupling constants λ11, λ22 and λ12,
the ratio of the band DOS’s η and the ratio of the band
Fermi velocities γ.

D. Transitional domain

The transitional domain is defined in the multi-band
case by the same criteria of the type interchange. In par-
ticular, we consider the critical parameters κ∗li, κ

∗
1, κ∗s, κ

∗
2

as well as κ∗1,N related to multi-quantum vortices. The
corresponding solutions of the dimensionless GL equa-
tions are adopted from the single-band theory.

To calculate coefficients (57) we use material param-
eters of several prototype systems: MgB2,32 OsB2,33
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hhh λ11 λ22 λ12 η

MgB2
32 2.41 0.78 0.37 1.37

OsB2
33 0.39 0.29 0.0084 1.22

FeSe0.94
34 0.48 0.39 0.005 ≈ 1

LiFeAs35 0.63 0.64 0.008 ≈ 1

TABLE II. Microscopic material parameters used in our cal-
culations.

FeSe0.94,34 and LiFeAs.35 These parameters are summa-
rized in Table II. Due to lack of experimental data on
the band Fermi velocities the ratio γ = vF,2/vF,1 is as-
sumed to be a free variable. Calculated tangents dκ∗/dτ
of parameters κ∗li, κ

∗
1, κ∗s, and κ∗2 are shown in Fig. 5 as

functions of γ. The color scheme in Fig. 5 remains the
same as in the sketch of Fig. 4.

One notes that inequality κ∗2 < κ∗s < κ∗1 < κ∗li, that
specifies the internal structure of the inter-type domain,
holds for all considered parameters, so that the curves do
not intersect. In particular, the outer boundaries of the
domain are given by κ∗2 and κ∗li. Thus, for the chosen pa-
rameters the inter-type regimes in single- and two-band
superconductors are qualitatively similar and therefore
many conclusions drawn from the analysis of the single-
band case apply also for two-band (multi-band) super-
conductors.

However, Fig. 5 demonstrates a systematic enlarge-
ment of the inter-type region in two-band systems, and
this enlargement becomes most notable when the dis-
crepancy between band Fermi velocities increases. Outer
boundaries κ∗2 and κ∗li shift in the opposite directions, so
that the difference κ∗li − κ∗2 grows when γ increases. In
panel (d) this difference is also increased in the opposite
limit γ � 1. The internal subdomains widens accord-
ingly.

The enlargement magnitude can be extraordinary
large. For example, it is more than an order of magni-
tude at γ = 6 for parameters of MgB2 (a), OsB2 (b), and
FeSe0.94 (c). To have an idea about how large can be γ,
we remark that according to first-priciple calculations,36

the band Fermi velocities in the c-axis direction for
MgB2 are estimated as 7 × 104m/s (band 1, σ) and
6× 105m/s (band 2, π), which gives γ ≈ 9. The univer-
sality of the enlargement and its magnitude make it pos-
sible to expect that many multi-band superconductors
can enter the inter-type regime when the temperature is
lowered.

One can further demonstrate that the observed en-
largement of the inter-type domain is generally related to
the competition of different band length-scales. Consid-
ering only contributions proportional to Ḡ in Eq. (56) [as
already mentioned after Eq. (55), such terms are respon-
sible for different spatial profiles of band condensates],
and taking into account that α ∼ β, the upper boundary
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FIG. 5. (Color online) The derivative κ∗′ = dκ∗/dτ as a
function of γ = vF,2/vF,1 for κ∗

li, κ
∗
1, κ∗

s , and κ∗
2. The results

are calculated from Eq. (56) for the material parameters of
MgB2 (a), OsB2 (b), FeSe0.94 (c) and LiFeAs (d).

of the transitional domain is estimated as

dκ∗li
dτ
∼ −κ0Ḡβ̄2 > 0, (58)

where we again use J /I = 2 for the vortex-vortex long-
range interaction asymptote. This expression is positive
because Ḡ < 0 for the parameters in Tab. II. For the
lower boundary one uses J /I = 0 and obtains

dκ∗2
dτ
∼ κ0Ḡβ̄2 < 0. (59)

This demonstrates that the boundaries of the transitional
domain are shifted by an equal value in the opposite
directions, which is in a very good agreement with the
complete results shown in Fig. 5. Thus, the competition
of different band length-scales does not produce a new
multi-band type of superconductivity (contrary to the
controversial idea of Refs. 1 and 18, see the Introduction)
but enhances the inter-type superconducting behavior.

