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Abstract

Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g. diamond)

constitute a fundamental and important scientific need for understanding the response of such ma-

terials and for exploring the potential synthesis and design of novel solids. However, without

corresponding experimental data, it is difficult to select between predictions from different theo-

retical methods. Recently, the complete set of third-order elastic constants (TOECs) for diamond

was determined experimentally, and the validity of various theoretical approaches to calculate the

same may now be assessed. We report on the use of density functional theory (DFT) methods

to calculate the six third-order elastic constants of diamond. Two different approaches based on

homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set

of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive

strains along the [100], [110], and [111] directions, together with calculated pressure derivatives

of the second-order elastic constants. The latter approach provides a direct comparison to the

experimental results. The TOECs calculated using the energy-strain approach differ significantly

from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain

approach show good agreement with the measured TOECs and match the experimental values sig-

nificantly better than the TOECs reported in previous theoretical studies. Our results on diamond

have demonstrated that, with proper analysis procedures, first-principles calculations can indeed

be used to accurately calculate the TOECs of strong solids.
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I. INTRODUCTION

The synthesis, investigation, and computational design of strong solids (also known as ul-

trahard materials) are of significant ongoing scientific interest to fields like solid state physics,

geophysics, nanoscience, and high-pressure physics [1–6] and have applications in wide-

ranging areas like abrasives, biomedical sciences, superconductive materials, and defense

technologies [7–9]. A detailed understanding of the mechanical response of these materials

is important because many potential applications involve large and/or highly nonuniform

applied stresses. The elastic constants are fundamental to understanding the mechanical re-

sponse: the second-order elastic constants (SOECs) characterize the linear elastic response,

and the third-order elastic constants (TOECs) characterize the lowest-order nonlinear elastic

response.

Determination of the TOECs of crystals has a long history in solid state physics be-

cause they reflect the lowest-order nonlinear (anharmonic) contributions to the lattice po-

tential [10]. Therefore, the TOECs are important for understanding physical phenomena

related to lattice anharmonicity such as phonon-phonon interactions, thermal expansion,

and stress- and temperature-dependent elastic response [11, 12]. For ultrahard materials,

such as diamond, experiments to investigate their nonlinear elastic properties are particu-

larly challenging. Therefore, theoretical determination of the TOECs for such materials is

of significant importance.

Although theoretical calculations of the diamond TOECs have been reported previ-

ously [13–17], two shortcomings in these studies are noteworthy: significant differences

existed between the reported values, and experimentally-determined values of the full set

of diamond TOECs were not available. Hence, it was difficult to evaluate the validity of

the various theoretical approaches. In 2011, Lang and Gupta [18] reported the first ex-

perimental determination of the full set of TOECs for diamond by combining their shock

compression data [18, 19] along three different crystal orientations with previously-reported

pressure derivatives of the SOECs [20]. Subsequently, Modak, et al. [21] reported theoret-

ical TOECs for diamond determined by combining SOEC pressure derivatives, calculated

using density functional theory, with results from shock wave propagation simulations using

classical molecular dynamics employing an empirical interatomic potential. More recently,

revised values [22] for the experimental TOECs, which corrected the errors in the previously-
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reported SOEC pressure derivatives [20], were reported. With the availability of the revised

experimental TOEC values, an assessment of the different theoretical approaches to accu-

rately calculate the TOECs of diamond is in order.

Here, we present a theoretical determination of the TOECs of diamond from density

functional theory (DFT) calculations using the method of homogeneous deformations. Two

different approaches were used to obtain the TOECS: (1) fitting TOECs to calculated energy-

strain states, similar to Ref. [23], and (2) fitting TOECs to the calculated longitudinal stress-

uniaxial strain states and to the calculated pressure derivatives of the SOECs. The second

approach provides a more direct comparison with the experimental measurements [18–20,

22]. The results of these calculations are compared with the experimental results and with

previous theoretical determinations of the TOECs, providing a robust theoretical approach

to the calculation of the nonlinear elastic response of strong solids.

II. THEORETICAL METHODS

The diamond elastic constants were calculated by using the method of homogeneous

deformations [11, 24] to combine continuum elasticity theory with total energy and stress

calculations determined from first-principles methods. The continuum elasticity theory and

first-principles computational methods used in this work are briefly summarized here, to-

gether with the energy-strain and longitudinal stress-uniaxial strain fitting approaches used

to determine the TOECs.

