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We report on high-order magnetoplasmon resonances detected in photoresistance in high-mobility
GaAs quantum wells. These resonances manifest themselves as a series of photoresistance extrema
in the regime of Shubnikov-de Haas oscillations. Extending to orders as high as 25, the extrema
exhibit alternating strength, being less (more) pronounced at even (odd) order magnetoplasmon
modes. This experimental technique provides sensitive and elegant means to detect and investigate
multiple magnetoplasmon modes and could be applied to other systems.
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When a two-dimensional electron gas (2DEG), later-
ally confined to a Hall bar of width w, is subjected to
a weak perpendicular magnetic field B and microwave
radiation, its photoresistance reveals magneto-plasmon
resonances (MPR) [1–11]. The n-th plasmon mode has a
wavenumber qn = πn/w (n = 1, 2, ...) and due to the hy-
bridization with the cyclotron mode in a magnetic field
its dispersion takes the form [12, 13]:

ωn =
√

ω2
c +Ω2

n , Ω2
n = nΩ2

1 , Ω2
1 =

2παc

ǫ⋆w

EF

~
. (1)

Here, ωc = eB/m⋆ is the cyclotron frequency of an elec-
tron with the effective mass m⋆, Ω1 = 2πF1 is the fre-
quency of the plasmon mode with the wavenumber π/w,
α = e2/4πǫ0~c ≈ 1/137 is the fine structure constant, ǫ0
is the vacuum permittivity, ǫ⋆ = (ǫ+1)/2 is the effective
dielectric constant of the surrounding medium, ǫ = 12.8
is the dielectric constant of GaAs, and EF is the Fermi
energy. The MPR occur when the excitation frequency
ω = 2πf is equal to ωn which can be tuned by B.

Although there exists no quantitative theory of the
MPR photoresistance, it is believed that the radiation
absorption translates to electron heating which, in turn,
causes a resistivity change [1, 4, 6]. While some pho-
toresistance measurements revealed either only the fun-
damental [1] or the lowest few odd-order MPR modes
[4], another study [6] reported MPR modes with n =
1, 2, 3, 4. Higher order (n . 10) MPR have been ob-
served in microwave absorption [14] and spatially re-
solved photoluminescence [15] and, more recently, even
higher modes have been detected in photovoltage [16, 17]
and differential luminescence spectra [18].

Since the number of observable MPR modes is given
by (f/F1)

2, high excitation frequency f is a prerequisite
for observation of high-order modes. In addition, for the
MPR modes to be experimentally resolved, the spacing
between them should exceed their width. The half-width

of the n-th MPR can be written as [19–21]

δωn = γ + Γn , (2)

where γ is the incoherent scattering rate and Γn is the
superradiant rate due to coherent dipole reradiation of
oscillating 2D electrons. The superradiant decay rate Γn

is given by [22]

Γn = Γ0(Ln/λ)
2 , Γ0 =

2α

n⋆

EF

~
, (3)

where Ln is the coherence length, λ = c/fn⋆ is the pho-
ton wavelength, and n⋆ = (

√
ǫ + 1)/2 is the effective

refractive index. At high n, the superradiant rate drops
rapidly due to the decay of coherence length Ln ∼ w/n
[18] and the MPR width is governed by the incoherent
rate γ. Therefore, small incoherent scattering rate is an-
other essential ingredient for the detection of high-order
MPR.
Here we report on very high-order magnetoplasmon

resonances resistively detected in very high-quality GaAs
quantum wells at radiation frequencies up to ∼ 0.4 THz.
Owing to high sensitivity of Shubnikov-de Haas oscilla-
tions (SdHO) to MPR-induced changes of electron tem-
perature, the resonances manifest themselves as a series
of resistance extrema superimposed on the SdHO. Ex-
tending to orders as high as n = 25, the extrema ex-
hibit alternating strength, being less (more) pronounced
at even (odd) magnetoplasmon modes. The employed
experimental scheme provides a very efficient way to in-
vestigate the properties of MPR and could be applicable
to other 2D systems.
Our samples are 200 µm-wide Hall bars fabricated from

