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A critical aspect of quantum mechanics is the nonlocal nature of the wavefunction, a characteristic that may
yield unexpected coupling of nominally-isolated systems. The capacity to detect this coupling can be vital in
many situations, especially those in which its strength is weak. In this work we address this problem in the
context of mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using
pairs of coupled quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano
resonance is provided by pinching off one of the QPCs, thereby inducing the formation of a quasi-bound state
at the center of its self-consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium
Fano resonance (NEFR), in which nonlinear electrical biasing of the interferometer gives rise to pronounced
distortions of its Fano resonance. Our experimental results are captured well by a quantitative theoretical model,
which considers a system in which a standard two-path Fano interferometer is coupled to an additional, intruder,
continuum. According to this theory, the observed distortions in the Fano resonance arise only in the presence
of coupling to the intruder, indicating that the NEFR provides a sensitive means to infer the presence of weak
coupling between mesoscopic systems.

PACS numbers: 03.65.Yz, 34.80.Dp, 42.25.Hz, 73.23.-b, 73.63.-b

I. INTRODUCTION

A central concept at the heart of physics is that extended
systems may demonstrate rich behavior, not associated with
their individual components but which arises when they are
coupled to one another. Just a few different examples of
this concept are provided by the natural bandstructures of
periodic crystals, and their engineered counterparts in semi-
conductor superlattices1 and metamaterials2. In the emerg-
ing field of quantum information, the coupling of one sys-
tem to another brings both benefits and disadvantages; on
the one hand enabling sophisticated computations3, while on
the other giving rise to undesirable decoherence4. Regardless
of the ultimate application, in many cases there is a critical
need to detect the coupling of different systems, especially
under conditions where this coupling is weak. The objec-
tive of this work is to demonstrate the possibility of achiev-
ing such detection by exploiting the strong spectral sensitivity
of Fano resonances5–9 (FRs). Ubiquitous to both classical-
8 and quantum-7,9 wave systems, FRs are being explored
for application in areas as diverse as nanoelectronics9–12,
plasmonics8,13–16, metamaterials17,18,36, energy harvesting20,
and optics and nanophotonics21. Here we explore their im-
portance to the discussion of transport in quantum point con-
tacts, in which we demonstrate a nonequilibrium form of FR
that provides an all-electrical scheme for the detection of weak
quantum coupling in these mesoscopic devices.
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A. Fano resonances & their extension to the nonequilibrium
Fano resonance

FRs are observed in wave systems in which the transmis-
sion from an initial to a final state is governed by the interfer-
ence between a continuum and a narrow level. Broadly real-
ized in a variety of systems5–21, the essential features of the
Fano geometry are indicated schematically in Fig. 1(a). This
shows a problem in which waves propagate between points A
and B (in some configuration space), with the transmission ei-
ther occurring directly (matrix element w) or being mediated
(with matrix element v) by a discrete level (D) that serves as
an intermediate state. In this doubly-connected geometry, re-
sultant wave interference causes the transmission (T ) to ex-
hibit a rapidly-varying resonant modulation (Fig. 1(a), right
panel), as the energy (or frequency) of the incoming wave is
swept through that of the discrete level. The lineshape of the
resonance takes a universal form whose profile is determined
by an asymmetry parameter (q), which in turn is governed by
the matrix elements w and v5,6. Dependent upon the value of
q a variety of different lineshapes may be obtained, ranging
from Lorentzian (q =∞) and near-symmetric (q� 1) forms,
to fully antisymmetric (q ∼ 1) and “window” resonances (or
antiresonances, with q = 0). The capacity to manipulate the
form of the FR via its asymmetry parameter, combined with
the ability to very effectively modulate the transmission of an
incident wave, are the features that make this phenomenon
of such interest for use in the various applications alluded to
above.

The manifestation of FRs in physical systems may be
strongly enhanced under nonequilibrium conditions, with
good examples being provided by the phenomenon of Ra-
man scattering in doped semiconductors22 and in carbon
nanostructures23. In these materials, the interference scheme
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FIG. 1: (a) Shown left is a schematic representation of the standard
two-path FR, while on the right we represent the possible variation
of transmission as a function of energy (E) for such a system. The
lineshape of the resonance reflects the relative values of the matrix
elements w and v, which in this case are shown to yield a weakly
asymmetric peak. (b) The schematic on the left indicates the situation
in which the Fano system of (a) is coupled to an additional, intruder,
continuum (I). On the right we sketch the expected variation of T (E)
for this system. The dotted line represents the FR in the absence
of the intruder, while the solid line indicates the lineshape distortion
that can be induced by the coupling to I. (c) The left panel is a
schematic representation of the energy alignment in the standard FR.
The host continuum connects points A and B and is coupled to the
discrete level (D) by the matrix element v. A FR results when mono-
energetic waves are injected into the system with an energy close to
Eo. The right panel shows the corresponding alignment relevant to
discussions of the NEFR. Here, the host is coupled to the discrete
level and the intruder (I), with respective matrix elements v and t.
The NEFR occurs when waves with a spread of energies, ranging
from Eo to Eo + ∆, are simultaneously injected into the system to
access both D and I. The dotted line in the figure indicates the energy
alignment of the intruder.

of Fig.1(a) is realized when a photon flux establishes a two-
path transition from an initial state to a continuum: the first
path involves the direct transmission between these states,
while the second is mediated by a one-phonon Raman emis-
sion. In another example, a “nonlinear Fano effect” has been
demonstrated in studies of the near-infrared absorption of self-

assembled quantum dots24. In these experiments, strong op-
tical illumination was used to couple discrete states in the
quantum dots to a two-dimensional continuum, resulting in
pronounced distortions of their photoabsorption peaks from a
simple Lorentzian form. These resonances were instead well
described by a model of Fano interference, in which the q-
parameter could be parametrically varied by means of the in-
cident laser power.