A. Continuum elasticity theory

Let ai be the initial coordinates of a material element in a body and let x
′

i = xi(aj) be

the coordinates after application of a homogeneous elastic deformation. The deformation of

the material system is described by the deformation gradient,

Fij =
∂xi

∂aj
. (1)

The symmetric finite Lagrangian strain tensor (negative in compression) is then defined by

ηij =
1

2

∑

k

(FkiFkj − δij). (2)
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Elastic constants are defined by expanding the internal energy per unit mass U as a

Taylor series in strain at constant entropy [11, 24, 25],

ρ0U(ηij , S) = ρ0U(0, S) +
1

2

∑

ijkl

CS
ijklηijηkl (3)

+
1

6

∑

ijklmn

CS
ijklmnηijηklηmn + · · ·

where ρ0 is the mass density of the material in the stress-free initial state. The expansion

coefficients of the Taylor series in Eq. 3 are the isentropic elastic constants [11, 24, 25]:

CS
ijkl = ρ0

∂2U

∂ηij∂ηkl

∣

∣

∣

η=0
(SOEC), (4)

CS
ijklmn = ρ0

∂3U

∂ηij∂ηkl∂ηmn

∣

∣

∣

η=0
(TOEC). (5)

It is convenient to introduce stress-strain coefficients, defined as [11]:

Bijkl =
∂σij

∂ηij
=

1

2
(σikδjl + σilδjk (6)

+ σjlδik + σjkδil − 2σijδkl) + Cijkl

where the σij are applied Cauchy stresses in the current (strained) configuration. In the

case of hydrostatic stress (σij = −Pδij) applied to a cubic crystal, Eq. 6 reduces to:

B11 = C11 − P, (7)

B12 = C12 + P, (8)

B44 = C44 − P. (9)

Here and in the remainder of this paper, we use the contracted (Voigt) notation [11, 24, 25]

(11 →1, 22 →2, 33 →3, 23 →4, 13 →5, 12 →6) for tensor indices to express Cijkl and Cijklmn

as Cαβ and Cαβγ , respectively.

To calculate TOECs using the method of homogeneous deformations, the total energy of

the strained diamond crystals was calculated using first-principles methods, and the TOECs

were determined by fitting the calculated energy-strain results to Eq. 3 [23]. Alternatively,

the stress state of the strained crystals was calculated and the results were fit to the derivative

of Eq. 3 [17].
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B. First-principles methods

In this work, we used the Vienna Ab-Initio Simulation package (VASP) [26] density

functional theory (DFT) code to carry out first-principles total energy and stress calcu-

lations using a plane-wave basis set at 0 K. Electron-ion interactions were described using

projector-augmented wave pseudopotentials [27] within both the local density approximation

(LDA) [28] and the PBE formulation of the generalized gradient approximation (GGA) [29].

High accuracy in evaluating the total energy is necessary to compute the TOECs, and con-

vergence tests showed that a large energy cutoff (Ecutoff = 1500 eV) was necessary to achieve

convergence of the TOECs. A Γ-centered Monkhorst-Pack k-point grid of 13× 13× 13 was

used. Energies were calculated using the tetrahedron method with Blöchl corrections. The

simulation cells used for cubic diamond in this work were composed of eight atoms, whose

internal coordinates were relaxed for each applied deformation. The tolerances for the en-

ergy convergence of the self consistent field loop and the maximum forces on the atoms in

the ionic relaxation procedure were 10−8eV and 10−4eV/Å, respectively.

Homogeneous deformations were applied using the deformation gradient Fij, obtained by

inverting Eq. 2, to determine the crystal lattice vectors r
′

i
of the deformed unit cell from the

unstrained lattice vectors ri:

r
′

i = Fijrj . (10)

For each applied deformation, a conjugate-gradient relaxation of the crystal internal coor-

dinates was performed for the deformed cell, minimizing the total energy of the strained

crystal.