symmetrically doped, 30-nm wide GaAs/AlGaAs quan-
tum wells. After low-temperature illumination, electron
density and mobility of a Princeton-grown sample A were
ne ≈ 2.5× 1011 cm−2 and µ ≈ 2.5× 107 cm2/Vs, respec-
tively. Sample B, grown at Purdue, had ne ≈ 2.6× 1011
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FIG. 1. (Color online) (a) [(b)] ρ(B) measured in sample
A [B] at f = 378 [333] GHz and T ≈ 0.38 [0.31] K. SdHO
minima in (a) are marked by filling factor ν = 8, 10, 12, 14,
16. Inset shows zoomed-in part of the data shown in (a) near
the cyclotron resonance. A series of deep (shallow) radiation-
induced minima is marked by vertical lines (arrows).

cm−2 and µ ≈ 1.3 × 107 cm2/Vs. The resistivity was
measured at temperatures of 0.3 − 0.4 K using a stan-
dard low-frequency lock-in technique, in sweeping B and
under radiation of frequency f from 0.23 THz to 0.38
THz generated by a backward wave oscillator.

In Fig. 1(a)[(b)] we show magnetoresistance ρ(B) un-
der microwave irradiation of frequency f = 378 GHz mea-
sured in sample A [B] at f = 378 [333] GHz and T ≈ 0.38
[0.31] K. In both samples, the data reveal microwave-
induced resistance oscillations (MIRO) [2, 23–25] and
SdHO coexisting over a wide magnetic field range [26].
In addition to MIRO and SdHO, both data sets show
a structure consisting of multiple sharp features in the
vicinity of the cyclotron resonance.

A closer look at this structure, shown in the inset of
Fig. 1(a), reveals that it is a series of extrema. Near the
SdHO maxima, this series is represented by resistance
minima which are roughly equally spaced in the mag-
netic field; between filling factors ν = 12 and ν = 14, we
observe at least seven such minima. The minima can be
divided into two classes, strong ones (cf. vertical lines)
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FIG. 2. (Color online) ρ(B) at different f , as marked, mea-
sured in sample A. Some examples of MPR are marked by
arrows. The traces are offset for clarity by 7 Ω.

and weak ones (cf. ↓), appearing roughly in the middle
between the neighboring strong minima. As discussed
below, these strong (weak) features originate from mag-
netoplasmon resonances of odd (even) order n, with n as
high as 25. While the feature around ν = 10 in Fig. 1(a)
also originates from photoresistance, identifying its ex-
act nature is left for future studies. One possible origin
is the plasmon-photon mode hybridization which leads
to crossing of magnetoplasmon dispersion with cyclotron
lines [18, 27].

Around the SdHO minima, MPRs are manifested by
local maxima (see, e.g. a maximum at B ≈ 7.5 kG in the
inset of Fig. 1(a)). These maxima are less pronounced
due to a weaker temperature dependence of the SdHO re-
sistance minima in the regime of separated Landau levels.
Indeed, at even ν the density of electron states is small
in a wide band around the Fermi level and raising the
temperature has little effect as long as it remains small
compared to inter-level spacing.

In Fig. 2 we plot magnetoresistance ρ(B) measured in
sample A at several frequencies from 230 GHz to 374
GHz, as marked [28]. Each trace reveals a series of ex-
trema (some examples marked by arrow), similar to that
shown in Fig. 1, which move to higher B with increas-
ing f . Since the resonances are most pronounced around
the SdHO maxima, these extrema are best observed at
higher f (lower ν) where more MPR modes can be re-
solved within one SdHO period. One remarkable feature
of our data is the unusually large number of both odd
and even MPR modes, made possible by high sensitiv-
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FIG. 3. (Color online) B2 (circles) vs. n, for f = 377 GHz
(upper) and 354 GHz (lower), obtained from sample A. Solid
(open) circles represent odd (even) n. Fits to the data (lines)
using Eq. (4) yield m⋆

≈ 0.066m0 and F1 ≈ 56 GHz.

ity of SdHO to variations of electron temperature due to
resonant absorption in our high mobility samples [29].
To confirm that the observed extrema originate from

MPR we examine the dispersion relation for two radi-
ation frequencies using the data from sample A. Per
Eq. (1), the magnetic field at which the n-th MPR (ω =
ωn, B = Bn) occurs should satisfy