In the two examples discussed above, nonlinear optical ex-
citation is used to establish the two-path geometry required for
Fano interference. In this work, however, we describe a dif-
ferent form of nonequilibrium Fano resonance (NEFR), which
we observe in a mesoscopic system in which the two-path
Fano interferometer is already established under equilibrium
conditions. By monitoring the distortions of its FR that arise
when the system is subjected to strong nonequilibrium electri-
cal driving (see Fig.1(b), right panel), we are able to infer the
presence of coupling between the Fano interferometer and an
additional continuum. The realization of this phenomenon in
an all-electrically-controlled scenario provides a useful con-
trast to prior demonstrations of optically-driven nonequilib-
rium Fano phenomena22–24, and confirms the capacity25 to
coherently manipulate carriers in mesoscopic devices under
strongly nonlinear conditions.

The generalized concept of the NEFR is indicated schemat-
ically in Fig. 1(b). In this relatively-straightforward exten-
sion of Fig. 1(a), the usual two-path Fano interferometer (see,
also, the left schematic of Fig. 1(c)) is modified by coupling
it (with matrix element t) to an additional continuum (I). As
we indicate in the right schematic of Fig. 1(c), this intruder26

continuum is taken to be separated energetically from the dis-
crete level by an energy detuning ∆. In a situation in which
mono-energetic waves are injected into the system to realize
an equilibrium FR (at E = Eo), the intruder will therefore be
energetically inaccessible and will consequently not partici-
pate in the resonant interference. However, if waves are in-
jected into the same system with a spread of energy, chosen
such that it matches the value of the detuning (∆), transmis-
sion via both the discrete level and the intruder can be acti-
vated simultaneously (see Fig. 1(c)). Under such conditions,
a three-path interferometer is established and it is this modi-
fication to the Fano geometry that results in the distortion of
the resonance that we indicate schematically in Fig. 1(b). The
NEFR therefore provides a means to detect the coupling of the
host to the intruder; put more simply, it allows us to detect the
presence of hidden components within a Fano system, even
when they are undetectable in near-equilibrium transmission.

B. Experimental implementation of the NEFR

In our specific implementation of the NEFR, we implement
the three-path interferometer of Fig. 1(b) by exploiting the
unusual properties of mesoscopic quantum point contacts27

(QPCs) near pinch-off. QPCs are tunable electron waveg-
uides that are typically realized by electrostatic gating27 of
a high-mobility two-dimensional electron gas (2DEG). In this
approach, split-metal gates, separated by a nanoscale gap, are
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formed on top of the 2DEG substrate. By applying a suitable
voltage to the gates the electrons directly underneath them can
be depleted, leaving a narrow conducting channel within their
gap. With the gate voltage adjusted such that the QPC is close
to pinch-off, the charge within this channel can be reduced
to the level of just a few electrons. In this ultra-low density
limit, it has been argued theoretically that strong electron in-
teractions can modify the self-consistent potential of the QPC,
causing a natural quantum dot to spontaneously develop at its
center28–32. While the existence of this self-consistent fea-
ture remains subject to debate (see the discussion at the end of
this paper), a number of experiments nonetheless suggest that
this scenario is correct26,33–41. Among these include our own
work26,38–41, in which evidence for localized-state formation
in pinched-off QPCs was provided by using this state to gener-
ate a FR in the (linear) conductance of a nearby (“detector-”)
QPC. The measurement scheme used in these experiments is
indicated in Fig. 2(a), which shows two QPCs, separated by a
few hundred nanometers, which are nonlocally coupled to one
another through an intervening region of 2DEG. This latter re-
gion serves as a continuum of states and mediates coupling be-
tween the QPCs by means of wavefunction overlap39,41,42. To
induce the FR in the detector, the gate voltage (Vs) applied to
the other (“swept-”) QPC is adjusted to align the discrete level
of its quantum dot with the Fermi level in the common con-
tinuum. Under such conditions, a measurement of the linear
conductance of the detector (i.e. a measurement performed
by applying a vanishingly-small voltage across this QPC) ex-
hibits a FR that results26,42 from the interference of electron
waves that are injected from the detector to the drain (solid
line with arrow in Fig. 2(a)), with those that reach the drain
after first tunneling to and from the discrete level (dotted line
in Fig. 2(a)).

To introduce the role of the intruder into the above scenario
for an equilibrium FR, it is necessary to consider somewhat
more carefully the form of the density of states in the swept-
QPC. Prior to pinch-off, where the QPC potential is well un-
derstood to be described by a parabolic saddle-like form27, the
density of states consists of a set of (equally-spaced) quasi-
continua. These correspond to the different one-dimensional
(1D) subbands that mediate transport when the QPC is open,
and which are responsible for the observation of its quan-
tized conductance27. At pinch-off, however, the structure of
the density of states should be markedly different, as we in-
dicate in Fig. 2(b). Due to the formation of a localized state,
the lowest feature in the spectrum should correspond to a nar-
row peak. At the same time, the quasi-continua associated
with the 1D subbands should be pushed above the Fermi level.
Given this description, the connection to the intruder scheme
of Fig. 1(b) should be immediately apparent; the localized
state formed within the QPC may serve as the discrete level
(D) of a Fano scheme while the 1D subbands, separated from
the discrete level by an energy detuning ∆, play the role of the
intruder. With the swept-QPC configured near pinch-off, and
under near-equilibrium conditions, its localized state will lie
near the Fermi level while the quasi-1D intruder will be ener-
getically inaccessible at low temperatures. As we demonstrate
here, however, a NEFR may be realized in this system by ap-

plying a suitable (nonlinear) source bias across the detector-
QPC. Rather than probing the properties of the conductance
near the Fermi level, as is done in small-signal transport stud-
ies, this allows us to simultaneously gain access both D and I
(see Fig. 2(c)) as required for the NEFR.