C. Energy-strain approach

In this approach, the calculation of TOECs is based on Eq. 3, as described previously by

Zhao, et al. [23]. For a cubic crystal, calculations incorporating six different strain tensors

are required to determine the six TOECs. The strain tensors ηij used in this work are listed

in the Appendix as A1-A6. The nonzero components of each strain tensor were written in

terms of a single parameter, ξ, conveniently reducing Eq. 3 to an expansion in terms of a

single variable:

ρ0[U(ξ)− U(0)] =
1

2
K2ξ

2 +
1

6
K3ξ

3 +O(ξ4), (11)
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where U(0) is the energy of the unstrained state. Using Eq. 11, the calculated total energies

were fit to a fourth-order polynomial to determine K2 and K3 for each strain. K2 and K3, for

strains A1-A6, provide a system of equations (Table IV in the Appendix) that were solved

for the SOECs and TOECs.

As shown in previous calculations for silicon [23], the fitted values of K2 and K3 in Eq. 11

are insensitive to the choice of maximum strains used in the fit over a certain range. Here,

we use −0.08 ≤ ξ ≤ 0.06 with a strain step size of ∆ξ = 0.004. Changing ∆ξ to a smaller

value had a negligible effect on the elastic constants.

D. Longitudinal stress-uniaxial strain approach

To facilitate a more direct comparison to what is measured in the shock wave experi-

ments [18, 19], longitudinal stresses were calculated for three uniaxial strain tensors, corre-

sponding to the different shock wave compression directions examined in the experiments:

[100], [110], and [111]. The longitudinal elastic constants C
′

11 and C
′

111 are defined here by

an expansion of the longitudinal stress to second-order in uniaxial strain η
′

1:

σ
′

1 =
ρ0

ρ

(

C
′

11η
′

1 +
1

2
C

′

111η
′2
1

)

, (12)

where the primed tensor variables are expressed in a coordinate system that is aligned with

the direction of shock compression. Eq. 12 is identical to the equation used previously [18]

to analyze the experimental shock wave compression results. The strain step size for the

longitudinal stress calculations was ∆ξ = 0.004 and the maximum strain was ξ = −0.08.

The uniaxial Lagrangian strains were determined in terms of the density compression ratio

for the compressed (ρ) and uncompressed (ρ0) crystal:

η
′

1 =
1

2

(

ρ20
ρ2

− 1

)

. (13)

The calculated longitudinal stress-uniaxial strain results were fit using Eq. 12 to provide

three equations containing linear combinations of the TOECs (see A7-A9 in the Appendix).

To determine the complete set of six TOECs, the pressure derivatives of the SOECs were

calculated to provide three additional equations (see A10-A12 in the Appendix). These six

equations were solved to determine the six TOECs for diamond.

The SOEC pressure derivatives were calculated by relaxing the diamond unit cell to -

10GPa, 0GPa, and 10GPa external hydrostatic stress and then applying small secondary
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deformations. For each hydrostatic stress state, the stress-strain coefficients Bαβ , defined in

Eq. 6, were determined using a linear fit to the calculated stresses for the deformed diamond

lattice. The pressure derivatives of the Cαβ were calculated by differentiating Eqs. 7-9.

III. DETERMINATION OF THIRD-ORDER ELASTIC CONSTANTS

A. Energy-strain approach

We present our results for the unstrained lattice constants, ambient densities, and elastic

constants up to third order calculated using the energy-strain approach [23] for both LDA

and PBE in Table I alongside previous theoretical and experimental determinations of the

same [14–17, 20–22]. The lattice constants and densities for LDA and PBE in this work

match the experimental values well. The error between calculated and experimental values

for LDA (PBE) in the lattice constant is 1% (0.1%) and in density is 3% (0.3%). As shown

in Table I, the LDA lattice constant is somewhat smaller than that obtained using PBE.

Consistent with the smaller lattice constants, the LDA SOECs are larger than the PBE

SOECs, reflecting a larger stiffness, and the LDA TOECs are either larger or of a similar

magnitude compared to the PBE TOECs. Differences between the LDA and PBE results are

relatively small for the TOECs (2−5%) and larger for the SOECs (5−20%). In calculating

the TOEC C456, compressive strains larger than ξ = −0.048 for the A6 strain yielded a

different relaxed structure than the lower magnitude strains, which caused the energy-strain

relationship to diverge. Therefore, the fitted value of C456 reported in Table I was evaluated

using −0.048 ≤ ξ ≤ 0.06.