B2 = B2
n ≡ (m⋆/e)

2 [

ω2 − nΩ2
1

]

. (4)

In Fig. 3 we plot the square of the magnetic field, at which
the n-th MPR occurs, for f = 377 GHz and f = 354 GHz,
as marked, as a function of n. Here, filled (open) circles
represent odd (even) n, spanning from n = 5 to n =
27 [30]. Despite slight deviation at low n, the data for
both frequencies conform to Eq. (4); linear fits generate
m⋆ ≈ 0.066m0 [31] and F1 ≈ 56 GHz. Obtained F1 is
about 0.95 of what is expected from Eq. (1), in reasonable
agreement with past theoretical [32] and experimental
[1, 4, 9] studies.
We next examine the frequency dependence of the

observed resonances and demonstrate that it can also
be well described by the magnetoplasmon dispersion,
Eq. (1). In Fig. 4 we plot f2 vs. B2 for three select
modes, n = 7, 13, 19, and observe that the data can be
well described by parallel lines. Such a behavior is indeed
expected for MPR since

ω2 = ω2
n ≡ nΩ2

1 + (e/m⋆)2B2 , (5)

see Eq. (1). The universal slope of the linear fits again
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FIG. 4. (Color online) f2 vs. B2 for n = 7 (circles),
13 (squares), 19 (triangles), obtained from sample A. The
fits to the data (lines) with f2 = f2

0 + (e/2πm⋆)2B2 yield
m⋆ = 0.066m0. Inset shows f

2

0 , obtained from the fits, vs. n,
revealing linear relationship, f2

0 ∼ n. The slope of the linear
fit (line) yields F1 ≈ 55 GHz.

conforms to m⋆ ≈ 0.066m0.

After performing such fits for all available n, we extract
the intercepts of the fits with the vertical axis f2

0 and
present the result as a function of n in the inset of Fig. 4.
The data reveal a linear relation between f2

0 and n, in
accordance with Eq. (1), and from the slope of the fit,
f2
0 = nF 2

1 , we find F1 ≈ 56 GHz, in good agreement with
the value obtained above. We further note that at n <
10, f2

0 (n) slightly deviates from the linear dependence
and bends down. As we show below, this deviation is
likely due to retardation effects.

The retardation effects are characterized by the retar-
dation parameter α′, defined as the ratio of the plasmon
frequency to the light frequency at the same wavenumber.
At the fundamental plasmon wavenumber q1 = π/w, we
find, for sample A, ωph/2π = c/2wn⋆ ≈ 0.33 THz and
α′ = Ω1/ωph ≈ 0.07(EF /~ωph)

1/2 ≈ 0.18. Since the
phase velocity of the magnetoplasmon mode is propor-
tional to n−1/2, the retardation effects become weaker at
higher n. It has been shown that the plasmon frequency
decreases with α′ [4, 27]. It is therefore reasonable to
have a larger deviation from Eq. (1) at lower n, as ob-
served in both Fig. 3 and Fig. 4(b).

As mentioned in the introduction, observation of mul-
tiple MPR modes relies on their sharpness. We esti-
mate the half-width of the observed MPR as δBn ≈
2.5 mT which is largely insensitive to n. Since the
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FIG. 5. (Color online) ρ(B) at T ≈ 0.4 K and different f , as
marked, measured in sample A. Traces are offset for clarity
by 7 Ω.

width is obtained from magnetoresistance, it does not
directly translate to the width of the MPR. Neverthe-
less, since the width of the photoresistance minima does
not show significant variation within one SdHO period,
it should be comparable to the actual MPR width. Using
δωn ≈ (∂ωn/∂B)δBn = (e/m⋆)(ωc/ω)δBn, we estimate
δωn/2π ≃ 1 GHz, close to the cyclotron resonance.

The MPR width δωn is expected to be a sum of co-
herent radiative decay rate Γn and incoherent collisional
rate γ, see Eq. (2) and Eq. (3). In sample A we esti-
mate Γ0/2π ≈ 14 GHz and at f = 0.38 GHz, Γ1/2π =
Γ0/2π(w/λ)

2 ≈ 4.7 GHz. At higher n, Γn = Γ1/n
2 be-

comes smaller than γ. This is consistent with our obser-
vation that the fundamental MPR n = 1 is not well re-
solved, whereas higher order MPRs have similar widths,
dominated by γ.

