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Abstract

We study the theoretical conditions to excite a stable self-oscillation in a spin torque oscillator

with an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the

presence of magnetic field pointing in an arbitrary direction. The linearized Landau-Lifshitz-

Gilbert (LLG) equation is found to be inapplicable to evaluate the threshold between the stable

and self-oscillation states because the critical current density estimated from the linearized equation

is considerably larger than that found in the numerical simulation. We derive a theoretical formula

of the threshold current density by focusing on the energy gain of the magnetization from the spin

torque during a time shorter than a precession period. A good agreement between the derived

formula and the numerical simulation is obtained. The condition to stabilize the out-of-plane

self-oscillation above the threshold is also discussed.

PACS numbers: 75.78.Jp, 75.76.+j, 85.75.-d
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I. INTRODUCTION

A spin polarized current injected into a nanostructured ferromagnet creates spin torque

through the spin-transfer effect [1–3]. The spin torque provides rich variety of magnetization

dynamics such as switching or self-oscillation [4–10]. In particular, a spin torque oscillator

consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned

layer has been an attractive research subject in the field of magnetism. [11–21]. In this type

of spin torque oscillator, the spin torque forces the magnetization of the free layer into out

of plane, and excites a large amplitude oscillation around the perpendicular axis. A high

symmetry along the perpendicular direction in this system makes it easy to investigate the

oscillation properties theoretically [17]. In order to observe the oscillation experimentally

through magnetoresistance effect, however, the symmetry breaking should occur since the

change of the relative angle between the magnetizations of the free and pinned layers in

time is necessary. The linear analysis in the presence of an in-plane anisotropy [16] or the

perturbation approach to the system additionally having an in-plane magnetized reference

layer [19] have been made to develop practical theory.

The application of an external magnetic field tilted from the perpendicular axis also

breaks the symmetry, and enables us to measure the oscillation experimentally. In other

geometries, the experimental studies have shown that the oscillation properties such as the

threshold current to excite the self-oscillation strongly depend on the field direction [6,10].

On the other hand, the role of the magnetic field on the self-oscillation properties in this

geometry has not been fully understood yet. For example, it is still unclear how much

current is necessary to excite the out-of-plane self-oscillation in the presence of the magnetic

field pointing in an arbitrary direction, while it is known that infinitesimal current can excite

the self-oscillation for highly symmetric case [12,17].

In this paper, we investigate theoretical conditions to excite the self-oscillation in a spin

torque oscillator with an in-plane magnetized free layer and a perpendicularly magnetized

pinned layer in the presence of an external magnetic field. We solve the Landau-Lifshitz-

Gilbert (LLG) equation both numerically and analytically. The main findings in this paper

are as follows. First, we find that the linearized LLG equation is no longer useful to evaluate

the instability threshold in the present system. The critical current density evaluated from

the linearized LLG equation is two orders of magnitude larger than the instability threshold
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estimated from the numerical simulation. Second, we derive the theoretical formula deter-

mining the instability threshold. The main difference between the linear analysis and our

result is that when a periodic precession around the stable state is assumed in the linear

analysis, while we focus on the transition of the magnetization from the stable state to the

out-of-plane self-oscillation state during a time shorter than the precession period. A good

agreement between the numerical simulation and our formula is obtained. Third, we derive

theoretical conditions to guarantee the present results, i.e., the condition that our formula of

the threshold current density works better than the linear analysis to estimate the instability

threshold, and the condition to stabilize the out-of-plane self-oscillation.

This paper is organized as follows. In Sec. II, we show the numerical simulation results

near the instability of the initial state. We also solve the linearized LLG equation analyti-

cally. In Sec. III, we derive a theoretical formula of the threshold current, and confirm its

validity by comparing the results obtained from the formula with the numerical simulation.

The conclusion is summarized in Sec. IV.

II. NUMERICAL SIMULATION AND LINEAR ANALYSIS

In this section, we investigate the threshold current density which is necessary to desta-

bilize the magnetization in the stable state by numerically solving the LLG equation. We

also compare the numerical result with the analytical values of the critical current density

jc estimated from the linearized LLG equation. Throughout this paper, the term ”thresh-

old current” indicates the current destabilizing the stable state calculated in the numerical

simulation or from the formula which is also well consistent with the numerical simulation,

while the term ”critical current” is a current estimated from the linearized LLG equation.

A. System description

The system we consider is schematically shown in Fig. 1(a). The z axis is perpendicular

to the film plane. The unit vectors pointing in the magnetization direction of the free and

pinned layers are denoted as m and p, respectively. The magnetization of the pinned layer

points to the positive z direction, p = +ez. The positive current is defined as the electrons

flowing from the free layer to the pinned layer. We use the macrospin approximation to the
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free layer. The magnetization dynamics is described by the LLG equation

dm

dt
= −γm×H− γHsm× (p×m) + αm× dm

dt
, (1)

where γ and α are the gyromagnetic ratio and the Gilbert damping constant, respectively.

We use the approximation 1+α2 ≃ 1 because the damping constant for typical ferromagnets

is on the order of 10−2 − 10−3 [22,23]. The spin torque strength is

Hs =
~ηj

2eMd
, (2)

where η is the spin polarization of the electric current density j, while M and d are the

saturation magnetization and the thickness of the free layer, respectively. We neglect the

asymmetry of the spin torque described by the term 1/(1 + λm · p) [1] here, for simplicity.

The critical current density in the presence of this factor, as well as its role, is briefly

summarized in Appendix A. The magnetic field H consists of the demagnetization field

along the z direction, −4πM , and the applied Happl expressed as

H = Happl − 4πMmzez. (3)

The applied field, Happl, is tilted from the z axis and assume to lie in xz plane for convention,

i.e.,

Happl = Happl sin θHex +Happl cos θHez, (4)

where Happl and θH are the amplitude and the tilted angle from the z axis of the applied

field, respectively. The magnetic field relates to the energy density E via E = −M
∫

dm ·H,

which in the present system is

E =−MHappl (sin θHmx + cos θHmz) + 2πM2m2
z. (5)

Here, we assume that Happl < 4πM , and therefore, the stable state, i.e., the minimum of

Eq. (5), locates close to the x axis. Note that the magnetization dynamics described by Eq.