II. EXPERIMENTAL METHODS

Coupled QPCs were realized26,39–41 by electrostatic gating
of high-quality GaAs/AlGaAs heterostructures (Sandia sam-
ples EA750 and VA0284, referred to hereafter as Devices 1
and 2). A 2DEG was formed in a 30-nm wide quantum well
in these wafers, with a carrier density of ∼ 2 × 1011 cm−2

and mobility of ∼ 3×106 cm2/Vs. All experiments were per-
formed at 4.2 K, a sufficiently low temperature to ensure co-
herent overlap between the coupled QPCs. AC conductance
of the detector-QPC was measured with an RMS bias vD <100
µV. The multi-gate geometry used to demonstrate the NEFR
is indicated in Fig. 2(a). By biasing specific pairs of gates,
and leaving others grounded, coupled QPCs could be imple-
mented in different configurations (Fig. 3(a)). The lineshape
of the FR exhibited in the linear conductance of the detector
is known to be strongly configuration dependent40, indicating
that varying the spatial arrangement of the two QPCs allows
us to systematically manipulate the coupling elements (w and
v) appearing in the Fano problem. In previous work, we have
largely focused on studies in which a small AC bias (vD in
Fig. 2(a)) was applied across the detector to determine its con-
ductance near equilibrium. Here, however, we superimpose a
larger DC voltage (VD) upon vD, thereby defining a non-zero
energy window for transport (that gives rise to the NEFR when
it contains both the discrete level and the intruder). While the
voltages were actually applied to ohmic contacts at the edge of
a 2DEG mesa (not indicated in Fig. 1(b)), the small resistance
(∼20 Ω) of these ungated regions ensured that the voltages
were largely dropped across the detector QPC. Consequently,
heating of the ungated 2DEG43,44 was not expected to be sig-
nificant.

Important for the discussion that follows will be an under-
standing of the key energy scales associated with our system.
Using the 2DEG density quoted above, we determine a Fermi
energy of ∼6 meV in the ungated regions of the device. Sepa-
rate bias-spectroscopy studies, on the other hand, indicate the
energy spacing of the different 1D subbands that comprise the
intruder to be in the range of 1 - 3 meV at pinch-off45. Finally,
an important parameter in Fig. 2(b) is the energy detuning (∆)
between the discrete level and the edge of the intruder band.
Self-consistent calculations based on spin-density functional
theory28 suggest that this energy, also, should be in the range
of a few meV. We return to address this last point further be-
low, in the light of our experimental results.
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FIG. 2: (a) False color micrograph of a coupled-QPC device, in which the lighter-colored gates are held at ground potential (G) while the
gold-colored gates are used to form the coupled QPCs. Vs and Vd represent the (DC) voltages applied the gates of the swept- and detector-
QPCs, respectively. The white circle represents the natural quantum dot formed in the swept-QPC at pinch off, which is tunnel coupled (white
dotted line) to electrons injected (solid white line with arrow) from the source of the detector. In measurements of the NEFR, the detector
conductance is measured by superimposing a non-zero DC voltage (VD) on top of a smaller AC component (vD). (b) A schematic illustration
of the density of states (DoS) in a QPC. This structure is only expected to be valid near pinch-off, where a spontaneously-formed discrete level
(D) is present inside the QPC. The 1D subbands of the QPC represent the intruder and are separated from D by an energy detuning ∆. (c)
Concept of the QPC-based intruder scheme. The Fano interferometer is created by coupling the DoS in (b) to the different reservoirs of the
device (the source, drain and floating regions, at electrochemical potentials µS , µD, and µF , respectively).

FIG. 3: The main panel shows measurements of the linear conduc-
tance (VD = 0) of the detector QPC for the two coupled-QPC geome-
tries identified as Configurations 1 & 2 in the false-color electron
micrographs that form the upper insets to the figure. Red data cor-
respond to the geometry identified as Configuration 1, while blue
data correspond to Configuration 2. Dotted lines through the data
represent the background subtracted from the raw conductance to
obtain the resonant component. The schematic at the bottom of the
panel represents the realization of the intruder scenario in the cou-
pled QPCs. The intruder and the discrete level are formed within the
same QPC, as indicated by the red dotted line enclosing these two
entities.

III. RESULTS

A. Experimental observations

In Fig. 3 we demonstrate the form of the detector resonance
obtained under conditions of linear transport (i.e. VD = 0) for
two different coupled-QPC geometries that we refer to here-
after as Configurations 1 & 2 (see the upper insets to the fig-
ure). In both experiments, the variation of the detector con-
ductance (Gd) is measured as the gate voltage (Vs) applied to
the swept-QPC is used to pinch-off that structure. The reso-
nant feature present in both curves is the FR of interest here
and is superimposed upon a background (dotted lines in the
main panel) that represents the direction electrostatic action
of the swept-QPC gates on the detector40. In all subsequent
analysis, this background is removed from the raw data, leav-
ing only the resonant feature (∆Gd) in the detector conduc-
tance.

Turning to the issue of the lineshape of the resonances in
Fig. 3, these exhibit a pronounced influence of the specific
coupled-QPC geometry. Specifically, in Configuration 1, the
two QPCs are relatively far apart from one another and the
FR is only weakly asymmetric. In Configuration 2, in con-
trast, the two QPCs are much closer to one another and form
a stub-tuner like geometry that generates an antiresonance in
the detector. This strongly configuration-dependent charac-
ter of the detector resonance is consistent with the results of
our previous, near-equilibrium, investigations40. The essential
point is that, by varying the separation between the swept- and
detector-QPC, we are essentially controlling the the relative
magnitude of the matrix elements w and v, with direct con-
sequences for the Fano asymmetry parameter40 Indeed, it is
also worth noting that the antiresonance exhibited for Config-
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uration 2 in Fig. 3 is reminiscent of that observed in studies in
which such features have been induced in the conductance of
narrow wires, by side-coupling them to intentionally-formed
quantum dots46.