The incoherent scattering rate γ is often associated
with the transport scattering rate τ−1, which is about
τ−1/2π ≈ 0.2 GHz in sample A. However, there exist no
exact relation between the two quantities; for the electron
density of sample A, Ref. 33 has found γ to be about 5
times larger than τ−1, giving a conservative estimate of
γ/2π ≃ 1 GHz. This value is in good agreement with
δωn/2π ≃ 1 GHz obtained from our experimental data.

Another interesting feature revealed by our data is the
even-odd mode alternating strength [34]. Assuming a
uniform electric field distribution, only odd modes are
expected [32], consistent with some experiments [1, 4].
Other experiments, however, revealed both odd and even
low-order modes, with comparable, but often random,
strengths [6, 14, 15]. While we have clearly observed
different signal strengths for even and odd modes, their
ratio can vary with the radiation frequency. In Fig. 5
we present ρ(B) measured in sample A at different f ,
369 GHz, 365 GHz, and 351 GHz. At f = 369 GHz
(top trace), the even modes are much weaker than the

odd, at f = 365 GHz (middle trace) they become notice-
ably stronger, and at f = 351 GHz (bottom trace) even
modes become comparable to the odd ones. The varia-
tion in the strength of even modes with f likely reflects
variation in radiation distribution [35]. While a more
uniform radiation produces weaker even modes, they be-
come more pronounced under nonuniform radiation dis-
tribution. Our measurements never revealed even modes
which are stronger than the odd ones.

In summary, exploiting high mobility 2DEGs, high ra-
diation frequencies, and strong sensitivity to tempera-
ture of SdHO, we have detected high-order magnetoplas-
mon resonances. Extending to orders above n = 25,
the MPR-induced photoresistance extrema exhibit alter-
nating strength, being less (more) pronounced at even
(odd) n. Taken together, our results demonstrate that
this experimental technique provides a surprisingly sen-
sitive and elegant means to detect and investigate high-
order MPR modes which could be applicable to other 2D
systems, such as MgZnO/ZnO heterojunctions [36] and
AlAs quantum wells [37].
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Rev. B 48, 17145 (1993).

[2] M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno,
Phys. Rev. B 64, 201311(R) (2001).

[3] S. Holland, C. Heyn, D. Heitmann, E. Batke, R. Hey,
K. J. Friedland, and C.-M. Hu, Phys. Rev. Lett. 93,
186804 (2004).

[4] I. V. Kukushkin, V. M. Muravev, J. H. Smet, M. Hauser,
W. Dietsche, and K. von Klitzing, Phys. Rev. B 73,
113310 (2006).

[5] C. L. Yang, R. R. Du, L. N. Pfeiffer, and K. W. West,
Phys. Rev. B 74, 045315 (2006).

[6] S. I. Dorozhkin, A. A. Bykov, I. V. Pechenezhskii, and
A. K. Bakarov, JETP Lett. 85, 576 (2007).

[7] L.-C. Tung, C. L. Yang, D. Smirnov, L. N. Pfeiffer, K. W.



5

West, R. R. Du, and Y.-J. Wang, Solid State Commun.
149, 1531 (2009).

[8] I. V. Andreev, V. M. Muravev, I. V. Kukushkin, S. Sch-
mult, and W. Dietsche, Phys. Rev. B 83, 121308(R)
(2011).

[9] A. T. Hatke, M. A. Zudov, J. D. Watson, and M. J.
Manfra, Phys. Rev. B 85, 121306(R) (2012).

[10] A. T. Hatke, M. A. Zudov, J. D. Watson, M. J. Man-
fra, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 87,
161307(R) (2013).

[11] MPRs can also be observed directly in microwave absorp-
tion [4, 14].

[12] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[13] A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).
[14] S. A. Studenikin, A. S. Sachrajda, J. A. Gupta, Z. R.

Wasilewski, O. M. Fedorych, M. Byszewski, D. K.
Maude, M. Potemski, M. Hilke, K. W. West, et al., Phys.
Rev. B 76, 165321 (2007).