(1) can be regarded as the motion of a point particle on an unit sphere.

The values of the parameters used in this section are brought from typical experiments

[24], M = 1300 emu/c.c., γ = 1.764×107 rad/(Oe s), α = 0.01, d = 2 nm, and η = 0.5. The

magnitude of the applied field is Happl = 650 Oe, while the field angle is θH = 5◦. Figure

1(b) shows the constant energy curves of Eq. (5) with these parameters. Note that the
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stable (minimum energy) state, the saddle point, and the unstable (local maximum) states

of the energy density E all exist in the xz plane. The stable state locates in the positive

x region, while the saddle point exists in the negative x region. Also, the unstable states

slightly shift from the z axis due to the applied field. We denote the energies corresponding

to the stable state, the saddle point, and the unstable states as Emin, Esaddle, and Emax±,

where the subscript ± distinguishes the unstable states in the positive (+) and negative

(−) z region. For θH 6= 90◦, Emax+ 6= Emax−. The constant energy curves in Fig. 1(b) are

classified to the ellipses around the x and z axes. The energy density E corresponding to

the curves around the x axis is in the region of Emin ≤ E ≤ Esaddle, while that for the curves

around the z axis is in the region of Esaddle < E ≤ Emax±.

B. Linear analysis

The conventional method to estimate the minimum current density to destabilize the

stable state is linearizing the LLG equation, and investigate the oscillating solution of the

magnetization with a complex frequency [25–27]. In this section, we derive the theoretical

formula of the critical current density, and estimate its value.

We introduce the zenith and azimuth angles (θ, ϕ) as m = (sin θ cosϕ, sin θ sinϕ, cos θ)

to identify the magnetization direction. In particular, the angles corresponding to the stable

state are denoted as (θ0, ϕ0). In the present case, ϕ0 = 0, and θ0 is determined by the

condition (∂E/∂θ)ϕ=ϕ0
= 0,

Happl sin(θH − θ0) + 4πM sin θ0 cos θ0 = 0. (6)

We introduce a new coordinate XY Z where the Z axis is parallel to the magnetization in the

stable state (θ0, ϕ0). A small amplitude oscillation of the magnetization around a stationary

point is described by the following linearized LLG equation (the detail of the derivation is

shown in Appendix A)

1

γ

d

dt





mX

mY



+M





mX

mY



 = Hs





sin θ0

0



 , (7)

where

M =





αHX −Hs cos θ0 HY

−HX αHY −Hs cos θ0



 (8)
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with HX = Happl cos(θH−θ0)−4πM cos 2θ0 and HY = Happl cos(θH−θ0)−4πM cos2 θ0. The

solution of Eq. (7) has a form of exp{γ[±i
√

det[M]− (Tr[M/2])2 −Tr[M]/2]t}. The critical

current density is defined as the current density satisfying Re[±i
√

det[M]− (Tr[M/2])2 −
Tr[M]/2] = 0. For a small α, this condition is approximated to Tr[M/2] = 0 because

(Tr[M/2])2/det[M] ∼ α2 ≃ 0. Therefore, the critical current density becomes

jc =
2αeMd

~η cos θ0

[

Happl cos(θH − θ0)− 4πM
cos2 θ0 + cos 2θ0

2

]

. (9)

Substituting the above parameters, we find that θ0 ≃ 87.7◦ and jc = 328× 106A/cm2.

C. Numerical simulation

Figures 2(a)-(d) show the magnetization dynamics on the unit sphere and time develop-

ments of the components of m, obtained by numerically solving the LLG equation, Eq. (1).

The current density is (a) 7.2, (b) 7.3, (c) -7.2, and (d) -7.3 ×106 A/cm2. As shown, when

the current magnitude |j| is smaller than 7.2× 106 A/cm2, the magnetization finally moves

to another point and stops its dynamics. On the other hand, the magnetization shows the

self-oscillation for |j| ≥ 7.3 × 106A/cm2. The z component of the magnetization moves to

the positive (negative) z direction for the negative (positive) current because the negative

(positive) current prefers m to be parallel (antiparallel) to the magnetization of the pinned

layer, p = +ez.

Three important conclusions are obtained from Fig. 2. First, the threshold current

density to destabilize the initial stable state, ≃ ±7.3×106 A/cm2, is two orders of magnitude

smaller than the critical current density, jc = 328×106 A/cm2, estimated from the linearized

LLG equation. Second, both positive and negative currents can destabilize the initial state,

while the sign of jc is fixed (positive for θH < 90◦). Third, the magnetization precesses

around the z axis above the threshold. Note that the self-oscillation occurs on the trajectory

close to the constant energy curve. Although the energy landscape has the constant energy

curves around the x axis, as shown in Fig. 1(b), an in-plane precession around the x axis

does not appear. In the next section, we explain the physical meanings of such behavior.
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III. THEORETICAL FORMULA OF THRESHOLD CURRENT

The results discussed in the previous section indicates that the linear analysis is no longer

applicable to evaluate the instability threshold, although the linear analysis has been widely

used to analyze the spin torque induced magnetization dynamics [25–27]. In this section, we

clarify the reason for the breakdown of the linear analysis, and derive a theoretical formula

of the threshold current density by focusing on the energy gain of the free layer generated

from the work done by spin torque.

A. LLG equation averaged over constant energy curves

Here, let us discuss the averaging technique of the LLG equation on the constant energy

curves. This method has been used in several works to analyze the self-oscillation and

the thermally activated magnetization switching induced by spin torque, the microwave

assisted magnetization reversal, and so on [28–40]. As will be discussed below, the critical

current density jc introduced above corresponds to a special limit of this averaging technique.

Therefore, by reviewing the derivation of the averaged LLG equation, the reason why the

linearized LLG equation does not work to estimate the instability condition accurately will

be clarified.