In Fig. 4 we present our observations of the NEFR in Con-
figurations 1 and 2, illustrating how the detector resonance
is affected as VD is increased from zero. In both configura-
tions we see that (Fig. 4(a)), regardless of its initial form, the
detector resonance develops a sharp dip on its less-negative
gate-voltage side, the relative amplitude of which grows more
pronounced as VD is increased. Recognizing the capacity of
Vs to act as a “plunger”, that may sweep the local density of
states of the QPC past the Fermi level, the presence of the dip
at less-negative gate voltage than the main resonance indicates
that this dip should be associated with a structure at higher en-
ergy than the discrete level. In fact, we will see shortly below
that this structure is due to the edge of the 1D subbands indi-
cated in Fig. 2(b).

Figure 4(b) shows the evolution of the detector resonance
more systematically for Configuration 2, as a function of the
two control voltages (Vs and VD). There are several notewor-
thy features of this contour, the first of which is the emergence
of the additional dip (identified already in 4(a)) on the “high-
energy” flank of the original FR. This feature grows so strong
by the maximal bias of 10 mV that it almost obscures the orig-
inal resonance completely. Secondly, it is clear that, with in-
crease of the bias VD, both of these features (as indicated by
the dotted and dashed lines) shift steadily to more-negative
gate voltage. We have established previously39,40 that the FR
exhibited in the linear conductance of the detector (at VD = 0)
occurs soon after the swept-QPC pinches-off. The systematic
shift of the white dashed line in Fig. 4(b) therefore reflects
the fact that, with larger source bias applied across a QPC,
stronger (i.e. more-negative) gate biasing is needed to pinch
it off47. The white dotted line in Fig. 4(b) denotes the corre-
sponding shift of the additional dip that appears on the high-
energy side of the original FR and it is clear that this shows
a similar dispersion to this original resonance. This is quite
consistent with the picture of the density of states presented
in Figure 2(b) and allows us to interpret the separation be-
tween the two dips with the energy detuning (∆) between the
discrete level and the 1D subbands. In a simple (non-self-
consistent) picture of a “rigid” QPC potential, we might ex-
pect the Vs separation of the two dips to remain constant as
VD is increased. That this is not in fact the case indicates
that the form of the self-consistent potential near pinch-off

is modified by the detector bias. A description of this prob-
lem is beyond the scope of the current work. Nonetheless,
it must be emphasized that the behavior shown in Figs. 3(b)
& 3(c) was not limited to these illustrative examples, but was
reproduced in measurements performed on equivalent com-
binations of coupled QPCs, in both devices. It was also un-
affected by varying detector conductance over a wide range
(1× 2e2/h ≤ Gd ≤ 11× 2e2/h), confirming the idea that the
resonance is driven by processes occurring within the swept-
QPC.

A couple of further aspects of Fig. 4(b) are worthy of clar-
ification. Firstly, we note that the dispersion of the main res-

onance and its high-energy dip should not be confused with
some kind of avoided crossing. Rather, as we have noted al-
ready, the separation between these features is reflective of
the detuning (∆) between the discrete level and the 1D sub-
bands. Even at VD = 0, this separation is not expected to van-
ish but rather to remain non-zero. Secondly, and more im-
portantly, in the paragraph above we have emphasized the ca-
pacity of the nonlinear bias to influence the QPC potential.
In our experiment, however, the bias in question (VD) is ap-
plied to the detector-QPC while the swept-QPC is actually
the one responsible for the observed resonance. In order to
explain this apparent contradiction, it is necessary to consider
the role of the “floating region” indicated in Fig. 2(a). While
this reservoir cannot draw any net current from the supply,
carriers may be injected into it from the detector as they exit
it ballistically48,49. This process results in the appearance of
a potential difference between the floating reservoir and the
drain, which increases to reach a value sufficient to ensure
that no net charge is injected into the floating region. That is,
application of voltage VD to the detector will result in the ap-
pearance of a potential drop across the swept-QPC, and it is
this latter voltage that is responsible for the dispersion of the
two resonances in Fig. 4(b).

In order to investigate the nature of the voltage that devel-
ops across the floating reservoir, we have performed a sepa-
rate experiment using the configuration shown in Fig. 5. As
indicated in the inset to the figure, in this experiment we ap-
ply an AC voltage (vD) of varying amplitude (RMS values are
indicated in the figure) across the detector, and measure the
resulting AC voltage (vF) that develops at the floating elec-
trode as Vs is varied. Also shown for comparison in the fig-
ure is the dependence of the swept-QPC conductance (Gs) on
Vs. Comparing the variation of vF with that of Gs, it is clear
that a significant voltage develops at the floating reservoir as
the swept-QPC approaches pinch-off. The maximum value
of this voltage increases with increasing vD, but it should be
noted that it always remains less than the value of the supply
voltage. As the swept-QPC pinches off, the reservoir voltage
also decreases (although we are unable to observe its complete
quenching due to the limited input impedance of our lock-in
amplifier). Near pinch-off we therefore see that biasing of the
detector can lead to the appearance of a significant voltage
across the swept-QPC.

B. Theoretical modeling of experiment

The detailed variations of the detector resonance in Fig. 3
are reproduced well by a theoretical model that we have devel-
oped, and which attributes them to a form of NEFR. While the
detailed derivation of this model is provided in the appendix
to this paper, the essential idea of our approach is to model
the system as a localized state and a 1D band, embedded in a
junction formed by three separate regions of 2DEG. These are
distinguished by their electrochemical potentials µS , µD, and
µF , in the source, drain, and floating reservoirs, respectively
(refer to Figs. 2(a) & 2(c)). The Hamiltonian for this system
is solved by introducing appropriate matrix elements to de-
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FIG. 4: (a) Measurements of the NEFR in the two different configurations. The red curves were measured in Device 1 in Configuration 1,
while the blue curves were obtained in Configuration 2 for Device 2. (i) Red data: VD = 0 mV. Blue data: VD = 0 mV. (ii) Red data: VD =

3 mV. Blue data: VD = 2 mV. (iii) Red data: VD = 4 mV. Blue data: VD = 3 mV. (iv) Red data: VD = 5 mV. Blue data: VD = 4 mV. (v) Red
data: VD = 6 mV. Blue data: VD = 5 mV. (b) Contour plot revealing the full variation of detector conductance as a function of Vs and VD, for
Device 2 in Configuration 2. A monotonic background has been subtracted from Gd to construct the contour. The white dashed line shows the
evolution of the original antiresonance, present at VD = 0, while the white dotted line represents the signature of the intruder that emerges for
nonzero VD.

scribe the coupling between the different components of the
system. In this way we are able to compute the dependence of
the detector conductance on both energy and applied source
bias (VD), and to therefore model the behavior in experiment.