It was mentioned earlier that the inter-type regime in
the single-band case is related to non-local interactions
that can be described only beyond the GL theory.17 This
non-locality is inherent to the BCS gap equation, which
can be demonstrated, for example, by expanding it with
respect to the gap parameter. This expansion, which
is an intermediate step in deriving the EGL formalism,
generates a series of contributions in the form of mul-
tiple spatial integrals.20 The GL theory minimizes this
non-locality by keeping only the lowest order derivatives
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when applying the gradient expansion to the integrals
(this is why the GL theory is often referred to as a weakly-
nonlocal approach). In this approximation the transi-
tional domain shrinks to κ = κ0. The EGL approach
incorporates higher-order spatial gradients, which results
in a finite interval of κ’s (at T < Tc) with the inter-type
superconducting magnetic response.

The appearance of multiple bands further enhances
non-local effects. Indeed, on the mean-field level multi-
band superconductors are described by a set of coupled
equations for each band-gap function. The fact that the
non-locality is enhanced by the inter-band coupling can
be easily demonstrated with a simple example of two
coupled linear differential equations. Resolving one of
them and substituting the result into the other, one ob-
tains additional non-local interactions, often referred to
as “memory” effects in the context of dynamical equa-
tions. Thus, we again conclude that the enlargement of
the transitional domain is a generic property of multi-
band superconductors independent of fine details of the-
oretical models. One can also expect that the effect in-
creases with the number of contributing bands.

IV. CONCLUSIONS

This work investigated how the multi-band structure
affects the mixed state and the interchange between su-
perconductivity types. The analysis was done within the
EGL formalism that obtains corrections to the GL theory
as the perturbation expansion over the proximity to the
transitional temperature. An advantage of this approach
is that it is applicable to systems with an arbitrary num-
ber of bands, which allows one to consider single- and
multi-band superconductivity from a single perspective,
and that it gives universal analytical expressions for the
critical parameters defining the transitional domain.

An important conclusion of the EGL-based analysis is
that in the absence of additional symmetry multi-band
systems are described by a single-component order pa-
rameter. It then follows that superconductivity classifi-
cation in multi-band systems is qualitatively similar to
the single-band case, with types I and II separated by a
transitional domain with the inter-type superconducting
magnetic response.

Our discussion started with the single-band case for
which the concept of the inter-type/transitional domain
was introduced and studied by calculating the criti-
cal parameters at which the corresponding inhomoge-
neous flux configuration or its particular property ap-
pears/disappears. It was demonstrated that the inter-
type domain has a complex structure with different pos-
sible variants of the mixed state. This structure appears
as a result of the removal of the infinite degeneracy of
the Bogomolnyi point when lowering temperature.

As a particular example, we calculated the critical pa-
rameters that correspond to an isolated vortex solution
with an arbitrary number of the flux quanta. A com-

plete analysis of any other plausible flux configuration
can also be done within the EGL formalism but this
general consideration is beyond the scope of the current
work. However, the obtained hierarchy of the critical
parameters demonstrates that the long-range attraction
between Abrikosov vortices does not suffice to explain
the inter-type physics.

We generalized our consideration to the multi-band
case and investigated a two-band prototype allowing for
explicit analytical results. Following the structure of the
EGL formalism, one concludes that the qualitative re-
sults of this work apply to systems with an arbitrary
number of bands. A more elaborate analysis of the gen-
eral multi-band case will be presented elsewhere.

A central result of this work is that the inter-type
domain extends in multi-band superconductors. The
enlargement is a generic phenomenon and independent
of the details of the model for band states. Its ori-
gin is the non-locality of interactions in the aggregate
condensate due to the appearance of multiple bands.
The enlargement becomes huge when the band micro-
scopic parameters, e.g., the band Fermi velocities, are
significantly different. Our results make it possible to
expect that many of multi-band superconductors, espe-
cially with large disparity between bands, are in fact in
the transitional domain. One of the candidates is MgB2

which can enter the inter-type regime at lowered temper-
atures, which can be an explanation of its non-standard
vortex configurations.1 However, a more detailed anal-
ysis accounting for anisotropy of its bands is certainly
required.

