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Abstract 

We propose a self-consistent theoretical approach capable to describe the features of the anisotropic 

nanodomain formation induced by a strongly inhomogeneous electric field of charged SPM tip on non-polar 

cuts of ferroelectrics. We obtained that a threshold field, previously regarded an isotropic parameter, is an 

anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given 

ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field 

is not material-specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous 

polarization anisotropy along the main crystallographic directions. The most evident examples are uniaxial 

ferroelectrics, layered ferroelectric perovskites and low symmetry incommensurate ferroelectrics. Obtained 

results quantitatively describe difference in several times in nanodomain length experimentally observed on X- 

and Y-cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in 

strongly inhomogeneous electric fields.  
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I. Introduction 

The investigation of local polarization dynamics in ferroelectric materials becomes one of the 

most intriguing and rapidly developed direction of fundamental studies in nano-physics as well as 

prospective for next generation of memory devices [1, 2, 3, 4, 5, 6, 7]. The reason that made the 

investigations very attractive is the possibility to control the local redistribution of ferroelectric 

polarization, in particular to form the nanodomains arrays by the strongly inhomogeneous electric field 

of scanning probe atomic force microscopy (SPM) tip [8, 9].  

There are many experimental and theoretical studies of nanodomain formation on polar 

surfaces of ferroelectric crystals by the biased SPM probe, demonstrating that the normal [10, 11, 12, 

13, 14, 15, 16, 17] or anomalous [18, 19, 20, 21] local polarization reversal can take place along a 

polar axis. Experimental studies of the micro- and nano- domain walls motion have been performed in 

typical crystalline ferroelectric materials such as Pb(Zr, Ti)O3, Pb5Ge3O11, LiTaO3, LiNbO3 [22, 23, 24, 

25]. Appeared that the lateral sizes of micro- and nano-domain are linearly proportional to the voltage 

pulse amplitude and to the logarithm of the pulse duration [8, 10].  

A number of semi-phenomenological models of the nanodomain formation caused by the 

strongly inhomogeneous electric field produced by the SPM tip have been proposed. These models can 

be conditionally divided into two groups, namely Landauer-Molotskii (LM) energetic approach [9, 26, 

27, 28, 29, 30, 31] and Landau-Ginzburg-Devonshire (LGD) approach [32, 33, 34, 35, 36, 37]. LM 

approach considers the semi-ellipsoidal domain with infinitely thin walls and includes the domain wall 

surface energy into the free energy functional. LGD approach allows calculations of the domain shape, 

sizes and wall thickness in a self-consistent way, as a solution of the relaxation-type time-dependent 

nonlinear differential Landau-Ginzburg-Devonshire-Khalatnikov (TD-LGD or LGDK) equation for 

the evolution of ferroelectric polarization distribution coupled with the Poisson equation for the 

electric field, bound and space charges determination.  

Almost all experimental and theoretical papers are devoted to the investigation of the 

nanodomain kinetics on polar ferroelectric surfaces; at the same time the forward growth remains one 

of the most unexplored stages due to lack of experimental methods allowing investigations in the bulk. 

Recently Ievlev et al [35] and Alikin et al [38] experimentally demonstrated that the tip-induced 

polarization reversal on nonpolar X- and Y- cuts in a single crystal of congruent LiNbO3 can give 

insight in the forward growth on the nanoscale. They reported significant deviation of the domain 

shape from a semi-ellipsoid as well as the difference of the domain shapes and sizes on X- and Y-cuts 

(see Figure 1), which contradicts to the recent theoretical calculations by Pertsev et al [39] using 

thermodynamic LM approach. Alikin et al concluded that their results can be explained only in terms 

of kinetic approach, which self-consistent formulation is absent to date. 
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Figure 1. (a) Sketch of the domain shape in the XZ plane (Y=0) induced by AFM probe on congruent LiNbO3 

(CLN) non-polar cuts. (b-c) Experimentally observed domain shape from Alikin et al [38] on (b) Y- and (c) X-

cuts of 20-μm-thick CLN.  

