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We use a real-space implementation of pseudopotentials within the density-functional theory to
investigate the structural and magnetic properties of cobalt clusters with up to 365 atoms. We
find from structural optimization that hexagonal close-packed (hcp) and icosahedral clusters are
lower in energy than body-centered cubic (bcc) and face-centered cubic (fcc) ones. We find the
calculated magnetic moments generally decrease as a function of increasing cluster size. For clusters
of several hundred atoms the bulk limit becomes apparent. However, the decrease is not monotonic.
It depends on the details of the interior structure of the cluster and the corresponding surface
geometry. By analyzing the detailed evolution of the local magnetic moment, we find the spin
moment is bulk-like in the cluster interior and increases in the vicinity of the surface and can be
correlated with coordination. The calculated behavior accounts for the observed variations in the
measured moments.

PACS numbers: 75.50.-y, 75.75.-c, 36.40.Cg, 63.22.Kn

I. INTRODUCTION

Magnetic ordering in low-dimensional systems has
been the subject of study since the mid 50’s1,2, where
superparamagnetic behavior was first described and an-
alyzed. With the subsequent development of synthesis
techniques for nanomaterials in the latter half of the
twentieth century, it has become a field of intense re-
search, particularly focused on magnetic transition met-
als such as cobalt, iron, and nickel, the most notable
elemental ferromagnets.3–5 A good understanding of the
magnetism in nano-structured metal clusters is not only
of great importance in basic physics, but also of practi-
cal importance for numerous applications data storage,
spin transport, or catalysis, to cite a few (see Ref. 6 and
references within).

Microscopically, the magnetic moment of a nanocluster
has two main contributions: the spin moment, a major
contribution, which arises from imbalance between spin-
up and spin-down electrons, and the orbital moment, a
minor contribution, which originates from the spin-orbit
interaction in the absence of an external magnetic field.
In clusters, the presence of a large surface area offers
the possibility of an enhancement of the spin moment.
Thanks to a weaker orbital hybridization near surface,
the 3d states tend to remain localized, forming narrower
bands than those in the bulk. Magnetic moments per
atom for clusters of Fe, Co, and Ni less than a few hun-
dred atoms are notably enhanced when compared with
bulk.7

It has also been well established both theoreti-
cally4,8–16 and experimentally7,17–28 that, when pre-
sented as a function of the cluster size, the magnetic
moment shows a complex non-monotonic decay from the
relatively large atom-like value until converging to the
bulk limit. The local maxima and minima of the mo-
ments occur at different sized clusters, i.e., clusters with

“magic” numbers of atoms. Moreover, not only size, but
also crystal structure, surface geometry, and nucleation
center, appear to be crucial factors determining the mag-
netic behavior of a system as well.
Granted the numerous advances made through these

decades, a complete explanation of the mechanism under
the non-monotonic behavior of the magnetic moment is
still work in progress. Calculations performed so far have
been limited to selected small clusters owing to the in-
tense computational load involved, and the predicted re-
sults often exhibit important discrepancies among them-
selves.8,10,11,14,29–35 Moreover, despite its great relevance,
available experimental techniques remain unable to give a
complete description of these phenomena.15,25,36 Specif-
ically, experimental methods cannot provide us detailed
structural information for a cluster of a given size, nor
confirm whether the cluster is in structural equilibrium.
Here, we investigate the stability of large Co clus-

ters (with up to 365 atoms) in various structural motifs
by performing first-principles electronic-structure calcu-
lations. Such clusters offer a notable challenge from a
computational point of view. The size of the Hamiltonian
matrix is effectively doubled with respect to a non-spin-
polarized calculation. Moreover, the seven d-electrons
per Co atom create highly energetic states, which hin-
ders structural relaxations. We compute magnetic mo-
ments and compare them to measurements, and analyze
the evolution of local magnetic moments from the center
of a cluster to its surface.