The self-oscillation is a steady precession on a constant energy curve of E excited by the

magnetic field torque (−γm×H). To maintain the precession, the spin torque should balance

with the damping torque. Note however that the spin torque and the damping torque have

different angular dependences. Therefore, strictly speaking, the spin torque may overcome

the damping torque at certain points on the precession trajectory, the damping torque may

however overcome the spin torque at other points. The self-oscillation is maintained when

the shift from the constant energy curve due to the imbalance between the spin torque and

the damping torque is sufficiently small. In that case, the magnetization can return back to

the original constant energy curve during the precession. When this condition is satisfied,

we obtain the following averaged LLG equation,

∮

dt
dE

dt
= Ws(E) + Wα(E), (10)

where the integral range is a precession period on a constant energy curve of E. The work
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done by spin torque and the dissipation due to the damping during the precession are

Ws =

∮

dtγMHs [p ·H− (m · p) (m ·H)] , (11)

Wα = −
∮

dtαγM
[

H2 − (m ·H)2
]

, (12)

respectively. Since the energy density averaged over the precession is conserved in the self-

oscillation state, the self-oscillation is described by the equation
∮

dt(dE/dt) = 0. Therefore,

the current density necessary to excite a self-oscillation on a certain constant energy curve

of E is

j(E) =
2αeMd

~η

∮

dt[H2 − (m ·H)2]
∮

dt[p ·H− (m · p)(m ·H)]
. (13)

The explicit form of j(E) for an arbitrary E is obtained, in principle, by substituting the

solution of the precession trajectory on a constant energy curve, which is described by

dm/dt = −γm × H. However, the solution is hardly obtained because the equation is a

nonlinear equation. Therefore, we evaluate the integrals in Eq. (13) numerically, except for

special cases mentioned below (see also Appendix B). The technique to evaluate the integrals

in Eq. (13) is shown, for example, in Ref. [38]. The damping constant α is assumed to be

scalar in the above formulation. On the other hand, a tensor damping was proposed in Ref.

[41]. The presence of the tensor damping was also suggested in the spin torque problem [42].

The effect of the tensor damping can be taken into account by replacing α in Eq. (12) with

the tensor damping; see Appendix C of Ref. [38].

B. Derivation of threshold current

Note that the critical current density jc, Eq. (9), obtained from the linearized LLG

equation relates to Eq. (13) via

jc = lim
E→Emin

j(E). (14)

Therefore, the fact that the critical current density jc is quite larger than the threshold cur-

rent density found in the numerical simulation indicates the breakdown of applying averaged

LLG equation.

An important assumption in the averaged LLG equation is that the magnitudes of the spin

torque and the damping torque are sufficiently small. Thus, a shift of the magnetization

from a constant energy curve due to the imbalance between these torques is also small.
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However, this assumption is not satisfied in the present case. Figure 3 shows the trajectory

of the magnetization dynamics obtained from the numerical simulation, where the current

density j = −7.3 × 106 A/cm2 is the threshold value found in Fig. 2(d). We also show

the constant energy curve including the saddle point md. We should remind the readers

that there are two kinds of constant energy curves, as shown in Fig. 1(b), i.e., the curves

around the x axis corresponding to Emin ≤ E ≤ Esaddle and the curves around the z axis

corresponding to Esaddle < E ≤ Emax±. The constant energy curve of Esaddle separates these

in-plane and out-of-plane regions. As shown in Fig. 3, while the magnetization moves from

the initial state to a point close to the saddle point, the magnetization crosses the constant

energy curves of Esaddle, and transfers from the in-plane region to the out-of-plane region. A

periodic oscillation around the stable state (x axis) is not excited. This result is the evidence

that the assumption used in Eq. (13), as well as Eq. (9), is broken. Therefore, the critical

current density jc does not work to estimate the instability of the magnetization around the

stable state accurately.

The inapplicability of the linearized LLG equation also relates to the value of the damping

constant α. Note that both the spin torque and the damping torque move the magnetization

from a constant energy curve, by either supplying or dissipating the energy from the free

layer. Therefore, the averaging technique of the LLG equation, as well as the linearization

of the LLG equation, works well for low damping case. The fact that the linearized LLG

equation could not be applied in the above numerical simulation indicates that the value

of the damping constant in the present system is high and that the precession around the

stable state is not stabilized. The range of the damping constant where the linearized LLG

equation will be applicable is discussed in Sec. IIIC below.

Figure 3 suggests that the magnetization can climb up the energy barrier Esaddle − Emin

by absorbing energy due to the work done by the spin torque during a time shorter than a

precession period around the stable state. Therefore, the threshold current density can be

defined as a current density satisfying the following equation,

∫

md

mmin

dt
dE

dt
= Esaddle − Emin, (15)

where mmin corresponds to the initial stable state. Strictly speaking, the exact solution

of the LLG equation is necessary to evaluate the threshold current density from Eq. (15).

However, the LLG equation is a nonlinear equation, and it is difficult to obtain the exact

9



solution. Instead, we approximate Eq. (15) as

∫

md

md±

dt
dE

dt
≃ Esaddle − Emin, (16)

where md± are the points on the constant energy curve of Esaddle and are located in the xz

plane; see Fig. 3. We note that Eq. (15) is well approximated by Eq. (16) when md± locate

close to mmin, which means that Happl/(4πM) ≪ 1. Note that the left hand side of Eq.

(16) can be evaluated in a similarly to the manner calculating Eq. (13) because the integral

range is on the constant energy curve. However, the integral range is limited to [md±,md]

in Eq. (16), while the range is over a periodic precession in Eq. (13). The values of the

integrals for these different regions are, in general, different. Since the value of the integral

in Eq. (16) is determined by the energy landscape, and the time-dependent solution of Eq.

(1) is unnecessary, the integral in Eq. (16) is easily evaluated than that in Eq. (15) [31].

The current density satisfying Eq. (16) is given by

jth± =
2αeMd

~η

∫

md

md±
dt[H2 − (m ·H)2]

∫

md

md±
dt[p ·H− (m · p)(m ·H)]

+
2ed

γ~η

Esaddle −Emin
∫

md

md±
dt[p ·H− (m · p)(m ·H)]

.