 

It is well-established that the domain wall kinetics is strongly affected by the lattice pinning 

[40], which was not accounted in the classical LGD approach. Lattice pinning phenomenon is based on 

the fact that the domain wall can move over a distance equal to the integer number of lattice constants. 

In this case critical electric fields, required for the local polarization reversal, are defined by the 

interplay between the pinning, depolarization and tip fields and can be estimated analytically using 

several models. Suzuki-Ishibashi (S-I) model [41] can be used for the threshold field determination. 

The activation filed, that determines the nucleation kinetics, can be defined within Miller-Weinreich 

[42] or Burtsev-Chervonobrodov (B-C) models [43] modified by Rappe et al [44] and Aravind et al 

[34] respectively by inclusion the phenomena related with polarization gradient and depolarization 

effects at the domain wall. However, none of the models account for the possible anisotropy of the 

threshold and activation fields in different directions. Consequently all of them cannot describe the 

anisotropic domain growth revealed experimentally [38].  

Aforementioned facts motivated us to develop the quantitative self-consistent description of the 

anisotropic nanodomain formation and growth on the non-polar ferroelectric surfaces. We propose the 

conception of the anisotropic threshold field of the domain wall elementary motion for the explanation 

of polarization reversal anisotropy. Our main result is that the threshold field, as isotropic parameter, 

should be replaced by an anisotropic function of the wall orientation that is self-consistently defined by 

the polar properties and lattice pinning anisotropy of the ferroelectric. The proposed method for 

calculation of the anisotropic threshold field is not material-specific, thus the field should be 

anisotropic in all ferroelectrics with the spontaneous polarization anisotropy along the main 

crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric 

perovskites and low symmetry incommensurate ferroelectrics. 
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The manuscript is organized in the following way. The introductive section I preceded the 

theoretical section II, which contains the problem statement for self-consistent numerical modeling and 

atomistic models explaining the origin of threshold field anisotropy. Results of numerical modeling of 

polarization dynamics is presented in the section III. Section IV demonstrates applicability of the 

proposed approach for quantitative interpretation of the experimental results [38]. Section V is a brief 

summary. 

 

II. Theoretical description 

2.1. Problem statement for self-consistent numerical modeling 

Schematic of the tip-induced nanodomain formation on the non-polar Y-cut of uniaxial ferroelectric is 

shown in Figure 2; it is the same as in experiment [35]. The radial component of the axially-

symmetric tip-induced electric field enables domain nucleation and growth. Since the radial 

component Ez is anti-symmetric, its maximum is located at some distance from the tip axes leading to 

the nanodomain displacement, as schematically shown in the figure. 
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Figure 2. Schematics of the tip-induced polarization switching on the non-polar Y-cut of a uniaxial ferroelectric.  

 

Electric potential ϕ  satisfies electrostatic equations inside the layered system. Electric 

potential satisfies Laplace equation in the air/vacuum ambient semispace 0<<∞− y . The potential is 

equal to the switching dc voltage at the surface of the tip. Inside a ferroelectric layer Ly <<0  the 

potential satisfies an anisotropic Poisson equation: 
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Here b
33ε  is the background dielectric permittivity of the ferroelectric [45], 11ε  is the transverse 

component of relative dielectric permittivity, 0ε  is a universal dielectric constant. Polarization gradient 

zPz ∂∂  in the right-hand side of Eq.(1) reflects the existence of the bound charges originated from the 

inhomogeneous polarization distribution. Free charge density responsible for the bound charge 
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screening is ρ. Hereinafter we consider a proper wide-gap ferroelectric-semiconductor, such as 

LiNbO3 without impurities, for which the charge density is ( ) ( )( )ϕ−ϕ=ϕρ npe)( , where equilibrium 

concentration free holes and electrons have a conventional form (see [46] and Appendix A in [47]). 