In Fig. 6(a), we present the results of calculations of the
detector conductance as a function of energy (equivalent to
variation of Vs) and VD. The resulting figures clearly capture
the essential features of our experiment (see the corresponding
panels of Fig. 3(b)), reproducing the sharp dip that appears on
the lower-energy side of the resonance when VD is applied.
The amplitude of the resonances obtained from the model is
roughly half that of those observed in experiment. Given the
relative simplicity of our model, which does not attempt to
treat the specific microscopic details of our experimental sys-
tem, we consider this degree of agreement to be satisfactory.
The correspondence between experiment and theory allows
us to attribute our observations to a NEFR, involving a mech-
anism that is indicated in Fig. 6(b). Here we indicate the
influence of using a variation of the swept-QPC gate voltage
(Vs) to scan the local density of states of this QPC past µS
and µD (compare the left and center panels). Close to thermal
equilibrium (vD = VD = 0), and at the low temperatures that
we consider here, this alignment may be achieved separately
for either the localized state (Fig. 6(b), left panel) or the 1D
continuum (center panel), but not simultaneously for both fea-

tures. This situation is overcome at non-zero VD, which allows
µS and µD to be separately aligned with I and D, for an appro-
priate bias that matches ∆/e (Fig. 6(b), right panel). In other
words, the nonequilibrium conditions allow us to complete the
three-path Fano interferometer, revealing the coupling to the
intruder. This point is made clear by comparing the influence
of nonequilibrium biasing on the usual two-path (Fig. 6(c)),
and three-path (Fig. 6(d)), FR. Figure 4(c) was obtained for an
intruder coupling t = 0 (i.e. no intruder influence) and shows
only a rigid shift in the position of the detector resonance as
VD is varied, without the appearance of any dip. As we have
described already, a similar shift is also seen in experiment
(see Fig. 4(b), for example), in which the position of the de-
tector resonance shifts to more-negative Vs as VD is similarly
increased. The shift is apparent again in the results of Fig.
6(d), obtained this time with nonzero coupling to the intruder,
although the most dramatic feature here is a strong distortion
of the FR due to the presence of the intruder. The distortion
appears on the high-energy side of the resonance, in agree-
ment with the results of experiment and consistent with the
idea that the source of the intruder is indeed the 1D subbands
of the pinched-off (swept-) QPC.

While the good agreement between experiment and theory
in Figs. 4 & 6 provides strong support for our interpretation
of the NEFR, this agreement is dependent upon the choice of
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FIG. 5: Measurements of the floating-reservoir voltage (vF ) as a
function of Vs, in the configuration indicated in the inset to the figure.
The different curves were obtained by applying various AC voltages
(vD, RMS values indicated in the figure) across the detector, and then
measuring the voltage of the floating reservoir relative to ground.
Also shown is the corresponding variation of Gs(Vs).

model parameters (most notably t and v) whose values can-
not be determined from first principles. For this reason, it is
important to provide some kind of justification for the values
used for these parameters in the various curves in Fig. 6. The
essential point here is that, in order to fit the results obtained
in Configuration 1, we require smaller parameter values (t = v
= 30 meV) than those needed to fit the data for Configuration
2. This appears to at least be reasonable, since in Configura-
tion 1 the two QPCs are farther apart than in Configuration 2
and so the matrix elements t and v should be smaller in this
case. The other point that must be emphasized is that the vari-
ous nonlinear resonances in Figs. 4 & 6 cannot be fitted using
the usual Fano asymetry (q-) parameter. This is clearly ob-
vious for the data obtained in Configuration 2, in which the
NEFR exhibits a “double-dip” structure that is completely in-
consistent with any known Fano form5. Even the nonlinear
data obtained in Configuration 1, which appear reminiscent of
the classic q ∼ 1 lineshape, however, do not conform to the
universal Fano form. This point was emphasized previously
in our earlier study of the ”magnetically-tuned” FR26, where
we showed that the dip that develops due to the intruder can-
not be fitted by the same q-value needed to describe the peak
due to the discrete level. In the context of the nonlinear ex-
periment of interest here, this point can be understood by ap-

pealing to the results of our theoretical model. Most notably,
in Eqs. (A.20a) and (A.20b) of the appendix we present ex-
pressions for the separate contributions to the NEFR from the
discrete level and the intruder, respectively. While the for-
mer contains a term that resembles the usual Fano lineshape,
the latter modifies this lineshape under nonequilibrium condi-
tions, so that the overall resonance can no longer be expected
to be described by Fano’s universal form.

IV. DISCUSSION

A. Connection to earlier work on Fano-interference schemes

Recently, there has been much attention devoted to the ob-
servation of a nonlinear FR, in studies of the near-infrared
photoabsorption in self-assembled quantum dots24. In this ex-
periment, strong mono-energetic laser excitation was used to
reveal clear evidence of Fano interference in the quantum-dot
absorption process. The interference arose from the presence
of two distinct pathways for excitonic transitions, the first in-
volving direct electron-hole excitation within the dot, while
the second involved a process in which this transition was me-
diated by an intervening continuum. Physically, the source of
the continuum was a wetting layer in close proximity to the
quantum dot, and the matrix element for transmission through
it could be increased by increasing the laser power. In other
words, the role of the nonlinear excitation in this experiment
was to form the usual two-path Fano geometry. More recently,
a similarly-tunable nonlinear FR has been considered50 for
hybrid nanostructures, comprised of semiconductor quantum
dots coupled to metallic nanoparticles. In such systems, the
excitonic modes of the quantum dots and the plasmonic ones
of the nanoparticles correspond, respectively, to the discrete
and continuum states of a Fano scheme. These components
are then again coupled to one another through nonlinear exci-
tation to give rise to the FR. Both of these examples24,50 are
therefore different to the NEFR discussed here, in which the
Fano system is already formed under equilibrium and the non-
linear electrical excitation (with non-monoenergetic waves) is
instead used to reveal its coupling to an additional system (i.e.
the intruder).