(17)

Equation (17) is the theoretical formula of the threshold current density, and is the main

result in this paper. This equation provides the estimation of the threshold current density

with high accuracy. For example, the values of jth± with the parameters used in Fig. 2 are

jth+ = −7.7× 106A/cm2 and jth− = 7.6× 106A/cm2, which show good agreement with the

numerical results in Fig. 2. These values are estimated for θH = 5◦. Below, we show that

the agreement between Eq. (17) and the numerical simulation is obtained also for different

values of θH ; see Fig. 5. Note that |jth+| 6= |jth−| because the magnetic field pointing in the

positive z direction breaks the symmetry between the magnetization dynamics moving to

the positive and negative z directions, although the difference is small. We emphasize that

Eq. (17) consists of two parts. One is proportional to α because this term arises from the

energy dissipation due to the damping. The other is, on the other hand, independent of α

but proportional to the energy barrier Esaddle − Emin.

Equation (17) can be simplified into a different form for θH = 90◦ (see also Appendix

C). In this case, Esaddle = MHappl, Emin = −MHappl, and md± = (
√

1− z2d±, 0, zd±) with
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zd± = ±2
√

h(1− h) and h = Happl/(4πM). Then, we find that
∫

md

md±

dt [p ·H− (m · p) (m ·H)] = ∓π

γ
(1− h)2, (18)

∫

md

md±

dt
[

H2 − (m ·H)2
]

=
16πM

3γ

√

h(1− h)
(

3− 5h+ 2h2
)

.

(19)

Therefore, Eq. (17) becomes

jth±(θH = 90◦) =∓ 2eM2d

~η

×
[

16α

3

√

h

1− h
(3− 2h) +

8h

(1− h)2

]

.

(20)

Note that jth± → 0 in the limit of h = Happl/(4πM) → 0, indicating that infinitesimal

current can destabilize the stable state in the absence of the applied field.

We note that both the positive and negative currents can destabilize the stable state

in our picture, contrary to jc having a fixed sign (positive for θH < 90◦). The physical

meaning of this difference is as follows. Since the damping torque always dissipates energy

from the free layer, positive energy should be supplied from the work done by spin torque

to destabilize the stable state. In the derivation of jc, a steady precession around the stable

state is assumed. On the precession trajectory, the spin torque has a component antiparallel

to the damping torque when mz . 0 and has a component parallel to the damping torque

when mz & 0, for a positive current. The spin torque supplies energy to the free layer in

the former case, but dissipates energy from the free layer in the latter case. Note that the

trajectory slightly shifts to the positive direction due to the magnetic field having the positive

z component, i.e., the trajectory is not symmetric with respect to the xy plane. Then, the

work done by spin torque during the precession becomes finite and positive. The spin torque

overcomes the damping torque when the current density becomes larger than jc. When the

current direction is reversed, the work done by spin torque becomes negative, and thus, the

spin torque cannot overcome the damping. As a result, the sign of jc is positive. However,

as emphasized above, a periodic precession around the easy axis assumed in the derivation

of jc is not excited in the present case. Instead, we focused on the magnetization dynamics

from md± to md. The work done by spin torque during [md−,md] becomes positive when

the current has the positive sign. Similarly, the work during [md+,md] is positive when the
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current sign is negative. Therefore, both the positive and negative currents can destabilize

the stable state by compensating the damping torque. Note also that the magnetization

crosses the constant energy curve of Esaddle during a time shorter than a precession period

around the x axis. Therefore, an in-plane self-oscillation on a constant energy curve of

Emin ≤ E ≤ Esaddle around the x axis cannot be excited in the present case.

C. Applicability of the present theory

There are two characteristic current scales, jc and jth±, related to the magnetization

dynamics, as discussed above. These two currents are defined from different mechanisms

of the instability of the stable state. The instability condition of a precession around the

stable state gives jc. On the other hand, jth± was derived by the condition that the energy

gain by the spin torque during a time shorter than the precession period becomes larger

than the energy barrier between the stable state and the saddle point. The initial state is

destabilized when the current magnitude becomes larger than min[jc, jth±]. For the present

parameters, jth± is smaller than jc, and therefore, jth± determines the instability threshold.

The condition that jth± works well to estimate the instability of the stable state can be

expressed as
jth±
jc

< 1. (21)

This is another important equation in this paper, guaranteeing the validity of our approach.

Whether Eq. (21) is satisfied or not depends on the material parameters, as well as the

applied field magnitude and angle. If Eq. (21) is unsatisfied, jc determines the instabil-

ity threshold, the magnetization moves to the out-of-plane region after the magnetization

precesses around the in-plane axis.

Note that the first term on the right hand side of Eq. (17) is proportional to the damping

constant α, while the second term is independent of α. On the other hand, Eq. (9) is

proportional to α. Therefore, Eq. (21) is not satisfied when α becomes sufficiently small.

When Eq. (21) is unsatisfied, jc determines the instability of the stable state. Then, we

can discuss the minimum value of α guaranteeing the applicability of Eq. (21) [37]. The

value α which falls off from the condition in Eq. (21) for the parameters used in Fig. 2 is

α < 1.7× 10−4. This value of α is at least one to two orders of magnitude smaller than the

experimentally reported values for conventional ferromagnets used in spin torque oscillator,
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such as CoFeB [22,23]. Therefore, we consider that jth± determines the instability of the

stable state for typical experiments.

D. In the presence of the angular dependence of the spin torque

When the applied field points to the in-plane direction, θH = 90◦, the stable state cor-

responds to θ0 = 90◦, and the critical current density in Eq. (9) diverges. This is because

the work done by spin torque during the precession around the stable state becomes zero.

Therefore, Eq. (21) is always satisfied for θH = 90◦.