Equation (1) should be supplemented with the boundary conditions of zero potential at bottom 

planar electrode, continuous potential and normal displacement at the interface between air and 

ferroelectric.  

The ferroelectric polarization dynamics obeys relaxation-type differential equation with cubic 

nonlinearity (see Appendix A in [48]): 
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Dimensionless polarization Szz PPP =~  is normalized on the spontaneous value βα−=SP . A soft 

phonon characteristic time αΓ−=τ0  is determined by the ratio of kinetic Khalatnikov coefficient Γ 

and generalized dielectric stiffness ( )CT TT −α=α , where T is temperature in Kelvins and TC is Curie 

temperature. Correlation length α−= gRc  is about 1 nm far from TC; g is the positive gradient 

coefficient. The electric field zEz ∂ϕ∂−=  is normalized on the "threshold" field Eth, thzz EEE =~ .  

Despite the same mathematical form, in physical sense Equation (2) principally differs from the 

classical LGDK equation used previously [31-35, 37], because the threshold field Eth is not isotropic 

and equal to the thermodynamic coercive field, βα−= 272 3
cE . It is determined by the lattice 

pinning anisotropy that is dependent on the domain wall type and orientation with respect to the 

crystallographic axes. Consequently Eth can be anisotropic and much smaller than the thermodynamic 

coercive field.  

The boundary conditions to Eq.(2) correspond to the uniform polarization far from the tip field 

action, ( ) 1~ +=∞→rPz , and natural boundary conditions at the ferroelectric surfaces, 0~
0

=∂∂
=yz yP  

and 0~ =∂∂
=Lyz yP . 

 

2.2. Atomistic model explaining the threshold field anisotropy 

The main original idea of our research is to demonstrate that threshold fields along different 

crystallographic directions can be significantly different due to crystal anisotropy of the inter-atomic 

relief and energy barriers. 3D-atomic structure of LiNbO3 crystallographic cuts are shown in Figure 

3a-c using the coordinates from Boysen and Altorfer [48]. A suggested step-like path of the domain 

wall motion in the polar direction Z on the non-polar X- and Y-cuts is shown by an elementary step in 

Figures 3b-3c. The step-like path, defined as the elementary Li-Li distances in the directions 
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perpendicular to the polar Z-axes, is in the agreement with Alikin et al explanation of the 

experimentally observed domain growth (see figure 4 in [38]). Then using rhombohedral lattice 

parameters of LiNbO3, а = 5.15 Å, c = 13.86 Å, angle αc = 55o53' [ 49 , 50 ], Z-, Y- and X-cuts 

schematics we calculated the minimal distances ][abcp  between the equilibrium positions of uncharged 

domain wall planes at different crystallographic cuts, 460.423]100[ ≈= ap  Å for X-cut, 

575.22]010[ ≈= ap  Å for Y-cut and 310.26]001[ ≈= cp  Å for Z-cut.  
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Figure 3. Atomic structure of LiNbO3 Z-cut (XY plane) (a) X-cut (ZY plane) (b) and Y-cut (ZX-plane) (c). 

Big blue balls are Nb atoms, smaller green balls are Li atoms and the smallest red balls are O atoms.  

 

To calculate the anisotropic threshold field we account for the anisotropy of the minimal 

distance between the equilibrium positions of the uncharged domain wall in the S-I formula [40] in the 

following way 

( ) ( ) ( )][
23

][
2/74][ exp2 abcabcS

abc
th pwpwPeE π−απ−= ,                     (3) 

Here the half-width of the domain wall w  is normalized on the minimal distance ][abcp  between the 

equilibrium positions of the uncharged domain wall plane propagating in the crystallographic direction 

[abc]. Hereinafter we associate [001] with a Z-cut, [010] with Y-cut and [001] with X-cut.  