II. COMPUTATIONAL METHOD

We performed these calculations using parsec,37–39 a
real-space implementation of pseudopotentials within the
density-functional theory.40,41 parsec solves the Kohn-
Sham equation for the electronic structure in a self-
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consistent manner directly in real space on an orthog-
onal, uniform, three-dimensional grid. One of the key
aspects of parsec is the use of high order finite differ-
ence expansion for the kinetic operator of the Hamilto-
nian. This treatment is allowed by the real-space formal-
ism and simplifies greatly the formulation of the problem
and the convergence of the calculations when compared
with other methods such as finite elements.

Computationally, the main task is to diagonalize the
Hamiltonian matrix which is a highly sparse matrix.
The off-diagonal elements comes from two contributions:
the non-local part of the pseudopotential (localized area
around each atom) and the high order finite difference
expansion terms from the Laplacian (typically 6th to 8th
order is used). In earlier versions of parsec, we em-
ployed a direct diagonalization using public domain iter-
ative eigensolvers like ARPACK42 or TRLanc.43 In par-

sec, we use an alternate algorithm crafted for our real
space problem. Specifically, we use a subspace filtering it-
eration based on expanding the Hamiltonian matrix with
Chebyshev polynomials.44,45 This new algorithm can im-
prove the timing by one order of magnitude with respect
to previous methods.44,45 To initiate the process, we need
only an approximate eigenvalue spectrum to construct
the subspace polynomials.44,45

Real-space methods possess a number of important
features compared to a plane-wave formalism, which
has been traditionally the most widely used approach.46

First, the semi-locality of real-space methods allows for a
simple and yet powerful parallelization scheme: the par-
tition of the simulation cell and the assignment of each
processor to work on a single subdivision. This paral-
lelization is well optimized since communications among
processors occur in the boundaries of each sector. Sec-
ond, periodic boundary conditions, which are a natural
consequence of the use of a basis such as plane waves, are
no longer needed. When an isolated system is considered,
confined boundary conditions are a natural choice. The
wave functions are required to vanish beyond certain dis-
tance from the system, forming a sphere with radius 10
a.u. removed from the outermost atom. We also require
the Hartree potential to match a multipole expansion of
the electrostatic potential at the domain boundary. The
absence of a supercell geometry, as used in plane wave
methods, removes any interactions among periodic repli-
cas. As such, the size of the domain can be notably re-
duced and, although we do not consider charged clusters
in this work, long range Coulomb potentials are easily
handled in real-space methods.38.

We take the exchange-correlation potential from
the generalized gradient approximation (GGA) as
parametrized by Perdew, Burke, and Ernzerhof.47,48 This
approximation works well for moderately correlated sys-
tems such as iron.16. We express the electron-ion interac-
tion using norm-conserving pseudopotentials cast in the
form of Troullier-Martins,49 with a reference configura-
tion [Ar]4s23d74p0 for cobalt. The core radii are given by
rs = 2.18 a.u., rd = 2.18 a.u., and rp = 2.38 a.u. (1 a.u.

= 0.5292 Å). For the real-space grid, only one parameter
is needed to control convergence: the spacing between
adjacent points of the grid. In the present work we use a
grid spacing of 0.29 a.u. For the purposes of comparison
to bulk phases, we can also do real-space computations
for periodic systems just as in the case of plane waves.
In that case, we alter the boundary conditions.

III. RESULTS

A. Geometry

Bulk cobalt crystallizes in a hexagonal close-packed
(hcp) structure under ambient conditions.50,51 Above 700
K, Co undergoes a phase transition to a face-centered cu-
bic (fcc) structure, also ferromagnetic,51,52 whereas under
pressure (105 GPa) this phase is believed to suppress its
magnetic properties.52. Further studies investigating the
phase diagram of bulk Co confirm its structural complex-
ity53 and motivates the investigation of clusters with a
wide set of geometries.
Co in body-centered cubic (bcc) phase has been grown

in the form of thin films on GaAs substrate.54–58 It is be-
lieved that its finite nature and surface effects are respon-
sible for the the successful stabilization of a 357Å-thick
film.56 bcc-Co has also been found to form naturally as
a precipitation in supersaturated Au90Co10.