The divergence of jc appears at a different field angle when the angular dependence of the

spin torque is taken into account, although this term is neglected in the above calculation,

for simplicity. In this case, Eq. (2) is replaced by

Hs =
~ηj

2e(1 + λm · p)Md
. (22)

Then, the critical current density becomes

jc =
2αeMd

~ηP (θ0)

[

Happl cos(θH − θ0)− 4πM
cos2 θ0 + cos 2θ0

2

]

, (23)

where P (θ0) is given by

P (θ0) =
cos θ0

1 + λ cos θ0
+

λ sin2 θ0
2(1 + λ cos θ0)2

, (24)

see Appendix A. The divergence of the critical current density, Eq. (23), occurs at the angle

θ0 satisfying P (θ0) = 0. In particular, when θH = 90◦, Eqs. (23) becomes

jc(θH = 90◦) =
4αeMd

~ηλ
(Happl + 2πM) . (25)

On the other hand, Eq. (17) is generalized for finite λ as

jth± =
2αeMd

~η

∫

md

md±
dt[H2 − (m ·H)2]

∫

md

md±
dt[p ·H− (m · p)(m ·H)]/(1 + λm · p)

+
2ed

γ~η

Esaddle −Emin
∫

md

md±
dt[p ·H− (m · p)(m ·H)]/(1 + λm · p) .

(26)

Equation (26) for θH = 90◦ is

jth±(θH = 90◦) = ∓2eMd

~η
4πM

N
D±

, (27)
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where N and D± are

N =4λ2
[

2α(3− 2h)(1− h)
√

h(1− h) + 3h
]

×
√

1− 4λ2h(1− h)
(28)

D± =3
{

√

1− 4λ2h(1− h)
[

π ∓ 4λ
√

h(1− h)
]

−2
[

1− 2λ2(1− h)
]

cos−1
[

±2λ
√

h(1− h)
]}

,
(29)

see Appendix B. In the presence of a finite λ, |jth+| 6= |jth−| even for θH = 90◦. Eq. (27)

reproduces Eq. (20) in the limit of λ → 0. The currents, jc and jth±, in Eq. (21) should be

replaced by Eqs. (23) and (26) in the presence of the angular dependence of the spin torque.

E. Validity of Eq. (17) and condition to excite out-of-plane self-oscillation

In this section, we confirm the validity of Eq. (17) for a wide range of θH by comparing

with the numerical simulation of the LLG equation.

Before the comparison, we briefly discuss the definition of the threshold current den-

sity estimated from the numerical simulation. We emphasize that jth± just determines the

instability of the stable state, and does not guarantee the existence of the out-of-plane

self-oscillation. The out-of-plane self-oscillation is excited when a condition,

j(E)

jth±
> 1, (30)

is satisfied [39], where the range of E is Esaddle < E ≤ Emax±. Note that the reason why the

out-of-plane self-oscillations appear in Figs. 2(b) and 2(d) is that there exists a certain E

satisfying Eq. (30). On the other hand, when Eq. (30) is not satisfied for any value of E,

the magnetization moves to the point close to −(+)ez for a positive (negative) current above

jth± because the spin torque magnitude becomes sufficiently strong, and the magnetization

eventually becomes parallel or antiparallel to the magnetization of the pinned layer, p = +ez.

Figure 4 shows an example of such dynamics, where θH = 20◦ and the current density is

close to the threshold value, −27.3 × 106A/cm2, for this θH . As shown, the magnetization

finally becomes almost parallel to the z axis. Such magnetization dynamics was observed

experimentally [14]. The threshold current density evaluated from the numerical simulation

should be defined as the current density above which the magnetization shows a stable out-

of-plane self-oscillation or the magnetization moves to the points close to ±ez. The detail of
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the method numerically defining the threshold current density is summarized in Appendix

D.

We study the validity of Eq. (17) by comparing with the threshold current estimated

by numerically solving Eq. (1) for several values of θH and Happl. The threshold current

density estimated from the numerical simulation of the LLG equation is shown by dots in

Fig. 5(a), where the magnetic field angle θH varies in the range of 0 < θH ≤ 90◦ while the

magnitude Happl is fixed to 650 Oe. We also shows the value of jth± evaluated from Eq.

(17) by solid lines. We find a good agreement between the numerical and theoretical results,

supporting the validity of Eq. (17). The comparison between the numerically evaluated

instability threshold and the analytical formula, Eq. (20), for several values of the field

magnitude Happl is shown in Fig. 5(b), where the field angle is fixed to θH = 90◦. The

theoretical formula agrees with the numerical result when Happl/(4πM) ≪ 1, while the

numerical result becomes different with the theoretical formula for relatively large magnetic

field. This is because the derivation of the theoretical formula, Eq. (17), assumes that

Happl/(4πM) ≪ 1, as mentioned below Eq. (16). The current magnitude above which

the difference between the theoretical and numerical results appears is on the order of 108

A/cm2, which is one to two orders of magnitude larger than the current magnitude used

in typical experiments [14,18,21,24]. Therefore, we consider that the present formula works

well to analyze experiments for wide range of the applied field angle and magnitude.

We notice that j(E) is an increasing function of E for the out-of-plane self-oscillation

when λ = 0, as in the zero field case [12,17]. Then, there is a certain E satisfying Eq. (30)

if
ju±
jth±

> 1, (31)

is satisfied, where ju± are Eq. (13) at the unstable states, E = Emax±,

ju± ≡ lim
E→Emax±

j(E). (32)

The dependences of jth± and ju± on the field angle θH and the magnitude Happl are also

shown in Figs. 5(a) and 5(b), respectively. It is shown that ju± is almost independent of θH

and Happl, while jth± increases with increasing these parameters. For example, we find that

ju±/jth± > 1 for θH < 20◦. This result indicates that the out-of-plane self-oscillation can be

excited for θH < 20◦ for the present parameters. This finding is consistent with the numerical

results shown in Figs. 2 and 4, supporting the validity of our argument. We notice that
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the linearized LLG equation is useful to estimate limE→Emax±
j(E) by replacing (θ0, ϕ0) with

the zenith angle corresponding to the maximum point; see Eq. (A15). In particular, when

θH = 90◦, the unstable states locate atmu+ = (−Happl/(4πM), 0,
√

1− [Happl/(4πM)]2) and

mu− = (−Happl/(4πM), 0,−
√

1− [Happl/(4πM)]2). Then, we find that (see also Appendix

B)

ju±(θH = 90◦) = ∓ 2αeMd

~η
√
1− h2

4πM

(

1− h2

2

)

. (33)

This equation indicates that ju±(θH = 90◦) ≃ ∓[2αeMd/(~η)]4πM for h ≪ 1, i.e., ju± is

almost independent of Happl, which is consistent with the result shown in Fig. 5(b).