Comparing the TOECs calculated here with the measured TOECs [22], we find that C111,

C144, C166, and C456 show significant differences (as large as 110%) with experimentally-

determined values. Only C112 and C123 lie within the error bounds of the experimental

results. The TOECs calculated previously using a first principles approach in Ref. [17] are

consistent with the present results and show similar disagreement with the experimental

results. Although the TOECs calculated previously [14–16] differ significantly amongst

themselves, our calculated TOECs lie within the scatter of the previous theoretical results.

With the exception of C144 and C166, the TOECs calculated by Modak, et al. [21] provide

a somewhat better overall match to the measured TOECs, compared to the other calculated
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TABLE I. Lattice constant (Å), density (g/cm3), and the second- and third-order elastic constants

of diamond (GPa). The elastic constants presented here were calculated using the energy-strain

approach. Previous theoretical results (Ref. [14–17, 21]) and experimental results (Ref. [20, 22])

are also shown for comparison.

Previous theory Present theory

Ref. [14] Ref. [15] Ref. [16] Ref. [17] Ref. [21] Experiment LDA PBE

a - - - 3.55 - 3.567 3.533 3.570

ρ0 - - - 3.567 - 3.517 3.619 3.508

C11 - - - 1050± 10 1065 1079± 5a 1104 1054

C12 - - - 127± 4 122 124± 5a 148 124

C44 - - - 550± 5 568 578± 2a 593 559

C111 -6260 -7367 -6475 -6300± 300 -7290 -7600± 600b -6303 -6026

C112 -2260 -2136 -1947 -800± 100 -1398 -1270± 570b -1739 -1643

C123 112 1040 982 0± 400 -247 -330± 920b 589 606

C144 -674 186 115 0± 300 -592 2390± 850b -196 -200

C166 -2860 -3292 -2998 -2600± 100 -2863 -4100± 380b -2911 -2817

C456 -823 76 -135 -1300± 100 -2991 -2890± 750b -1074 -1168

a Reference [20]
b Reference [22]

results. However, their approach relies upon a combination of ab-initio calculations and

classical molecular dynamics simulations using empirical potentials. Hence, the TOECs

reported in [21] were not all calculated at the same level of theory.

To gain insight into the differences between the theoretically calculated TOECs (obtained

with the energy-strain method) and the experimental results, we now turn to a more direct

comparison between theory and experiment, using the methods of section IID.

B. Longitudinal stress-uniaxial strain approach

The second- and third-order longitudinal elastic constants (C
′

11 and C
′

111, respectively) for

uniaxial compressions along [100], [110], and [111] were determined by fitting the calculated
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TABLE II. Experimental and calculated longitudinal second-order elastic constants (C
′

11), longi-

tudinal third-order elastic constants (C
′

111), and pressure derivatives of the second order elastic

constants.

Present theory

Experimenta LDA PBE

C
′[100]
11 1079 ± 5 1083 ± 4 1033 ± 5

C
′[110]
11 1180 ± 7 1163 ± 13 1094 ± 12

C
′[111]
11 1213 ± 8 1214 ± 10 1139 ± 9

C
′[100]
111 -7603 ± 600 -7828 ± 154 -7515 ± 143

C
′[110]
111 -15146 ± 1067 -15741 ± 400 -15183 ± 383

C
′[111]
111 -14631 ± 1183 -14949 ± 314 -14385 ± 289

dC11/dP 6.98 ± 0.7 6.09 6.26

dC12/dP 2.06 ± 0.7 1.94 1.94

dC44/dP 3.98 ± 0.3 3.83 3.99

a Reference [18, 22]

longitudinal stress to Eq. 12. Table II shows that the C
′

11 calculated using PBE are smaller

than the LDA results by 4 − 9% but differences in the C
′

111 are smaller between the two

functionals (less than 4%). C
′

11 and C
′

111 calculated using LDA agree well with experiment

for all orientations, as do the PBE values for C
′

111. The error bars for the DFT results are

statistical uncertainties from the covariance matrix of the fit to Eq. 12.

Calculated longitudinal stress-uniaxial strain results are shown in Fig. 1 for compressions

along [100] (a), [110] (b), and [111] (c) directions. The calculated longitudinal stress-strain

curves (red and blue for LDA and PBE, respectively) show good agreement with the exper-

imental results (black squares and black curves), especially for LDA, where the theoretical

and experimental curves nearly overlap each other.