Our demonstration of the NEFR represents another exam-
ple of a double-continuum FR, with strong conceptual over-
lap with recent work on plasmonic Fano systems51. There,
the possibility of “continuum-state competition” has been dis-
cussed, in which one continuum can significantly influence
the Fano interference exhibited by another. This possibility
was actually established in our earlier experimental study26,
in which we demonstrated the capacity of our coupled-QPC
scheme to provide a realization of the intruder. To observe
the influence of this feature in near-equilibrium transport, it
was necessary in that work to apply a strong magnetic field
perpendicular to the plane of the device. By causing wave-
function compression of the different QPC states, this allowed
us to reduce the detuning between the discrete level and the
intruder, thereby allowing the signature of the latter to emerge
in the detector conductance. The approach here, in contrast, is
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FIG. 6: (a) Model calculations of the NEFR for different system parameters. The top panels assume t = 30- and v = 30-meV, and are intended
to reproduce the top set of panels of Fig. 4(a). The lower panels, on the other hand, assume t = v = 40 meV, and capture the behavior for the
bottom set of panels of Fig. 4(a). (b) Schematic illustrations showing the level alignments in the system under different conditions. The left
and center panels are for thermal equilibrium (vD = VD = 0), where either the localized state (D, left) or the edge of the 1D-subbands (center)
is aligned with the reservoir chemical potentials. Shown right, however, is the nonequilibrium situation, where the applied voltage (VD) opens
up an effective energy window that may be used to simultaneously couple to both D and I. (c) NEFR computed for t = 0, corresponding to the
usual two-path FR shown in the upper schematic of Fig. 1(a). The calculations assume v = 30 meV and are performed for different VD (values
indicated). (d) Similar NEFR (v = 30 meV, values of VD again indicated), but for t = 30 meV.

very different, making use of nonequilibrium biasing to reveal
the coupling to the intruder, without the need for a magnetic
field. This capacity to implement the NEFR by all-electrical
means moreover provides us with a useful scheme to perform
spectroscopy of the intruder system (see below), something
that was not directly possible in the magnetic-field studies.

Finally we note that, in recent theoretical work52, a gener-
alized description of FRs in the presence of dissipation was
developed. The essential conclusion reached by the authors
of that work was that the dissipation results in a modified FR,
whose lineshape now features an additional Lorentzian contri-
bution. The situation in our experiment is very different, since
we consider how the FR lineshape is modified by the intro-
duction of the intruder, when it provides an additional path for
coherent interference in the system. The resulting lineshape in
this case reflects the specific form of the density of the states
of the one-dimensional intruder, and we do not treat the role
of dissipation at all in our theoretical model. The essential
agreement that we achieve between experiment and our more-
restricted theory suggests that, at least in the low-temperature
regime that we consider, dissipation does not play a primary
role in influencing the lineshape of the NEFR.

B. Does a localized state really form in QPCs?

While the emphasis in this study has been on the use of
coupled QPCs to demonstrate the NEFR, our results also have
additional impact in terms of their relevance to ongoing dis-
cussions, as to whether a localized state can in fact form
spontaneously in a QPC at pinch-off. The most recent con-
tribution to this debate has come in the form of measure-
ments of the electronic magnetization of QPCs from nuclear
magnetic resonance53. In that work, the authors inferred a
smooth change in magnetization as a function of QPC barrier
height and used this result to conclude that no localized state
is formed within the QPC. Our experiments clearly contradict
this interpretation; most notably, the NEFR relies at its core on
the existence of a discrete level in the pinched-off QPC. From
our prior work26,39,40, which has shown that the quantitative
features of the detector resonance are reproduced systemat-
ically in multiple QPCs, fabricated in different heterostruc-
tures, we can moreover rule out a “chance” impurity as the
source of this localized state. We also emphasize an important
difference between our nonlocal transport investigations and
the local measurements of QPC conductance that are usually
made in any experiment (including that of53). Specifically,
we have established previously26,39–41 that the FR exhibited
by the detector is observed immediately after the swept-QPC
pinches-off. As such, our measurements of coupled systems
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provide us with a means to access information on the QPC
electronic structure in a regime where the conductance has
vanished and which is therefore inaccessible in local investi-
gations of individual QPCs.

Finally, we point out that our measurements of the NEFR
provide us with a technique to perform a spectroscopy of the
local density of states of the pinched-off QPC. More specif-
ically, our numerical simulations of the NEFR indicate (see
Fig. 4) that the nonlinear distortion of the FR should onset
once the energy window opened by the nonlinear bias (VD)
becomes comparable to the detuning (∆, see Fig. 2(b)) be-
tween the discrete level and the intruder. From the data of Fig.
3, it would appear that the relevant value for this detuning is in
the range of a few meV. As noted earlier, this estimate is con-
sistent with the results of self-consistent calculations based on
spin-density functional theory28.