IV. CONCLUSION

In conclusion, we studied the theoretical conditions to excite the self-oscillation in a spin

torque oscillator consisting of an in-plane magnetized free layer and a perpendicularly mag-

netized pinned layer in the presence of an external magnetic field pointing in an arbitrary

direction. The numerical simulation in Fig. 2 showed that the initial stable state is desta-

bilized by current density much smaller than the critical current density estimated from

the linearized LLG equation, Eq. (9). The fact implies that the linearized LLG equation

is no longer applicable to evaluate the instability threshold in the present system. Then,

we derived the theoretical formula of the threshold current density, Eq. (17), by focusing

on the transition of the magnetization from the stable state to the out-of-plane precession

during a time shorter than a precession period around the stable state. The derived formula

consists of two parts, where one is proportional to the damping constant α, while the other

is independent of α but proportional to the energy barrier Esaddle −Emin for the transition.

A good agreement between the numerical simulation and our formula, Eq. (17), is obtained

in Fig. 5, indicating the validity of the formula. The condition that our formula of the

threshold current density works better than the linear analysis to instability threshold is

Eq. (21). We also derived the theoretical condition, Eq. (30), to stabilize the out-of-plane

self-oscillation.
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Appendix A: Derivation of linearized LLG equation

In this Appendix, we show the detail of the derivation of Eq. (7). For generality, we

consider a ferromagnet having uniaxial anisotropies along the x, y, and z axes with an

external magnetic field applied in an arbitrary direction. The magnetic field is given by

H =











Happl sin θH cosϕH − 4πMÑxmx

Happl sin θH sinϕH − 4πMÑymy

Happl cos θH − 4πMÑzmz











. (A1)

The generalized demagnetization coefficient Ñi (i = x, y, z) is defined as 4πMÑi = 4πMNi−
HKi, where 4πMNi is the shape anisotropy (demagnetization) field with Nx +Ny +Nz = 1,

while HKi is the crystalline or interface anisotropy field. The energy density E = −M
∫

dm ·
H is

E

M
=−Happl [sin θH sin θ cos(ϕH − ϕ) + cos θH cos θ]

+ 2πMÑx sin
2 θ cos2 ϕ+ 2πMÑy sin

2 θ sin2 ϕ

+ 2πMÑz cos
2 θ.

(A2)

The system in the main text corresponds to the case of Ñx = Ñy = 0, Ñz = 1, and ϕH = 0.

Since we are interested in a small oscillation of the magnetization around the stable state,

the zenith and azimuth angles corresponding to the stable state should be identified. The

stable state is determined by the conditions that ∂E/∂θ = ∂E/∂ϕ = 0, which are explicitly

given by

Happl [sin θH cos θ cos(ϕH − ϕ)− cos θH sin θ]

− 4πMÑx sin θ cos θ cos
2 ϕ− 4πMÑy sin θ cos θ sin

2 ϕ

+ 4πMÑz sin θ cos θ = 0,

(A3)
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Happl sin θH sin θ sin(ϕH − ϕ)

+ 4πMÑx sin
2 θ sinϕ cosϕ− 4πMÑy sin

2 θ sinϕ cosϕ = 0.
(A4)

Let us denote the zenith and azimuth angles satisfying Eqs. (A3) and (A4) as (θ0, ϕ0). As

mentioned in the main text, we introduce the XY Z coordinate where the Z axis is parallel

to the stable state (θ0, ϕ0). The rotation to the xyz coordinate to the XY Z coordinate is

described by the rotation matrix

R =











cos θ0 0 − sin θ0

0 1 0

sin θ0 0 cos θ0





















cosϕ0 sinϕ0 0

− sinϕ0 cosϕ0 0

0 0 1











. (A5)

The relations between the components of m in the xyz and XY Z coordinates are

mx = mX cos θ0 cosϕ0 −mY sinϕ0 + mZ sin θ0 cosϕ0, my = mX cos θ0 sinϕ0 + mY cosϕ0 +

mZ sin θ0 sinϕ0, mz = −mX sin θ0 +mZ cos θ0. Also, the magnetic field in the XY Z coordi-

nate is

H =











HXXmX +HXYmY

HY XmX +HY YmY

HZXmX +HZYmY +HZZ











, (A6)

where

HXX =− 4πMÑx cos
2 θ0 cos

2 ϕ0 − 4πMÑy cos
2 θ0 sin

2 ϕ0

− 4πMÑz sin
2 θ0,

(A7)

HXY = HY X = −4πM
(

Ñy − Ñx

)

cos θ0 sinϕ0 cosϕ0, (A8)

HY Y = −4πMÑx sin
2 ϕ0 − 4πMÑy cos

2 ϕ0, (A9)

HZX =− 4πMÑx sin θ0 cos θ0 cos
2 ϕ0

− 4πMÑy sin θ0 cos θ0 sin
2 ϕ0

+ 4πMÑz sin θ0 cos θ0,

(A10)

HZY = −4πM
(

Ñy − Ñx

)

sin θ0 sinϕ0 cosϕ0, (A11)

HZZ =Happl [sin θH sin θ0 cos(ϕH − ϕ0) + cos θH cos θ0]

− 4πMÑx sin
2 θ0 cos

2 ϕ0 − 4πMÑy sin
2 θ0 sin

2 ϕ0

− 4πMÑz cos
2 θ0.