To determine the TOECs, the calculated longitudinal stress-uniaxial strain results were

augmented with the calculated SOEC pressure derivatives, as discussed in Sec. IID. As

shown in Table II, the calculated pressure derivatives dC12/dP and dC44/dP are in good
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FIG. 1. Longitudinal stress versus uniaxial strain for diamond shock compressed along [100] (a),

[110] (b), and [111] (c) directions. The black squares are measured states from Ref. [18, 19]. The

solid black curve is a fit to the measured states, the red dashed and blue dot-dashed curves are

DFT calculations using the LDA and PBE functionals, respectively.

agreement with the measured results and the calculated value for dC11/dP lies just outside

the experimental uncertainty bounds [20, 22].

The TOECs were determined by solving Eqs. (A9-A14) and are shown in Table III,

together with the measured TOECs. The calculated TOECs show good agreement with

the experimental results and all are within the experimental error bounds. The difference

between the calculated and measured [22] pressure derivative dC11/dP is the largest source

of the disagreement between the calculated and measured TOECs, primarily affecting C112

and C123 (see Eq.(A9-A14)). Calculations using the LDA and PBE functionals show similar

results, with the LDA TOECs being somewhat larger in magnitude those calculated using

PBE. For all TOECs, the statistical errors shown in Table III were much smaller than the

experimental uncertainties.

We note that our theoretical results calculated at T = 0 K provide good agreement with

the experimental results [18, 22], despite the temperature increase inherent in the previous

shock wave compression. This is because the extreme stiffness of diamond causes modest

elastic compressions in the shock experiments and, as a result, the corresponding tempera-

ture increases in the shocked diamond were extremely small. To examine the nonlinear elas-

tic response of strong single crystals at higher temperatures, the SOECs and TOECs must

be incorporated into an anisotropic thermo-elastic framework (see, for example, Ref. [24]).

However, such developments are not considered here.
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TABLE III. Third-order elastic constants of diamond determined from calculated longitudinal

stress-uniaxial strain results and the pressure derivatives of the second-order elastic constants.

Present theory

Experiment [22] LDA PBE

C111 -7600± 600 -7828± 154 -7515± 143

C112 -1270± 570 -901± 92 -845± 86

C123 -330± 920 -1062± 188 -960± 176

C144 2390± 850 2783± 283 2693± 271

C166 -4100± 380 -4369± 134 -4223± 128

C456 -2890± 750 -2983± 189 -2870± 175

C. Discussion

Comparing the results presented in sections IIIA and IIIB, it is seen that the TOECs

calculated using the longitudinal stress-uniaxial strain approach show significantly better

agreement with the experimental results [18, 19, 22], compared to those calculated using

the energy-strain approach. Because the same first-principles methods were used for the

energy-strain approach and the longitudinal stress-uniaxial strain approach, the differences

in the TOECs calculated using the two approaches is likely due to differences in the analysis

and fitting of the calculated energies and stresses. These differences are discussed next.

Examination of Eqs. A7-A12, which are similar to those used to analyze and fit the data

from the diamond shock compression experiments [18, 19], shows that some TOECs appear

more frequently, or with larger coefficients, than others in the system of linear equations.

As a result, some of the TOECs are not as well-constrained by the experiments as others.

In particular, C166 appears more often and is weighted more heavily in Eqs. A7-A12 than

C123, C144, and C456. Therefore, C166 is more well-constrained than C123, C144, and C456, and

accordingly has a smaller experimental uncertainty. Because the TOECs calculated using

the longitudinal stress-uniaxial strain approach were determined using similar equations

A7-A12 as those used to analyze the experimental results [18, 19], the TOECs calculated

using this approach were determined under the same constraints as those determined from

the experimental results. Because the TOECs calculated using the energy-strain approach

were determined using a different set of equations (see Table IV), the calculated TOECs were
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constrained differently. As as result, the TOECs calculated using the energy-strain approach

did not match the experimental results as well as those determined using the longitudinal

stress-uniaxial strain approach.

In the determination of TOECs from the experimental shock compression data [18, 19, 22],

the measured longitudinal stresses were fit to a quadratic function of strain (Eq. 12) because

fitting to a higher order expansion was unwarranted, given the limited data set available.

Therefore, the extent to which the measured TOECs were affected by the higher-order elastic

response (fourth-order elastic constants, etc.) of the material could not be determined.