Finally, we note that the size and structure of the
inter-type domain in the (κ, T )-plane may be rather sen-
sitive to many other physical aspects, such as disorder,
band dimensionality, as well as the presence of shallow
bands, where contributing electrons have almost zero
velocities.37
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Appendix A: Bogomolnyi equations and topological
degeneracy of the GL theory

Here it is shown that at κ = κ0 the GL equations are
reduced to a couple of first-order equations referred to as
the Bogomolnyi self-duality equations5,6 and also known
in the literature as the Sarma solution.3 The derivation of
the Bogomolnyi equations follows the standard procedure
(see, e.g., the remark about the Sarma solution in Ref. 3)
and is presented here for the convenience of the reader.
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Our starting point is the standard GL equations

aΨ + b |Ψ|2Ψ−KD2Ψ = 0,
1

4π
rotB = Ki, (A1)

where i is given by Eq. (9) [for both the single- and two-
band cases]. A magnetic field is set along the z axis,
B = (0, 0,B), so that the system is homogeneous along
this axis and the order parameter is independent of z.
We introduce the new gauge invariant gradients

D± = Dx ± iDy, (A2)

that satisfy the identity

D2 = D+D− +
2 e

~ c
B. (A3)

Let us assume that a solution to the GL formalism sat-
isfies the first-order equation

D−Ψ = 0, (A4)

i.e., the first of the two Bogomolnyi equations. Now we
proceed to establish the condition under which this as-
sumption is correct. One immediately notices that when
inserting Eq. (A3) in Eq. (A1), the latter simplifies to

|Ψ|2 = −1

b

(
a− 2 eK

~ c
B
)
, (A5)

which is known as the second Bogomolnyi equation. As
seen, Eqs. (A4) and (A5) dictate that the first equation
in the GL set (A1) is satisfied.

Now we turn to the second GL equation, that rep-
resents the Ampére law, and check its compatibility
with Eqs. (A4) and (A5). Taking into account that
rotB = (∂yB,−∂xB, 0), one can find from the second
GL equation that

1

4π

(
∂y + i∂x

)
B = i

2eK
~ c

ΨD∗+Ψ∗. (A6)

The left-hand-side of this equation can be also calculated
by using Eq. (A5). This yields

1

4π

(
∂y + i∂x

)
B =

~cb
8πeK

[
Ψ
(
∂y + i∂x

)
Ψ∗

+ Ψ∗
(
∂y + i∂x

)
Ψ
]
. (A7)

Substituting the explicit form of the first Bogomolnyi
equation

(
∂y + i∂x

)
Ψ =

2 e

~c
(
iAy − Ax

)
Ψ (A8)

into Eq. (A7), one obtains the latter in the form

1

4π

(
∂y + i∂x

)
B = i

~ cb

8πeK
ΨD∗+Ψ∗. (A9)

Comparing Eq. (A9) with the second GL equation in
Eq. (A6), one finds the following consistency condition:

2eK
~ c

=
~ cb

8πeK
. (A10)

Now, using the definition of the GL parameter κ which
is written as

κ2 =
λ2L
ξ2

=
~2c2b

32e2πK2
, (A11)

we find from Eq. (A10)

κ = κ0 ≡
1√
2
. (A12)

Thus, solutions to the GL formalism Ψ and A(B) obey
the two Bogomolnyi self-duality equations at κ = κ0 .

When utilizing the dimensionless units of Eq. (15), the
Bogomolnyi equations are reduced to (we omit tildes, as
previously) (

∂y + i∂x
)
Ψ =

(
Ax − iAy

)
Ψ, (A13)

B = 1− |Ψ|2. (A14)

Substituting these relations into Eq. (18), for the GL
contribution to the Gibbs free energy one obtains (at
κ = κ0)

G(0) =

∫
g(0)dr = 0, (A15)

which holds for an arbitrary solution to the GL formal-
ism, irrespective of its topological configuration.

Appendix B: Superconducting-normal interface and
isolated single- and multi-quantum vortices

Equations (A13) and (A14) can be used to find a so-
lution to the GL equations for any desired topological
configuration of the mixed state at κ = κ0. Examples of
this can be found in earlier works, see, e.g., 15. Since,
however, most of them provided only sketchy details, here
we outline the main solving steps for the convenience of
the reader. Here we consider solutions to the Bogomol-
nyi equations for the normal-superconducting interface
(flat domain wall) and also for isolated single- and multi-
quantum vortices.

First we outline how to obtain a solution for a flat
interface (domain wall) between the superconducting and
normal state that arises in the problem of the surface
energy. The domain wall is chosen to be parallel to the
(y, z)-plane, so that all observables vary only along the
x-axis. We choose the vector potential as A = (0,A, 0)
and then recast the first Bogomolnyi equation (A13) in
the form

Ψ′ = −AΨ, (B1)
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where prime denotes the derivative with respect to x.
The second Bogomolnyi equation (A14) now reads

A′ = 1−Ψ2, (B2)

where Ψ is real because the GL equations do not involve
any imaginary coefficients in the chosen gauge. Differen-
tiating this equation and using Eq. (B1), one obtains the
equation

A′′ = 2A(1−A′). (B3)

It differs from the equation for the vector potential for
the superconducting-normal interface problem in Refs. 3
and 4 only by the presence of factor 2 (due to different
dimensionless units in our work). This equation must be
solved with the boundary conditions that follows from
that the system is in the superconducting states to, say,
the left of the wall and, respectively, normal to its right.
The boundary conditions read

A(x→ −∞) = 0, A′(x→ +∞) = 1, (B4)

so that the magnetic field approaches zero in the su-
perconducting domain while goes to the thermodynamic
critical field B = 1 in the normal domain.