59 Theoret-
ical calculations on bcc-Co have been scarce,13,60,61 fo-
cusing typically on the metastability of this phase.62 In
clusters, the photoionization experiment with mass spec-
trometry analysis supports the existence of icosahedral
Co clusters26 up to 800 atoms.
Here, we consider four kinds of motifs for atomic clus-

ters: icosahedral, hcp, fcc, and bcc. Although growth of
icosahedral cluster involves an fcc packing in attaching
atoms on surfaces, the cluster does not possess fcc sym-
metry as a whole, and adjacent triangular faces meet
at a slightly distorted angle. Complete filling of the
n-th atomic shell of icosahedral cluster needs 10n2 + 2
atoms, yielding a perfect cluster of N atoms where
N = (10n3 + 15n2 + 11n + 3)/3 = 13, 55, 147, 309, · · · .
By construction, one atom is located at the center of
icosahedral cluster. Clusters with hcp and fcc structures
are chosen to be centered on an atomic site. The shape
of some faceted fcc clusters is a polyhedron with 8 tri-
angular faces and 6 square faces, i.e., a cuboctahedron,
which can be regarded as isomer of icosahedron. We
explore three types of bcc clusters with different centers:
atom-centered bcc one; bond-centered bcc one that has a
nucleation point at the middle of two neighboring atoms;
and interstitial-centered bcc one whose center is coincide
with the face center of the bcc unit cell.
For each center, cubic clusters are created by filling the

first closed shells (9, 35, 91, 189, 341 for atom-centered,
30, 84, 180, 330 for interstitial-centered, 28, 92, 206, 298
for bond-centered). Several clusters are created out the
aforementioned sets just by removing those atoms located
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outside of imaginary spheres of decreasing radius. With
this method, we create a total number of 61 bcc clusters
with different surface geometries, ranging from perfect
cubes to spheres.
We perform structural optimizations for all clus-

ters using the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm.63–65 Since atoms near the surface feel larger forces
than inner atoms before structural relaxation, they un-
dergo a large amount of atomic displacement during min-
imization of total energy and forces. After optimization,
the residual forces are typically less than 0.01 Ry/a.u.

B. Energetics

In Fig.1, total energies of geometry-optimized cobalt
clusters are plotted as a function of cluster size. Energy
reference is the bulk energy of hcp Co, and the value
is calculated using the parsec code with the same Co
pseudopotential, a grid spacing of 0.16 a.u., and a 7 ×

7 × 4 k-point mesh. The solid curve in Fig.1 is fitted
to the values of four perfect icosahedral clusters using
polynomials, and it goes to zero at around a cluster size
of 1500.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  50  100  150  200  250  300  350  400

T
ot

al
 e

ne
rg

y 
(e

V
/a

to
m

)

Cluster size (Number of atoms)

Icosahedron
hcp
fcc
bcc-atomic
bcc-intersticial
bcc-bond

FIG. 1: Total energies of geometry-optimized cobalt clusters
with six different structures are plotted as a function of cluster
size. Energy is measured from that of bulk hcp phase. The
curve is fitted to the values of perfect icosahedral clusters (see
text).

With increasing cluster size, the total energy decreases
overall. However, oscillations associated with the cluster
shape and surface morphology occur. Among the clusters
we examined (up to 365 atoms), small faceted icosahe-
dral clusters and hcp ones are found to be lower in energy
than others, indicating that they are candidates for stable
structures in this size range. They have a small surface-
to-volume ratio and their shapes are nearly spherical.
The total energy of icosahedral clusters oscillates with
a period corresponding to a complete filling of an atomic
shell. Local minima in energy lie at around 55, 147, and

309 atoms, where the cluster is a perfect (closed-shell)
icosahedron. The total energies of three families of bcc
clusters show similar size dependence each other, imply-
ing that innermost structure around the cluster center
plays a minor role in determining its energy. For the
atom-centered bcc clusters, perfect cubic ones give the
local energy maxima located at sizes of 91, 189, and 341.
The fcc clusters are systematically higher in energy than
icosahedral clusters as well as hcp ones. Except for the
smallest 13-atom cluster, as cluster size gets larger, the
energy difference between icosahedral and cuboctahedral
isomers becomes smaller.