The same issue also arises for the TOECs calculated using the longitudinal stress-uniaxial

strain approach because the calculated results were analyzed using Eq. 12. In contrast,

the calculated energy-strain results were analyzed using Eq. 11, which incorporates terms

containing fourth-order elastic constants to mitigate the effect of the higher-order elastic

response. Thus, the two methods differ regarding the truncation of the Taylor series in

Eq. 3. Examining the calculated and measured values for C111, we note that C111 calculated

using the longitudinal stress-uniaxial strain approach (Table III) matches the measured

value well [18, 19], but differs significantly from that calculated using the energy-strain

approach (Table I). Therefore, because C111 was calculated using the same strain (A1)

for both theoretical approaches, our results suggest that the higher order elastic response

(fourth order elastic constants, etc.) plays a role in the differences observed in the TOECs

calculated using the two different theoretical approaches.

Overall, our results show that the details of the TOEC analysis and fitting procedures play

an important role when making comparisons between different theoretical and experimental

approaches for determining the TOECs. The work presented here shows that evaluation

of the different theoretical approaches for calculating the TOECs is best carried out using

calculations and analysis procedures that are closely aligned to the experimental approach.

IV. CONCLUSIONS

To demonstrate the use of first-principles methods for determining the nonlinear elastic

response of strong solids, density functional theory was used to calculate the third-order

elastic constants (TOECs) of diamond. Two different approaches were used: an energy-

strain approach and a longitudinal stress-uniaxial strain approach. The TOECs calculated

13



using the longitudinal stress-uniaxial strain approach provided a good overall match to

the experimentally-determined TOECs [22]. Also, the longitudinal stress-uniaxial strain

calculations provided a good match to the physical variables that were measured directly

in previous shock compression experiments [18, 19]. The present results demonstrate that

first-principles approaches can be used to accurately calculate the TOECs of diamond.

Although the TOECs calculated using the energy-strain approach were within the scatter

of the values determined in previous theoretical studies [14–17, 21], they differed significantly

from the experimentally-determined TOECs [22] and the TOECs calculated using the lon-

gitudinal stress-uniaxial strain approach. The differences between the TOECs calculated

using the two approaches can be understood in terms of differences in the analysis and

fitting of the calculated energies and stresses. In particular, the series in Eq. 3 was trun-

cated differently in the two different approaches. The significantly better match to the

measured TOECs provided by the longitudinal stress-uniaxial strain approach, compared

to the energy-strain approach presented here and in previous theoretical studies [14–17], is

due to the close alignment of the analysis procedures used in the longitudinal stress-uniaxial

strain approach with the procedures used in the experimental determination [18, 19, 22].

Although the work presented here has focused on diamond, the theoretical methods used

to determine the TOECs are general. Therefore, the theoretical methods presented here are

also expected to provide an accurate description of the nonlinear elastic response of other

strong solids.
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VI. APPENDIX: STRAIN TENSORS AND ANALYTICAL RELATIONS FOR

THE DETERMINATION OF TOECS

In A1-A6 we list the Lagrangian strain tensors ηij used in the energy-strain calculations

presented here.

ηij =











ξ 0 0

0 0 0

0 0 0











, (A1)

ηij =











ξ 0 0

0 ξ 0

0 0 0











, (A2)

ηij =











ξ 0 0

0 ξ 0

0 0 ξ











, (A3)

ηij =











ξ 0 0

0 0 ξ

0 ξ 0











, (A4)

ηij =











ξ ξ 0

ξ 0 0

0 0 0











, (A5)

ηij =











0 ξ ξ

ξ 0 ξ

ξ ξ 0











. (A6)

For each of the strains A1-A6, the coefficients K2 and K3 used in the energy-strain fitting

function (Eq. 11) are expressed in terms of the SOECs and TOECs in Table IV. When

incorporated into Eq. 11, the results in Table IV provide six equations to solve for the six

TOECs of diamond.

For the longitudinal stress-uniaxial strain approach, the system of six equations used to
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TABLE IV. The coefficients K2 and K3 used in the energy expansion of Eq. 11, expressed as

combinations of SOECs and TOECs for a cubic crystal, using A1-A6 [23]

.