The anisotropic threshold field was calculated using Eq.(3) for LiNbO3 parameters α, PS and 

different domain wall half-width w, since the latter can be strongly affected by depolarization field and 

depends on the wall bound charge (e.g. incline angle with respect to the polar direction). Results are 

shown in the Figure 4a. As one can see, the value of Eth differs on the one or even several orders of 

magnitude for different direction of the domain wall motion. In addition it strongly decreases with 
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][abcp  increase and vary in the range (10-3 – 10+2) kV/mm. Eth monotonically and rapidly decreases 

with w increase more than 1 Å for any period ][abcp . Note, that smaller w values are unlikely physical. 

At fixed w> 1 Å the highest fields correspond to the smallest period ][abcp , i.e. X
th

Y
th

Z
th EEE <<  since 

XYZ ppp << . This exactly means that the threshold field is the smallest for Z-cut, intermediate for 

Y-cut and the highest for the X-cut of the crystal.  

To calculate the anisotropic activation field, that determines the nucleation process kinetics, we 

account for the anisotropy of the minimal distance between the equilibrium positions of the uncharged 

domain wall in the B-C approach [34] in the following way: 
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Here V0 is the elementary volume, U is the voltage applied to the tip, R is the effective tip size, γ is the 

dielectric anisotropy factor; minσ  is the minimal value of the periodic lattice potential and δσ  is the 

modulation depth of the domain wall energy ( ) ( )( )][0
2
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activation voltage of domain nucleation, Ucr, can be defined from the requirement of 
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Activation field was calculated by Eq.(4) for parameters R, minσ  and δσ  from Ref.[34]. The 

results are shown in Figure 4b. The value of R is chosen in a reasonable agreement with effective pint 

charge model of the probe [51, 52]. As one can see, Ea is noticeably anisotropic. The dependence of Ea 

on the voltage U has a threshold-type; the field rapidly decreases with U increase and becomes zero 

U > Ucr, indicating the voltage threshold for instant nucleation. The value of Ucr depends on ][abcp  as 

following X
cr

Y
cr

X
cr UUU <<< , because XYZ ppp << . 

Expressions (3)-(4) allowed us to estimate the ratio of the threshold and activation fields in 

different directions for known distances ][abcp  and the energy profile of periodic lattice potential. 

Results are shown in Figure 4c and 4d. The ratio of the threshold fields Y
th

X
th EE  changes from 1.5 to 

5, the ratios Z
th

Y
th EE  and Z

th
X

th EE  are within the range of 1.5 to 100 for realistic values of the domain 

wall width. The ratio of the activation fields Y
a

X
a EE  changes from 1.5 to 10, the ratios Z

a
Y
a EE  and 

Z
a

X
a EE  are within the range of 0 to 3. 

Note, that DFT calculations of the Eth values for three crystallographic directions can be very 

helpful for both our model verification and comparison with experiment. To the best of our knowledge 

the calculations are absent to date. Results of Ref.[34] only gives us corresponding equilibrium 
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position of the uncharged domain wall (determined as the center between two anion planes) and the 

values of the Y-wall energy relief, 160.0min =σ  J/m2 and 150.0=δσ  J/m2 (see scheme in Figure 

S1b). The DFT parameters allowed estimating the activation field from Eq.(4) at applied voltage 

increase, but not Eth. Corresponding activation field Ea becomes essentially smaller than the 

thermodynamic coercive field cE  that is about 1.6 MV/cm for LiNbO3 at room temperature(see 

Figure 4b).  
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Figure 4. (a) Threshold fields dependence on the domain wall half-width w calculated within Suzuki-Ishibashi 

model for LiNbO3 parameters α = −1.95×109 m/F, PS = 0.735 C/m2. (b) Activation fields dependence on the 

voltage U applied to the probe calculated within Burtsev-Chervonobrodov model for the parameters R=100 nm, 

160.0min =σ  J/m2 and 150.0=δσ  J/m2 [34]. (c) The threshold fields' ratio vs. the domain wall half-width w. 

(d) Activation fields' ratio vs. applied voltage U. 