V. CONCLUSIONS

In conclusion, we have demonstrated an approach to detect
weak (tunnel) coupling between quantum systems by mak-
ing use of a nonequilibrium Fano resonance that differs from
the usual implementations of this phenomenon. The essen-
tial idea of this approach is to exploit the strong sensitivity of
the Fano resonance to the presence of additional transmission
pathways, as a means to identify the coupling of some host to
an intruder. Crucially, our nonequilibrium scheme allows us to
detect the presence of “hidden” components within some sys-
tem, even while they remain “invisible” in near-equilibrium
transport. For a proof-of-concept demonstration of this phe-
nomenon, we implemented an electron-wave interferometer
from mesoscopic quantum point contacts. Against a backdrop
of continued theoretical interest52,54 in the potential applica-
tions of FRs, our experiment serves to demonstrate the rich
physical behavior that can be realized by extending the Fano
interferometer beyond its usual two-path form.
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Appendix: Modeling the nonequilibrium Fano resonance

We model the system by considering a localized state (LS)
and a 1D band, embedded in the junction formed by three sep-
arate regions of two-dimensional electron gas (2DEG). These
three reservoirs are distinguished by their electrochemical po-
tentials µS , µD, and µF , corresponding to the source, drain,
and floating reservoirs, respectively. Electrons in the source
and drain reservoirs are connected directly to each other via
the rate w. They are also coupled to the LS with rates vS and
vD, and to the 1D band via rates tS and tD. The LS and 1D
band are also coupled to the third reservoir (F) with rates vF
and tF , respectively. The Hamiltonian for this setup is written
as

H =
∑
k∈χ

Eχknχk +ε0n +
∑

q
εqnq

+

 ∑
k∈L,k′∈R

wc†kck′ +
∑
k∈χ

c†k
(
vχd + tχaq

)
+ H.c.

 . (A.1)

Here, Eχk is the energy of an electron in reservoir χ = S ,D,F,
whereas ε0 and εq denote the energies of electrons in the LS
and the 1D band. The operators ck, d, and aq destroy electrons
in the reservoirs, the LS, and the 1D band, respectively, and n
is the number operator. We omit any reference to spin in the
present case.

The expression for the stationary charge current flowing be-
tween the source and drain can be written

I(V) =
ie
h̄

∑
k∈S

(
fS (εk)Q>(εk) + fS (−εk)Q<(εk)

)
, (A.2)

where the lesser/greater form, Q</>(ω), of the propagator Q(z)
describes the physics of the electron bath in the drain and of
the electrons in the swept-QPC, as well as the interactions
in the model. fχ(ω) = f (ω− µχ) is the Fermi function at the
chemical potential µχ.

1. Standard Fano resonance

Ignoring, for now, the presence of the propagating 1D states
in the swept-QPC, we can factorize Q</>(ω) according to

Q</> =
(
vS + wvD

∑
k

gr
k

)
GrΣ</>Ga

(
v∗S + w∗v∗D

∑
k′

ga
k′
)

+

[
|w|2 + 2Re

{
wvD

[
v∗S + w∗v∗D

∑
k′

ga
k′
]
Ga

}]∑
k

g</>k

(A.3)

We introduce the notation

A =vS + wvD

∑
k∈D

1
ω−Ek

, (A.4a)

B =πwvD

∑
k∈D

δ(ω−Ek), (A.4b)
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and define the Fano factor q = A/B. We further notice that

wvD

∑
k∈D

g</>k (ω) =(±i)2 fD(±ω)B, (A.5a)

|w|2
∑
k∈D

g</>k (ω) =(±i)2 fD(±ω)
|B|2

ΓD/2
. (A.5b)

Finally, we also have Gr(ω)Σ</>(ω)Ga(ω) = Σ</>(ω)|Gr(ω)|2,
where

Σ</>(ω) =(±i)
∑

χ=S ,D,F

fχ(±ω)Γχ, (A.6a)

|Gr(ω)|2 =
1

|ω−ε0−Σr(ω)|2
=

1
(Γ/2)2

1
ε2 + 1

. (A.6b)

Here, we have defined ε = (ω− ε0 −ReΣr)/(Γ/2), with Γ =

−2ImΣr(ω) =
∑
χΓχ and Γχ = 2π

∑
k∈χ |vχ|2δ(ω− εk). In this

way we obtain

Gr(ω)Σ</>(ω)Ga(ω) =

= (±i)
fS (±ω)ΓS + fD(±ω)ΓD + fF(±ω)ΓF

(Γ/2)2
1

ε2 + 1
. (A.7)

Substituting these expressions into that for the current, we find
that

I(V) =4
e
h̄
|B|2

∑
k∈S

(
fS − fD

)(ΓD

Γ2
q2 + 1
ε2 + 1

+
1

ΓD +
2
Γ

εq−1
ε2 + 1

)
+ 4

e
h̄
|B|2

∑
k∈S

(
fS − fF

)ΓF

Γ2
q2 + 1
ε2 + 1

. (A.8)

In the limit ΓS /ΓD� 1, ΓF/ΓD� 1 where Γ ≈ ΓD, the current
reduces to

I ≈
4e
h̄

∑
k∈S

|B|2

Γ

(
fS (εk)− fD(εk)

) (ε+ q)2

ε2 + 1
, (A.9)

which gives the typical Fano interference formula for a single
LS in the propagating pathway. Using non-equilibrium Green
functions we have, hence, established a straightforward route
to obtain the classic expression5,6 for the Fano resonance.

2. Nonequilibrium Fano resonance

To describe the nonequilibrium Fano resonance we now in-
clude the propagating states in the swept-QPC and employ the
same method as above to obtain

Q</> =

[
|w|2 + |tS |2|tD|

2
∣∣∣∣∑

q
ar

q

∣∣∣∣2]∑
k∈D

g</>k + 2Re
{[

vS + wvD

∑
k∈R

gr
k + wtS t∗D

∑
q;k∈D

ar
qgr

k

]
Gr

[
w∗v∗D + w∗t∗S tD

∑
q′

aa
q′

]} ∑
k′∈D

g</>k′

+

[
vS + wvD

∑
k∈D

gr
k + wtS t∗D

∑
q;k∈D

ar
qgr

k

]
G</>

[
v∗S + w∗v∗D

∑
k′∈D

ga
k′ + w∗t∗S tD

∑
q′;k′∈D

ga
k′a

a
q′

]
+ |tS |2

[
1 + 2|tD|

2Re
∑

q;k∈D

gr
kar

q

]∑
q′

a</>q′ + 2Re
{[

vS + wvD

∑
k∈D

gr
k + wtS t∗D

∑
q;k∈D

ar
qgr

k

]
Grw∗t∗S tD

∑
k′∈D

gr
k′

}∑
q′

a</>q′ . (A.10)