(A12)
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Similarly, the magnetization of the pinned layer p = (px, py, pz) =

(sin θp cosϕp, sin θp sinϕp, cos θp) in the xyz coordinate transforms in the XY Z coor-

dinate to

p ≡











pX

pY

pZ











=











sin θp cos θ0 cos(ϕp − ϕ0)− cos θp sin θ0

sin θp sin(ϕp − ϕ0)

sin θp sin θ0 cos(ϕp − ϕ0) + cos θp cos θ0











. (A13)

Now we consider a small oscillation of the magnetization around the stable state. Using

the approximations mZ ≃ 1 and |mX |, |mY | ≪ 1, the LLG equation is linearized as

1

γ

d

dt





mX

mY





+





−HY X −HspZ + αHX HY − αHXY

−HX − αHY X HXY −HspZ + αHY









mX

mY





= −Hs





pX

pY



 ,

(A14)

where HX = HZZ − HXX and HY = HZZ − HY Y . The terms proportional to αHs are

neglected because these terms are on the order of α2. The condition that the trace of the

coefficient matrix is zero gives

jc =
2αeMd

~ηpZ

(

HX +HY

2

)

. (A15)

Substituting Ñx = Ñy = 0, Ñz = 1, ϕH = 0, and θp = 0, Eq. (A15) reproduces Eq. (9). On

the other hand, in the case of the in-plane magnetized system considered in Ref. [26], i.e.,

4πMÑx = −HK, Ñy = 0, Ñz = 1, θH = 90◦, ϕH = 0, θp = 90◦, and ϕp = 0, we find that

HXX = −4πM , HY Y = 0, and HZZ = Happl + HK, where HK is the in-plane anisotropy.

Then, the critical current density becomes jc = [2αeMd/(~η)](Happl +HK + 2πM), which

is consistent with the result in Ref. [26].

The angular dependence of the spin torque, characterized by the factor 1/(1 + λm · p),
can be taken into account as follows. As mentioned in the main text, Hs in this case is given

by Eq. (22). In this case, Eq. (2) is replaced by Eq. (22). The factor 1/(1 + λm · p) is

linearized as
1

1 + λm · p =
1

1 + λmZpZ

1

1 + λ(mXpX+mY pY )
1+λmZpZ

≃ 1

1 + λpZ

[

1− λ(mXpX +mY pY )

1 + λpZ

]

.

(A16)
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We introduce the following notations,

H(0)
s =

~ηj

2e(1 + λpZ)Md
, (A17)

Λ =
λ

1 + λpZ
. (A18)

Then, Eq. (A14) becomes

1

γ

d

dt





mX

mY



+M





mX

mY



 = −H(0)
s





pX

pY



 , (A19)

where the components of the 2× 2 matrix M are

M1,1 = −HY X −H(0)
s

(

pZ + Λp2X
)

+ αHX , (A20)

M1,2 = HY −H(0)
s ΛpXpY − αHXY , (A21)

M2,1 = −HX −H(0)
s ΛpXpY − αHY X , (A22)

M2,2 = HXY −H(0)
s

(

pZ + Λp2Y
)

+ αHY . (A23)

Then, the critical current determined by the condition Tr[M] = 0 is

jc =
2αe(1 + λpZ)Md

~η[pZ +
Λ(1−p2

Z
)

2
]

(

HX +HY

2

)

. (A24)

Equation (23) is obtained from Eq. (A24) by substituting Ñx = Ñy = 0, Ñz = 1, ϕH = 0,

and θp = 0,

Appendix B: Derivations of Eqs. (27) and (33)

Let us show the derivation of Eq. (33). As mentioned in the main text, ju± can be

obtained from the linearized LLG equation. Here, we show that ju± can also be obtained as

ju± = limE→Emax±
j(E). This method provides an example of the calculation of Eq. (13).

Note that the maximum energies located at m ≃ ±ez , Emax+ = Emax−, are identical for

θH = 90◦, and the corresponding energy density is Emax = (4πM2/2)(1 + h2). Then, let us

investigate limE→Emax
j(E). Equation (13) can be rewritten as

j(E) =
2αeMd

~η

Nα

Ns

, (B1)
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where Ns and Nα are, respectively, given by

Ns = γ

∫

dt [p ·H− (m · p) (m ·H)]

= −1

h

∫

dmz

my

[

mz +
(

hmx −m2
z

)

mz

]

=

∫

dmz
m3

z − 2(1− ǫ)mz
√

(a−m2
z)(m

2
z − b)

,

(B2)

Nα = γ

∫

dt
[

H2 − (m ·H)2
]

= (4πM)2γ

∫

dt
[

h2 +m2
z −

(

hmx −m2
z

)2
]

= −2πM

∫

dmz
m4

z − 4(1− ǫ)m2
z + 4(ǫ2 − h2)

√

(a−m2
z)(m

2
z − b)

.

(B3)

Here, we use the relation dmz/dt = γHapplmy obtained from the LLG equation on a constant

energy curve, dm/dt = −γm×H, with θH = 90◦ [38]. The integral ranges of these integrals

are discussed below. Equations (11) and (12) relate to Eqs. (B2) and (B3) via Ws = 2MHsNs

and Wα = −2αMNα, where the numerical factor 2 appears by restricting the integral regions

for my > 0, according to the symmetry [38]. The parameters a and b are given by

a = 2
(

ǫ− h2 + h
√
1 + h2 − 2ǫ

)

, (B4)

b = 2
(

ǫ− h2 − h
√
1 + h2 − 2ǫ

)

, (B5)

where ǫ = E/(4πM2) is the normalized energy density. The physical meanings of a and

b are as follows. Figure 6 shows the examples of the out-of-plane precession trajectories

(constant energy curves) in the regions of mz > 0 and mz < 0. The precession directions

are indicated by the arrows. The constant energies curves cross the xz plane at the points

mz = ±√
a,±

√
b. When we focus on the out-of-plane precession for mz > 0, the integral

ranges of Eqs. (B2) and (B3) are
√
b ≤ mz ≤

√
a. On the other hand, for the out-of-plane

precession for mz < 0, the integral range is −√
a ≤ mz ≤ −

√
b. Below, we calculate Eqs.

(B2) and (B3) for mz < 0. For mz > 0, the sign of Ns is changed.

We notice that Eqs. (B2) and (B3) are expressed as Ns = I3 − 2(1 − ǫ)I1 and Nα =

−2πM [I4 − 4(1− ǫ)I2 + 4(ǫ2 − h2)I0], respectively, where In (n = 0, 1, 2, 3, 4) is

In =

∫ −
√
b

−
√
a

dz
zn

√

(a− z2)(z2 − b)

=

∫ 1

0

ds
(−√

a
√
1− k2s2)n

√
a
√

(1− s2)(1− k2s2)
.