 

III. Modeling and interpolation of polarization dynamics  

We solved numerically LGDK equation (2) for polarization together with the electrostatic equation (1) 

for different values of the free carriers concentration ρ. The concentration ρ was modeled the BPN 
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approximation, ( )Tken Bϕ=ρ sinh0 , for different values of equilibrium concentration 0n =0, 1014 cm-3, 

1016 cm-3, 1018 cm-3, 1019 cm-3, and 1020 cm-3. Appeared that calculated distributions of polarization 

and electric field were almost the same for 0n ≤1019 cm-3, because the screening length was still much 

higher than the effective probe size (~ 10 nm) and uncharged domain wall width (~ 1 nm). Thus we 

concluded that obtained numerical results are almost insensitive to the carrier concentration 

ρ<1019 cm-3.  

Our simulations showed that the concentrations 0n  higher than 1020 cm-3 can lead to the 

noticeable decrease of the probe electric field accompanied by the screening of the charged domain 

walls by free carries. These two factors result into essential decrease of the domain depth due to the 

screening as well as to the strong increase of the activation voltage required for the domain nucleation 

(up to an order of magnitude). Note, that the free carriers mostly affect on the domain sizes and 

domain wall conductivity in the doped ferroelectric-semiconductors, like LiNbO3:Mg, where the free 

carriers concentration becomes more than 1020 cm-3 [53]. 

In contrast, the nanodomain shape and sizes evolution is relatively weakly affected by the bulk 

screening for the carrier concentration less than 10-19 cm-3, which already seems too high value for 

wide-gap ferroelectric-semiconductor without impurities. Thus for the studied congruent LiNbO3 

without impurities one can neglect free carriers impact when model realistic experiments. On the other 

hand, the threshold field Eth, required for the domain wall motion along different crystallographic 

directions, is independent on the presence of free carriers, since it is defined from the minimal distance 

between the equilibrium atomic positions of domain wall. 

To describe the congruent LiNbO3 ferroelectric and dielectric properties at room temperature 

we used the following material parameters ε33
b = 5, ε11 = 84, ε33 = 30, α = −1.95×109 m/F, g~10-

10 V⋅m3/C and 0n =1018 cm-3. Spontaneous polarization SP =0.75 C/m2 and correlation radius 

α−= gRc ≈(0.4 – 1) nm. Threshold field vary in the range thE = (21 – 550) kV/mm. The evolution 

of domain shape and corresponding depolarization field were calculated in COMSOL Multiphysics 

computational package. 

Typical simulation results are shown in Figure 5. Colored domain cross-sections with solid 

borders are calculated in a self-consistent way for different threshold fields, thE = 50 kV/mm for Y-cut 

and thE = 550 kV/mm for X-cut correspondingly. Dotted ellipse-like curves imposed on the colored 

domains are the domain cross-sections calculated under the assumptions that the depolarization field is 

the same as created by the semi-ellipsoid with infinitely thin domain wall; and the threshold field is the 

same for X- and Y-cuts. So that the figure illustrates strong differences between the domains cross-
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sections calculated within not self-consistent (dotted curves) and self-consistent approaches (solid 

curves) side-by-side. 
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Figure 5. Domain shape (top view) calculated for Y-cut (a) and X-cut (b). Colored domain cross-sections with 

solid borders are calculated in a self-consistent way for different threshold fields thE = 50 kV/mm for Y-cut and 

thE = 550 kV/mm for X-cut. Domain cross-sections shown by dotted ellipse-like curves are calculated under the 

assumptions that the threshold field is the same for X- and Y-cuts, depolarization field is the same as created by 

the semi-ellipsoidal domains, domain walls are infinitely thin. 

 

The domain shape on the Y-cut (as well as on the X-cut) calculated self-consistently is close to 

the cone prolonged in the polar direction Z, at that the length rapidly increases with the threshold field 

decrease. The shape strongly deviates from the semi-ellipsoidal one, in contrast to the suggestions 

made earlier in order to obtain analytical expressions for the depolarization electric field energy [39]. 