C. Total Magnetic Moments

We examine the interplay of structural relaxation with
the magnetic moment of a cluster. On relaxing the struc-
ture, accompanied by a movement of protruding atoms
on the cluster surface, the 3d bands get more dispersive
character, resulting in reduction of the net magnetic mo-
ment. After relaxation, the change in the bond length is
a few percent within the initial value, and the change in
the magnetic moment ranges from a ∼ 5% decrease to a
∼ 1% increase compared to the initial value.
We only take into account the spin moment of the clus-

ter, and do not include orbital contribution, whereas the
experimental value is a total moment, a summation of
the spin and orbital moment. In bulk Co, orbital effects
cause a shift in the gyromagnetic ratio (so-called g fac-
tor), yielding an effective gyromagnetic ratio g = 2.25
(g = 2.0 for a free electron). We assume Co clusters
possess a similar degree of orbital contributions, i.e., the
orbital moment of the cluster should contribute less than
10% of the spin moment.
Fig. 2(a) shows magnetic moments per atom in units of

Bohr magneton, µB, as a function of size for the icosahe-
dral, hcp, and fcc clusters. For comparison, we also plot
the experimental data by Billas and co-workers17. Al-
though the magnetic moments are systematically under-
estimated due to lack of the orbital moment, the overall
size dependences of the moments obtained for three clus-
ter families are consistent with the experiment. In par-
ticular, the behavior of the moment at around sizes 130
and 240 are well described in the icosahedral family. We
find no correlation between local minimum/maximum of
the moment and the number of facets. The calculated
moments for fcc clusters are in good agreement with the
size dependence at around 150 as well as the converged
behavior for more than 300 atoms. In the fcc family,
cuboctahedral clusters are found to have a larger mo-
ment than icosahedral isomers. The moments obtained
for the hcp clusters are within the range of those for the
icosahedral and fcc clusters.
In Fig.2(b), the bcc clusters with three different cen-

ters exhibit similar size dependence, indicating that the
nucleation center also plays a minor role in determining
the magnetic moment of a cluster. Regardless of the cen-
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FIG. 2: Calculated magnetic moments per atom compared to
the experimental data taken from Ref. 17. The dotted line
indicates the value of the magnetic moment per atom in bulk
cobalt (1.72 µB/atom).

ter structure, small bcc clusters are predicted to have an
enhanced magnetic moment, being qualitatively consis-
tent with the experiment. For clusters larger than 200
atoms, however, the calculated moments are practically
constant, resulting in an overestimate of the moment. In
the atom-centered family, local maxima of the moment
observed at sizes 91, 189, and 341 are associated with
perfect cubic clusters.

D. Local Magnetic Moment

The local magnetic moment of a particular atom j is
computed as the integral of the spin density within a
spherical domain surrounding it, Ωj :

µlocal
j =

∫

Ωj

[

ρ↑(~r )− ρ↓(~r )
]

d3~r .

Here, ρ↑/ρ↓ represents the electronic density for the
majority/minority spin. Since the main source of this

FIG. 3: Local magnetic moment per atom with respect to
the coordination number. Error bars represent the minimum
and maximum value. Each set of points has been fitted to
a line. A miniature of the specific cluster is shown, with the
colormap representing the individual local magnetic moment
growing in the upper direction.
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spin imbalance resides with the 3d orbitals, the local
magnetic moment tends to be very localized. This is
confirmed by our calculations, where the sum of the lo-
cal magnetic moments lies always within a 10% range
from total magnetic moment. Therefore, the radius for
the integration sphere is set to be half the minimum bond
length found in the cluster.