[15] I. Baskin, B. M. Ashkinadze, E. Cohen, and L. N. Pfeiffer,
Phys. Rev. B 84, 041305 (2011).

[16] M. Bialek, M. Czapkiewicz, J. Wrobel, V. Umansky, and
J. Lusakowski, Appl. Phys. Lett. 104, 263514 (2014).

[17] The photovoltage measured in Ref. 16 revealed maxima
at the positions corresponding to a subset of modes. For
example, at f = 645 GHz this subset includes modes
3, 7, 9, 11, 15, but not 1, 5, 13, 17, 19. Similar conclusion
holds for other data shown in Fig. 2 of Ref. 16.

[18] V. M. Muravev, I. V. Andreev, S. I. Gubarev, V. N.
Belyanin, and I. V. Kukushkin, Phys. Rev. B 93,
041110(R) (2016).

[19] K. W. Chiu, T. K. Lee, and J. J. Quinn, Surf. Sci. 58,
182 (1976).

[20] S. A. Mikhailov, Phys. Rev. B 54, 10335 (1996).
[21] Q. Zhang, T. Arikawa, E. Kato, J. L. Reno, W. Pan,

J. D. Watson, M. J. Manfra, M. A. Zudov, M. Tokman,
M. Erukhimova, et al., Phys. Rev. Lett. 113, 047601
(2014).

[22] R. P. Leavitt and J. W. Little, Phys. Rev. B 34, 2450
(1986).

[23] R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayana-
murti, W. B. Johnson, and V. Umansky, Nature 420, 646
(2002).

[24] M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 90, 046807 (2003).

[25] C. L. Yang, M. A. Zudov, T. A. Knuuttila, R. R. Du,

L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 91,
096803 (2003).

[26] Q. Shi, P. D. Martin, A. T. Hatke, M. A. Zudov, J. D.
Watson, G. C. Gardner, M. J. Manfra, L. N. Pfeiffer, and
K. W. West, Phys. Rev. B 92, 081405(R) (2015).

[27] I. V. Kukushkin, J. H. Smet, S. A. Mikhailov, D. V.
Kulakovskii, K. von Klitzing, and W. Wegscheider, Phys.
Rev. Lett. 90, 156801 (2003).

[28] While at different f we sometimes detect variations of
electron density of ∼ 1% due to different power, these
variations have negligible effect on the MPR dispersion.

[29] In addition to heating, another possible contribution to
the signal is the MPR-induced spatial density variations
[15]. As such variations occur on the length scale set by
the magnetoplasmon wavelength, it would also suppress
SdHO which are measured over larger length scales.

[30] Lower order MPRs overlap with the cyclotron resonance
absorption peak [18] which causes strong SdHO sup-
pression making them insensitive to minute temperature

changes caused by MPRs. Gaps in the data correspond to
Bn away from the SdHO maxima where the resonances
were not well resolved.

[31] Consistent with previous studies [10], this value is about
10% larger than the one obtained from MIRO.

[32] S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B
71, 035320 (2005).

[33] I. V. Andreev, V. M. Muravev, V. N. Belyanin, and I. V.
Kukushkin, Appl. Phys. Lett. 105, 202106 (2014).

[34] Interestingly, the strength of MPR-induced photoresis-
tance dips show little variation with odd or even n.

[35] Our experiments are performed without using resonant
cavities and, as a result, the radiation field distribution is
not controllable. Furthermore, the presence of contacts,
metallic pins on the chip carrier, and other metallic parts
make random formation of standing waves in the sam-
ple space possible. At 0.4 THz, the distance between the
nodes of such standing waves is close to or smaller than
the sample dimensions. As a result, different parts of the
sample are exposed to different radiation intensities.

[36] V. E. Kozlov, A. B. Van’kov, S. I. Gubarev, I. V.
Kukushkin, V. V. Solovyev, J. Falson, D. Maryenko,
Y. Kozuka, A. Tsukazaki, M. Kawasaki, et al., Phys.
Rev. B 91, 085304(R) (2015).

[37] V. M. Muravev, A. R. Khisameeva, V. N. Belyanin, I. V.
Kukushkin, L. Tiemann, C. Reichl, W. Dietsche, and
W. Wegscheider, Phys. Rev. B 92, 041303(R) (2015).