The domain wall thickness increases in the immediate vicinity of the charged domain apex in order to 

decrease the strong depolarization field. As one can conclude from the figure only self-consistent 

approach lead to the quantitative agreement between the calculated domain shape and sizes and 

experimental results shown in Figures 1b,c. 

Thus the absence of self-consistency in the calculations of the electric fields (not only the 

threshold field thE , but also the field thzz EEE =~ , that stands in the right-hand side of Eq.(2) for 

polarization zP ) leads to the incorrect domain's shape and sizes (primary length). Actually the field 

zEz ∂ϕ∂−=  should be determined in agreement with the Poisson Eq.(1) for the potential ϕf that in 

turn include the polarization derivative zPz ∂∂  in the right-hand side. Thus Eq.(1) and (2) are strongly 
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coupled and should be solved together in a self-consistent manner. If we ignore the threshold field 

anisotropy and the coupling between the electric field and polarization in the Poisson equation, for 

instance by assuming some concrete form of the depolarization field, e.g. using the field caused by 

semi-ellipsoidal domain, as it was done Pertsev et al [39], the charged probe induces the semi-

ellipsoidal domain with equal length and width at both non-polar cuts X and Y. The result is in a 

strong disagreement with experiment of Alikin et al [38], as well as with the results of self-consistent 

calculations.  

In order to perform comparative analysis of the domain evolution, we extracted the temporal 

dependencies of the sizes from the simulated domain profiles. Using designations from the Figure 1a 

we calculated the temporal evolution of the domain length ( )tl  (Fig. 6a), width ( )tr  (Fig. 6b) and apex 

angle ( )tθ  (Fig. 7a).  

Figures 6а and 6b illustrate the dependencies of the domain length and maximal width on the 

ferroelectric surface versus the pulse duration. Points correspond to the numerical results simulated in 

COMSOL. The dependencies are calculated for different values of the threshold field thE . The domain 

sizes monotonically decreases with thE  increasing. During the activation stage corresponding to the 

times from 0 to 0.5 t/τ0 the domain length increases super-linearly, the width increases sub-linearly. 

Starting from the times t>0.5τ0 all the sizes asymptotically obey the logarithmic law, ( ) ( )ctttl log~ . 

Following the available experiments [8, 9] and nucleation rate theory [27, 54, 55] domain sizes 

( )ts  obey the logarithmic law versus the writing time, e.g. ( ) ( )cttts log~ . Allowing for the existence 

of the activation voltage in accordance with B-C model, domain sizes should change rapidly at small 

writing times, since the domain wall velocity exponentially depends on the dragging electric field [9, 

13]. These facts motivate us to interpolate the numerical data by the function 

( ) ( ) ( ) S
c

S BttttfCts +−1log~ 0  with the fitting parameters SC , 0t , ct  and SB . Hence, to establish an 

analytical dependence of the domain sizes vs. writing time we performed the fitting of the simulated 

results by the following interpolation functions:  

( ) ( )
( ) ( )( ) l

kck
k

k
l
k Btt
tt

ttCtl +−
+

= 1log
123

0

23
0 ,                                (5) 

( ) ( )( ) r
kck

r
k BttCtr +−= 1log .                                        (6) 

The subscript k=1 − 5 corresponds to the value of the threshold field thE = (21, 50, 100, 200, 

550) kV/mm. The interpolation functions for the domain sizes have sense for writing times cktt > , 

indicating the impossibility to write a stable domain by a shorter pulse. Also ( ) 1→>> cttf . 
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Figures 6c and 6d show the dependencies of the constants Bk, Ck and ckt  on the threshold field 

thE . The value rl
kB ,  monotonically decreases and ckt  monotonically increases with thE  increasing. As 

anticipated, the critical times tc1=0.065, tc2=0.06, tc3=0.05, tc4=0.03 and tc5=0.02 are the same for the 