Here we define the parameters

Ã =vS + wvD

∑
k∈D

Regr
k + wtS t∗D

∑
q;k∈D

Rear
qgr

k, (A.11a)

B̃ =−wvD

∑
k∈D

Imgr
k−wtS t∗D

∑
q;k∈D

Imar
qgr

k, (A.11b)

and q̃ = Ã/B̃. Using G</> = Σ</>|Gr |2 with Gr and Σ</> de-
fined as in the previous case, we can write the third contribu-
tion (second line) to Q</> as 4|B̃|2(|q̃|2 + 1)Σ</>/[(ε2 + 1)Γ2],
which has the same functional appearance as the correspond-

ing contribution to the standard Fano resonance. Similarly, we
can write the first contribution (first line) to Q</> as

(±i)2 fD(±ω)

∣∣∣∣−wvD
∑

k Imgr
k−wtS t∗D

∑
qk Imar

qgr
k

∣∣∣∣2
−
∑

k |w|2Imgr
k

=(±i)4 fD(±ω)
|B̃|2

ΓD , (A.12)

under the condition that Re
∑

k gr
k ≈ 0, which holds for the

metallic state in the 2DEG. By the same token, we can then
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also write the second contribution (first line) as

(±i)4 fD(±ω)Re{B̃(q̃− i)Gr B̃∗} = (±i)8 fD(±ω)
|B̃|2

Γ

εq̃−1
ε2 + 1

.

(A.13)

Inserting the first three contributions from Eq. (A.10) into the
current we obtain

ILS =4
e
h̄
|B|2

∑
k∈S

(
fS − fD

)(ΓD

Γ2
q̃2 + 1
ε2 + 1

+
1

ΓD +
2
Γ

εq̃−1
ε2 + 1

)
+ 4

e
h̄
|B|2

∑
k∈S

(
fS − fF

)ΓF

Γ2
q̃2 + 1
ε2 + 1

, (A.14)

which is formally the same expression as that for the standard
Fano resonance in Eq. (A.8).

Finally, the fourth and fifth terms (third line) in Eq. (A.10)
can be written as

Re
{
|tS |2 + 2|tS |2|tD|

2
∑

q;k∈D

gr
kar

q

+ 2B(q̃− i)Grw∗t∗S tD

∑
k′∈D

gr
k′

}∑
q′

a</>q′ =AS

∑
q

a</>q .

(A.15)

Since the propagator aq for the propagating states in the
swept-QPC couples to electrons in both the source and drain
reservoirs we have

ar/a
q (ω) =

1
ω−εq± iγ/2

, (A.16a)

a</>q (ω) =(±i)
∑
χ

fχ(±ω)γχ|ar
q(ω)|2, (A.16b)

with γ=
∑
χ γχ and γχ = 2π

∑
k∈χ |tχ|2δ(ω−Ek). Summing over

the momenta q, we obtain (setting κ2
± = 2N0(ω−εsw± iγ/2))∑

q
|ar

q(ω)|2 =

∫ ∞

0

1
|ω−εq + iγ/2|2

dq
2π

=
N0

γ

( 1
κ+

+
1
κ−

)
.

(A.17)

The corresponding contribution to the current therefore be-
comes

I1D =
e
h̄
AS

∑
qk∈S

(
γD

(
fS − fD

)
+γF

(
fS − fF

))
|ar

q|
2. (A.18)

3. Differential conductance

We assume that µS = µD +eV , µF = µD +αFeV , and µD = 0,
with 0 ≤ αF ≤ 1, so that the (differential) conductance from
Eqs. (A.14) and (A.18) for can be written at low temperatures
as

dILS

dV
=4

e2

h̄
|B|2

∑
k∈S

[(
ΓD

Γ2
q̃2 + 1
ε2 + 1

+
1

ΓD +
2
Γ

εq̃−1
ε2 + 1

+
ΓF

Γ2
q̃2 + 1
ε2 + 1

)
δ(εk− eV)

−αFδ(εk−αFeV)
ΓF

Γ2
q̃2 + 1
ε2 + 1

]
, (A.19a)

dI1D

dV
=

e2

h̄
AS

∑
qk∈S

[(
γD +γF

)
δ(εk− eV)

−αFγFδ(εk−αFeV)
]
|ar

q(εk)|2, (A.19b)

respectively. Physically, the parameter αF accounts for the
voltage drop between the floating and right reservoirs, and is
dependent on charge accumulation around the swept-QPC. In
correspondence to to the experimental situation, we take the
limit ΓS /ΓD � 1, ΓF/ΓD � 1 where Γ ≈ ΓD, and γD/γF � 1.
The conductances are then dominated by

dILS

dV
=4

e2

h̄

∑
k∈S

|B|2

Γ

(ε+ q̃)2

ε2 + 1
δ(εk− eV), (A.20a)

dI1D

dV
=

e2

h̄
AS γF

∑
qk∈S

(
δ(εk− eV)

−αFδ(εk−αFeV)
)
|ar

q(εk)|2. (A.20b)

This shows that the contribution from the LS generates a
standard Fano-resonance in the conductance when the ε0 is
swept through the chemical potential, behavior described by
the ratio (ε + q̃)2/(ε2 + 1). The contribution from the intruder
generates, on the other hand, a signature with the character-
istic shape of the 1D density of electron states, as can be
seen from the presence of the integrated 1D Green function∑

q |ar
q(ω)|2 ∼

∑
s=± 1/

√
ω−εsw + isγ/2. The difference in the

parentheses signifies that the 1D density of electron states is
available only when there is a finite voltage drop across the
swept-QPC, that is when this QPC is in a non-equilibrium
state.
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