It is well known that the local magnetic moment of
a particular atom is related to its coordination within
the structure, increasing its value when decreasing the
number of neighbors. The isolated atom can be re-
garded as a limiting case with maximum local magnetic
moment, given by Hund’s rule. When interaction with
other atoms leads to a delocalized state, the correspond-
ing magnetic moment decays until it reaches its bulk co-
ordination number. However, the magnetic properties
are very sensitive to the structural properties, such as
local coordination and facet geometry, and a detailed de-
scription of their relation is still lacking. For example,
Jensen and Bennemann66 attempted an explanation of
the oscillations of the magnetic moment with the cluster
size using the magnetic shell model framework.7 They
assumed the atomic magnetic moments depend only on
the atomic environment, with a monotonic relation with
the coordination number. This simple model captures
some of the features drawn by the experimental results,
but some discrepancies with their approach are quite no-
table.

Fig. 3 shows the averaged value of the local magnetic
moment of the atoms for a selected set of example clus-
ters as a function of their coordination number. Dashed
lines indicate the range of the minimum and maximum
magnetic moments. The solid lines displayed on the plots
correspond to linear fits of the calculations. Our calcula-
tions do not support a hypothesis of a simple linear re-
lationship between coordination number and local mag-
netic moment, but they do show a strong correlation of
the two. For instance, the individual correlation values
for the bcc and icosahedral structures remain > 0.9 (with
several exceptions between the range 0.8 < r < 0.9: the
27-atom for the bcc-atomic, 28- and 30-atom for the bcc-
bond, 43-, 75- and 237-atom for the icosahedral). The
averaged slope for the bcc and icosahedral families is
−0.0346± 0.086µB. Despite the difference in ranges of
the coordination number, the lines corresponding to the
bcc family (panels (a) and (b) in Fig.3) lie close to the
one calculated for the icosahedrons (panel (c)). How-
ever, this behavior gets more convoluted for the other
two structures considered in this paper, as one can see in
Fig.3(d) for the 305-atom hcp cluster as a representative
example.

Fig.4 shows the evolution of the local magnetic mo-
ment as a function of the distance to the center of the
cluster. As expected, the trend exhibits a general in-
crease when going from the center towards the surface.
One can differentiate two regions: (i) A plateau corre-
sponding to those points located in the inner shells of
the cluster, with bulk coordination number; (ii) a regime
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FIG. 4: Evolution of local magnetic moment per atom from
center to surface for a set of example cluster from the six
structures considered in this work.

for those atoms near the surface of the cluster. Such
atoms have a reduced coordination number and show an
increase of their magnetic moment. The three bcc clus-
ters shown in Fig.4(b) have a similar number of atoms,
and their curves are almost superimposed. The bound-
ary between the two regions can be traced roughly around
∼ 14 a.u, precisely the distance where the first atom with
a coordination less than the value for bulk. The same sit-
uation occurs for those clusters in Fig.4(a), each one for
a different distance (∼ 8 a.u for icosahedron, ∼ 5 a.u
for hcp, and ∼ 11 a.u. for fcc). It is also worth noting
the lower value that the icosahedral and hcp curves have
in the bulk region (around 1.7µB) owing to the higher
coordination of these structures with respect to the fcc
and bcc ones (around 1.9µB). The oscillatory behavior
shown on the growing part of the curves can be easily
accounted for considering that atoms with a lower coor-
dination may be further away from the center than others
with higher coordination.
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IV. SUMMARY AND CONCLUSIONS

We have investigated structural and magnetic prop-
erties of cobalt clusters up to 365 atoms using a real-
space formalism of pseudopotentials within the density-
functional theory. The hcp and icosahedral clusters
which are spherical ones with small surface-to-volume
ratio are found to be the most stable. The calculated
magnetic moments for hcp and icosahedral clusters re-
produce not only the overall decreasing trend but also
exhibit some fine size dependences, which are observed
in experiment. We also analyzed the distribution of the
local magnetic moment on the cluster. When compared
as a function of the distance to the center of the struc-
ture, we find two distinct regimes, one “bulk-like” in-

side, almost constant, and another describing the surface
atoms where the magnetic moment experiences a strong
enhancement. The main features of this relation can be
explained by the dependency of the local magnetic mo-
ment of an atom with its coordination number.
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