domain length and width. The value l
kC  monotonically decreases, while r

kC  very slightly increases 

with thE  increasing. 
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Figure 6. Temporal dependencies of the domain length (а) and width (b) on the ferroelectric surface calculated 

for different threshold fields thE = (21, 50, 100, 200, 550) kV/mm. Points correspond to the numerical results 

simulated in COMSOL. Solid curves 1-5 correspond to the interpolation functions: (а) Eq.(5) plotted for 

parameters kC , kB , kt0  and ckt  shown in the plot (c). (b) Eq.(6) plotted for parameters kC , kB  and ckt  shown 

in the plot d. The scale for ckt  and kt0 are 102. (c,d) Dependence of the fitting constants kC , kB  and ckt  on the 

threshold field. As anticipated, the critical times tc1=0.065, tc2=0.06, tc3=0.05, tc4=0.03 and tc5=0.02 are the 

same for the plots (a)-(b). 

 

Temporal dependence of the angle θ is presented in Figure 7a. Points corresponding to the 

numerical results simulated in COMSOL are very different from the asymptotic expression 

xxzzf εε=θ arctan  derived by Sidorkin [56] that gives the angle of the instability on the flat domain 
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about 65.19  deg for LiNbO3. Note that this expression does not account for the increase of the domain 

wall thickness near charged apex and thus it appears essentially overestimated with respect to values 

calculated numerically. Hence, to establish the analytical law of the angle dependence on time, we 

performed the fitting of the simulated results by the following interpolation function: 

( ) ( )kkk ttBCt 0exp −+=θ θθ .                                      (7) 

The constant θ
kC  doesn’t have to coincide with the value of fθ . Similarly to width and length fitting, 

the subscript k=1 − 5 corresponds to different thE  values. As one can see from Figure7a, the angle is 

acute, monotonically decreases and saturates in agreement to Eq.(7). As it follows from Figure 7b the 

constant kB  monotonically increases with the Eth and saturates for thE >200 kV/mm. The constant kC  

monotonically increases with thE  increasing; the saturation is possible for thE >500 kV/mm, which is 

beyond the simulation range. 
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Figure 7. (а) Temporal dependence of the domain apex angle θ calculated for different threshold fields 

thE = (21, 50, 100, 200, 550) kV/mm. Points correspond to the numerical results simulated in COMSOL. Solid 

curves 1-5 are the interpolation functions (7) plotted for parameters C1=4; C2=6; C3=8; C4=14; C5=19; B1=30; 

B2=38; B3=40; B4=42; B5=42; t01=0.3; t02=0.33; t03=0.43; t04=0.60; t05=0.8. (b) Dependence of the constants kC  

and kB  on the threshold field. 

 
IV. Comparison of domain shape and sizes with experiment 

Alikin et al [38] measured experimentally the domain shape and sizes on the non-polar X- and Y-cuts 

of CLN. Corresponding domain length and width at the non-polar surfaces of the CLN are shown by 

symbols with error bars in Figures 8a and 8b. Solid curves are interpolated functions for the domain 

sizes given by Eq.(5) and (6) with the best fitting parameters listed in the capture. Using the 

parameters for domain length we calculated the ratios =YY CB 0.73 for Y-cut and =XX CB 0.89 for 
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X-cut. This can be compared with values extracted from COMSOL modeling as it shown in Figure 

8c-d. After placing the points YY CB  and XX CB  in Figure 8c-d we concluded that the threshold 

field thE  for X-cut is about 420 kV/mm and about 250 kV/mm for Y-cut. Note that the best fitting 

parameters for domain width corresponding to the same values of X
thE  and Y

thE  is CY=23, BY=138, 

CX=15, BX=82.5.  
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Figure 8. Dependencies of (a) domain length and (b) domain width vs. the switching pulse duration on X- and 

Y-cuts of LiNbO3. Symbols with error bars are experimental data [38] for X- and Y- cuts of 20-μm-thick CLN 

placed in dry nitrogen, solid curves are our fitting using the interpolation functions (5)-(6). The function for the 

domain length is Eq.(5) with parameters CX=90, BX=80, tcX=0.1 ms, t0X=1 ms for X-cut and CY=205, BY=150, 

tcY=0.15 ms, t0Y=1 ms for Y-cut. The function for the domain width is Eq.(6) with parameters CY=23, BY= 138, 

tcY=0.15 ms for Y-cut, CX= 15, BX=82.5 and tcX=0.1 ms for X-cut. (c-d) The ratio CB  extracted from 

numerical modeling. 