(B6)
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The modulus k is

k =

√

1− b

a
. (B7)

The following formulas are useful to calculate Ns and Nα;

I0 =
1√
a

∫ 1

0

ds
√

(1− s2)(1− k2s2)
=

1√
a
K(k), (B8)

I1 = −
∫ 1

0

ds√
1− s2

= −π

2
, (B9)

I2 =
√
a

∫ 1

0

ds

√

1− k2s2

1− s2
=

√
aE(k), (B10)

I3 = −a

∫ 1

0

ds
1− k2s2√
1− s2

= −πa

2

(

1− k2

2

)

, (B11)

I4 = a3/2
∫ 1

0

ds

√

(1− k2s2)3

1− s2

= −a3/2

3

[

(1− k2)K(k)− 2(2− k2)E(k)
]

,

(B12)

where K(k) and E(k) are the first and second kinds of complete elliptic integral. Substituting

these formulas into Eqs. (B2) and (B3), Eq. (B1) becomes

j(E) = −16αeM2d

3~η
×

[−a2(1− k2) + 12(ǫ2 − h2)]K(k) + 2a[a(2− k2)− 6(1− ǫ)]E(k)√
a[4(1− ǫ)− a(2− k2)]

.

(B13)

In the limit of E → Emax (ǫ → (1 + h2)/2), Eq. (B13) gives ju− in Eq. (33). By changing

the integral range, as mentioned above, ju+ is also obtained.

Equation (27) is obtained in a similar manner. Equations (B2) and (B3) can be used to

evaluate the integrals in Eq. (26). Note that the integral range to derive Eq. (33) is over

an out-of-plane precession trajectory, while the range in Eq. (26) is [md±,md]. We notice

that a and b in Eqs. (B2) and (B3) are 4h(1 − h) and b = 0 on the constant energy curve

including the saddle point because Esaddle = MHappl (ǫ = h). Then, Eqs. (B2) and (B3) for

jth± are given by

N
±

s = ∓
∫

dmz
m2

z − 2(1− h)

(1 + λmz)
√

4h(1− h)−m2
z

, (B14)

N
±

α = ±2πM

∫

dmz
[m2

z − 4(1− h)]mz
√

4h(1− h)−m2
z

. (B15)
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The integral range is [2
√

h(1− h), 0] for jth+ and [−2h
√

h(1− h), 0] for jth−. We notice

that N ±
s = ∓[J ′

2−2(1−h)J ′
0]

0

±2
√

h(1−h)
and N ±

α = ±2πM [J3−4(1−h)J1]
0

±
√

2h(1−h)
, where

Jn =

∫

dz
zn√
a− z2

, (B16)

J ′
n =

∫

dz
zn

(1 + λz)
√
a− z2

. (B17)

Moreover, these integrals satisfy J ′
2 = (J ′

0 − J0)/λ
2 + (J1/λ). Then, using the following

formulas, Eq. (27) is obtained;

J0 =

∫

dz√
a− z2

= sin−1

(

z√
a

)

, (B18)

J1 =

∫

dz
z√

a− z2
= −

√
a− z2, (B19)

J3 =

∫

dz
z3√
a− z2

= −
√
a− z2(2a+ z2)

3
, (B20)

J ′
0 =

∫

dz

(1 + λz)
√
a− z2

=
1√

1− λ2a
sin−1

[

z + λa√
a(1 + λz)

]

. (B21)

Appendix C: Instability condition in terms of magnetic field

In the main text, we derive the threshold current density as a function of the magnetic

field. In some experiments [18,21,24], on the other hand, the instability threshold is in-

vestigated by fixing the value of the applied current (voltage) and changing the magnetic

field magnitude. The threshold magnetic field magnitude below which the self-oscillation is

excited was found experimentally [24], which indicates that the threshold magnetic field is a

decreasing function of θH (0 < θH ≤ 90◦). The theoretical formula of the threshold magnetic

field, Hth, is, in principle, obtained by rewriting the instability threshold condition, Eq. (17),

in terms of the magnetic field. For example, when θH = 90◦ and Happl/(4πM) ≪ 1, Eq.

(20) is rewritten as

Hth(θH = 90◦) ≃ 4πM

(

~η|j|
16eM2d

− α

√

~η|j|
4eM2d

+ 4α2 + 2α2

)

. (C1)

Although it is difficult to derive analytical formula of the threshold magnetic field for an

arbitary value of θH because the right hand side of Eq. (17) is a complex function of the

magnetic field, the experimental result [24] indicates that Hth(θH) sin θH ≃ Hth(θH = 90◦).
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Appendix D: Definition of the threshold current density in numerical simulation

We solve the LLG equation numerically from t = 0 to t = 20 ns by using the fourth-

order Runge-Kutta method. The time step is ∆t = 10 fs. The threshold current density

in the numerical simulation is defined as a minimum current density satisfying |mx(t =

20ns)−mx(t = 20ns−∆t)| > 10−10 or |mz(t = 20ns)| > 0.9, where the former means that

the magnetization is in the oscillating state while the latter means that the magnetization

moves to ±ez direction.
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FIG. 1: (a) Schematic view of the system considered in this study. The unit vectors pointing in

the magnetization direction of the free and pinned layers are denoted as m and p, respectively.

The positive electric current corresponds to the electrons flowing from the free layer to the pinned

layer. The external field lies in the xz plane. (b) Schematic views of the constant energy curves.
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FIG. 2: The trajectories of the magnetization dynamics on the unit spheres. The time evolutions

of the magnetization components are also shown. The values of the current density j are (a) 7.2,

(b) 7.3, (c) -7.2, and (d) -7.3 ×106 A/cm2.
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FIG. 5: Dependences of the threshold current densities estimated by numerically solving the LLG

equation (1) (dots), the theoretical instability threshold jth±, Eq. (17), (solid lines), and the current

densities ju±, Eq. (32), (dotted lines) on (a) the applied field angle θH (Happl = 650 Oe) and (b)
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