Isolated vortex solutions are naturally considered in
the cylindrical coordinates (ρ, θ, z). The solution for a
vortex with the single magnetic flux quantum is sought
in the form

Ψ = Φ(ρ) exp(−iθ) = (x− iy)
Φ(ρ)

ρ
, (B5)

where Φ is a real function. The vector potential is chosen
so that it has only single θ-component, A = (0,A(ρ), 0).
Returning back to the Cartesian coordinates one obtains
A = A(ρ)

(
− sin θ, cos θ, 0

)
. The magnetic field has only

the z-component which is given by

B = A′ + A
ρ
, (B6)

where prime denotes the derivative with respect to ρ.
Using Eqs. (B5) and (B6), we recast the first Bogomolnyi
equation (A13) in the form

Φ′ − Φ

ρ
= −AΦ. (B7)

Utilizing this expression together with Eq. (B6) makes it
possible to express B only in terms of Φ. Then, employing
the second Bogomolnyi equation (A14), one obtains

−Φ′′ − Φ′

ρ
+

Φ′2

Φ
− Φ + Φ3 = 0. (B8)

This equation must be solved together with the boundary
conditions

Φ′(0) = C, Φ(∞) = 1, (B9)
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FIG. 6. (Color online) The radial part ΦN (ρ) of the solution
for an isolated multi-quantum (giant) vortex with different N .

where constant C should be chosen in such a way that
to satisfy the second (asymptotic) condition at ρ → ∞.
The boundary condition for the derivative of Φ ensures
that the solution has an asymptote Φ(ρ) ∝ ρ in the limit
ρ→ 0, as it should be for a single-quantum vortex.

For an isolated vortex that carries N elementary mag-
netic fluxes a solution is of the form

ΨN = ΦN (ρ) exp(−iNθ) = (x− iy)N
ΦN (ρ)

ρN
. (B10)

The vector potential chosen as before, to have only a
single θ-component. The first Bogomolnyi equations now
reads as

Φ′N −N
ΦN
ρ

= −AΦN . (B11)

Utilizing this relation together with Eqs. (A14) and (B6),
we find for ΦN the same equation as previously for Φ.
However, the boundary conditions are now different and
depend on the number of flux quanta, i.e.,

∂Nρ ΦN (0) = C, ΦN (∞) = 1. (B12)

where the first of these conditions ensures the asymptote
Φ(ρ) ∝ ρN for ρ → 0. This is rather inconvenient for
numerical calculations because a solution is very sensi-
tive to C. One can, however, rewrite this equation by
introducing the new quantity

φN = Φ
1/N
N . (B13)

Substituting it into Eq. (B8), we obtain

−φ′′N −
φ′N
ρ

+
φ′2N
φN
− φN

N
+
φ2N+1
N

N
= 0. (B14)

Now the boundary conditions are the same as previously
for Φ, i.e., φ′N (0) = C and φN (∞) = 1. In Fig. 6 one
can see how the modulus of Ψ varies with the radial co-
ordinate for several selected N = 1 . . . 40. For the reader
convenience, the data are plotted versus ρ/λL, where ρ
is the unscaled radial coordinate here.
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Appendix C: Multi-vortex configurations:
long-range interaction of two vortices

Here we consider multi-vortex configurations. In par-
ticular, we rewrite the Bogomolnyi equations so that to
significantly simplify analysis of a solution for an arbi-
trary spatial configuration of vortices (both single- and
multi-quantum). To this aim we recall that the vector
potential is generally given by A = (Ax,Ay, 0) when
the magnetic field has only its z-component, i.e., B =
(0, 0,B). Adopting the Coulomb gauge, ∂xAx + ∂yAy =
0, one can introduce the scalar potential ϕ so that

Ax = −∂yϕ, Ay = ∂xϕ. (C1)

In this case for the magnetic field we have

B = (∂2x + ∂2y)ϕ. (C2)

Then, a solution to the first Bogomolnyi equation (A4)
can be sought in the form

Ψ = e−ϕ Φ. (C3)

Substituting this ansatz into Eq. (A4), we obtain

(∂x + i∂y)Φ = 0. (C4)

This is the standard condition that Φ is an analytic func-
tion of the complex variable Z = x + iy. The same is
expressed as ∂Z∗Φ = 0, i.e., Φ can be an arbitrary func-
tion of Z but does not involve Z∗. The fact that Φ is an
arbitrary analytic function of Z is a consequence of the
infinite topological degeneracy of the Bogomolnyi point
in the GL formalism at κ = κ0.