Strain K2 K3

A1 C11 C111

A2 2C11 + 2C12 2C111 + 6C112

A3 3C11 + 6C12 3C111 + 18C112 + 6C123

A4 C11 + 4C44 C111 + 12C144

A5 C11 + 4C44 C111 + 12C166

A6 12C44 48C456

solve for the TOECs is:

C
′[100]
111 = C111, (A7)

C
′[110]
111 =

1

4
(C111 + 3C112 + 12C166), (A8)

C
′[111]
111 =

1

9
(C111 + 6C112 + 2C123 (A9)

+ 12C144 + 24C166 + 16C456),

CM
111 + 2CM

112 = −
dC11

dP
(C11 + 2C12)− C11, (A10)

CM
112 + 2CM

123 = −
dC12

dP
(C11 + 2C12)− C12, (A11)

CM
144 + 2CM

166 = −
dC44

dP
(C11 + 2C12)− C44, (A12)

where CM
ijk are the mixed third-order isentropic-isothermal elastic constants [11]. Because

the thermal expansion coefficient of diamond is very small, differences between the mixed

elastic constants and the isentropic elastic constants are negligible.

1 J. E. Lowther, Materials 4, 1104 (2011).

2 J. Narayan and A. Bhaumik, APL Mater. 3, 100702 (2015), http://dx.doi.org/10.1063/1.4932622.

3 A. Friedrich, B. Winkler, L. Bayarjargal, W. Morgenroth, E. A. Juarez-Arellano, V. Milman,

K. Refson, M. Kunz, and K. Chen, Phys. Rev. Lett. 105, 085504 (2010).

16

http://dx.doi.org/10.3390/ma4061104
http://dx.doi.org/http://dx.doi.org/10.1063/1.4932622
http://dx.doi.org/10.1103/PhysRevLett.105.085504


4 Y. Palyanov, A. Sokol, A. Khokhryakov, and A. Kruk,

Russian Geology and Geophysics 56, 196 (2015).

5 P. Niedermann, W. Hnni, N. Blanc, R. Christoph, and J. Burger, Journal of Vacuum Science

and Technology A 14 (1996).

6 W. B. Holzapfel, Reports on Progress in Physics 59, 29 (1996).

7 V. P. Grichko and O. A. Shenderova, in Ultrananocrystalline Diamond , edited by O. A. Shen-

derova and D. M. Gruen (William Andrew Publishing, Norwich, NY, 2006) pp. 529 – 557.

8 X. Zhao, M. C. Nguyen, C. Z. Wang, and K. M. Ho,

J. Phys. Condens. Matter 26, 455401 (2014).

9 J. J. Swab, L. Vargas-Gonzalez, E. Wilson, and E. Warner,

Int. J. Appl. Ceram. Tec. 12, E74 (2015).

10 D. Wallace, Thermodynamics of Crystals , Dover books on physics (Dover Publications, 1998).

11 D. C. Wallace, Solid State Physics, Vol. 25 (Academic, New York, 1970) p. 301.

12 Y. Hiki, Annual Review of Materials Science 11, 51 (1981).

13 D. G. Clerc and H. Ledbetter, Journal of Physics and Chemistry of Solids 66, 1589 (2005).

14 M. H. Grimsditch, E. Anastassakis, and M. Cardona, Phys. Rev. B 18, 901 (1978).

15 E. Anastassakis, A. Cantarero, and M. Cardona, Phys. Rev. B 41, 7529 (1990).

16 C. S. G. Cousins, Phys. Rev. B 67, 024107 (2003).

17 O. H. Nielsen, Phys. Rev. B 34, 5808 (1986).

18 J. M. Lang and Y. M. Gupta, Phys. Rev. Lett. 106, 125502 (2011).

19 J. M. Lang, Mechanical and optical response of diamond crystals shock compressed along differ-

ent orientations, Ph.D. thesis, Washington State University (2013).

20 H. J. McSkimin and P. Andreatch, Journal of Applied Physics 43, 2944 (1972).

21 P. Modak, A. K. Verma, and S. M. Sharma, EPL (Europhysics Letters) 110, 56003 (2015).

22 J. Winey, A. Hmiel, and Y. Gupta, Journal of Physics and Chemistry of Solids 93, 118 (2016).

23 J. Zhao, J. M. Winey, and Y. M. Gupta, Phys. Rev. B 75, 094105 (2007).

24 R. N. Thurston, in Physical Acoustics , edited by W. P. Mason and R. N. Thurston (Academic

Press, 1964).

25 K. Brugger, Phys. Rev. 133, A1611 (1964).

26 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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