 

Note that due to the scattering of the width for X- and especially Y-cut the experimental data 

for domain width is much less reliable than the data for length. So that it has a little sense to conclude 

about the method validity from the domain width fitting. However we obtained a reasonable agreement 

with experiment by changing the fitting parameters for both domain length and width. 

Finally, let us discuss the question about the difference in domain depth for the cases when the 

writing electric field acts on different LiNbO3 cuts. As it was reported earlier by Molotskii et al [9] for 
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the case of nanodomain formation on polar Z-cut their depth (called length in the ref.[9] because of the 

radial symmetry of domain cross-section) can reach micron distances due to the breakdown effect. 

Alikin et al [38] concluded from a selective etching that the domain depth on the Y-cut is rather small 

in comparison with the one on the X-cut. Moreover, "Y-cut domains" most likely remained nanosized 

in Y-direction, while "X-cut domain" can be much deeper, but not needle-like as "Z-cut domains".  

Our approach can explain these facts, because it account for the anisotropy of lattice barriers 

and depolarization effects at the charged domain walls. In particular, the longest needle-like shape of 

Z-cut domains is conditioned by the smallest threshold field ( )Zth pE  and domain breakdown in Z-

direction takes place. The smallest depth Y-cut domain in X-direction originated from inequality 

( ) ( ) ( )ZthYthXth pEpEpE >>> , since the smaller is the threshold field the bigger is the domain size. 

These speculations can be quantified using the ( )][abcth pE  ratios for different crystallographic cuts 

presented in Figure 4c and corresponding minimal distance ≈Zp 2.310 Å, ≈Yp 2.575 Å, 

≈Xp 4.469 Å. 

 

V. Conclusion 

We quantitatively explained the physical nature of anisotropic nanodomain formation induced 

by the biased SPM tip on polar and non-polar cuts of uniaxial ferroelectrics. Our self-consistent 

approach takes into account crystallographic anisotropy of lattice pinning barriers and so 

corresponding threshold field becomes dependent on the crystallographic direction. Performed analysis 

proved that the threshold field for X-cut should be significantly higher than the one for Y-cut and Z-

cut. Corresponding analytical expression for the anisotropic threshold field was obtained within 

modified Suzuki-Ishibashi approach, which allows us to explain quantitatively several times difference 

in nanodomain length on the X- and Y-cuts observed experimentally in LiNbO3 [38]..  

Our main result is the conception of anisotropic threshold field of the domain wall elementary 

motion. The proposed method for calculation of the field is not ferroelectric material-specific. We 

predict that the threshold field should be anisotropic in all ferroelectrics with the spontaneous 

polarization anisotropy along the main crystallographic directions X, Y and Z. The most evident 

examples are all uniaxial ferroelectrics (e.g. LiNbO3, LiTaO3, KDP, TGS, Rochelle salt, PVDF), 

layered ferroelectrics (e.g. SBT, SBTN, Bi4Ti3O12), incommensurate ferroelectrics like Sn2P2(S,Se)6 

and CuInP2(S,Se)6 as well as their solid solutions with other ferroics. The field can be isotropic only in 

the multiaxial ferroelectric with cubic parent phase (e.g. in perovskites BaTiO3, PbTiO3, KNbO3 and 

likely in BiFeO3). To the best of our knowledge all previous analytical models regarded the field 

isotropic for all ferroelectrics. Hence obtained results can give insight into nontrivial anisotropic 

dynamics of polarization reversal at the nanoscale. 
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