Scalar potential ϕ obeys the equation that is obtained
by inserting Eqs. (C2) and (C3) into the second Bogo-
molnyi equation (A14), i.e.,

(∂2x + ∂2y)ϕ = 1−
∣∣Φ∣∣2e−2ϕ. (C5)

The boundary conditions for this equation are derived
from those for the magnetic field via Eq. (C2).
Φ can easily be chosen to represent a mixed state with

an arbitrary vortex spatial configuration. Indeed, the
positions of vortices are defined by the zeros of Φ that
fully define any analytic properties of a complex function.
For example, a single vortex positioned at a is obviously
described by Φ = Z − a, where a = ax + iay. Two
vortices located at a1 and a2 correspond to Φ = (Z −
a1)(Z − a2), with ai = ai,x + iai,y. Similarly one can
construct Φ that corresponds to any spatial configuration
of multiple single-quantum vortices at positions ai’s , i.e.,
Φ =

∏
i(Z − ai), see Ref. 38. In turn, an isolated N -

quantum vortex located at a yields Φ = (Z − a)N , etc.
A solution to Eq. (C5) can be obtained using standard

numerical methods. However, one can follow a different
strategy and seek a solution for a multi-vortex configu-
ration in the form

Ψ = e−δϕ
∏
i

Ψi, (C6)

where Ψi represents the solution for an isolated Ni-
quantum vortex located at ai. As already mentioned
in the previous paragraph, Ψi is given by

Ψi = (Z − ai)Nie−ϕi , (C7)

where ϕi satisfies

(∂2x + ∂2y)ϕi = 1− |Ψi|2, (C8)

so that

ϕ = δϕ+
∑
i

ϕi. (C9)

The equation for δϕ is obtained by substituting the
ansatz of Eq. (C6) into Eq. (C5), which yields

(∂2x + ∂2y)δϕ =
∑
i

(
|Ψi|2 − 1)

+ 1−
∏
i

∣∣Ψi

∣∣2e−2δϕ. (C10)

Now, Eqs. (C10) and (B8) can be used to check proper-
ties of the multi-vortex configuration at long separations
between vortices. From Eq. (B8) one can find that at
large distances from the vortex core

|Ψ|2 ≈ 1−D e
−
√
2ρ

√
ρ
, (C11)

where D is some constant. Substituting this into
Eq. (C10) one can see that δϕ is exponentially small in
any region sufficiently remote from the cores of vortices
present in a given multi-vortex configuration (it holds for
both single- and multi-quantum vortices). This makes it
possible to write the ansatz given by Eq. (C6) at a point
remote from any vortex core as the additive law for the
magnetic field15

B ≈
∑
i

Bi, (C12)

where B = 1−|Ψ|2 is the total magnetic field of the multi-
vortex configuration and Bi = 1 − |Ψi|2 is the magnetic
field created by the i-th vortex.

We further utilize the additive approximation of
Eq. (C12) to investigate the long-range interaction be-
tween two vortices and calculate the corresponding inte-
grals I and J , see Eq. (25). Based on Eq. (C12), the
integrand of I in Eq. (25) writes as

|Ψ|2
(
1− |Ψ|2

)
≈|Ψ1|2

(
1− |Ψ1|2

)
+ |Ψ2|2

(
1− |Ψ2|2

)
− 2B1B2. (C13)

As we are interested in the interaction between two vor-
tices, we now select the contribution that depends on the
distance between the vortices, i.e., the last term in the
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right-hand-side of the above expression. So, I is given
by

I ≈ −2P, P =

∫
B1B2dr. (C14)

When rearranging the integrand of J with Eq. (C12),

one obtains

|Ψ|4
(
1− |Ψ|2

)
≈|Ψ1|4

(
1− |Ψ1|2

)
+ |Ψ2|4

(
1− |Ψ2|2

)
− 4B1B2. (C15)

Again keeping the contribution dependent on the dis-
tance between vortices, we find

J ≈ −4P. (C16)

Thus, we arrive at the general result J /I = 2 for the
long-range interaction of arbitrary vortices. It means
that the critical GL parameter κ∗li controls the onset of
the long-range attractive interaction for any pair of vor-
tices, including multi-quantum.
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