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Abstract 

Using density functional theory calculations (both perturbed and unperturbed) as well as thermodynamic 

and ballistic transport equations, what follows investigates thermal and mechanical properties of 2D 

boron monolayers (δ6-, α-, δ5-, and χ3-sheets with respective vacancy densities η = 0, 1/9, 1/7, 1/5) as they 

relate to the vacancy density. The triangular (δ6) sheet’s room-temperature phonon and electron thermal 

conductances are found to respectively be roughly 2.06 times and 6.60 times greater than those of 

graphene.  The Young’s moduli, calculated from longitudinal and transverse sound velocities are in good 

agreement with those obtained from elastic constants.  Values range from 171 to 619 N/m, two of which 

(619 N/m for α-sheet and 546 N/m δ5-sheet) exceed graphene’s Young’s modulus (~340 N/m).  It is 

determined that the vacancy density have a diminishing effect on both the phonon heat capacity at 

constant volume and the phonon ballistic thermal conductance, but no regular correlation on the electron 

heat capacity and electron ballistic thermal conductance.  

PACS numbers: 65.40.-b, 62.20.-x, 63.22.-m 

I. Introduction 

Like carbon, boron is one of the few elements with pure, freestanding, and single-layer structures.  

Starting from a bi-dimensional repetition of equilateral triangles, a plethora of such 2D structures have 

been predicted1-5 by increasing the ratio of hexagon holes to the number of atomic sites in the original 

triangular sheet within one unit cell, namely, the hexagonal vacancy density η.  Plus, a relationship among 

the vacancy density, the stability, and the morphology of boron sheets has been abduced1-6.  Stable boron 
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sheets with η between and including 0 and 1/9 are buckled.  Those with η between 1/9 and 1/5 (excluding 

the former and including the latter) are flat.  Those with η greater than, and excluding 1/5, are unstable.    

Among all the predicted boron sheets, the synthesis of δ6 (η = 0), β12 (η = 1/6) and χ3 (η = 1/5) have 

recently been reported7-9, albeit weakly bounded to the substrate.  The synthesis of δ6
9

 was done under 

ultrahigh vacuum conditions using a solid boron atomic source as a precursor and atomic scale 

characterization to confirm its predicted anisotropic buckling.  The synthesis of β12
8

  and χ3
8

 were done on 

Ag(111) surface in ultrahigh vacuum chamber employing molecular beam epitaxy (MBE) thereby 

confirming their flat morphology.  Earlier10 and subsequent computational studies9 further confirmed the 

anisotropic nature of elastic moduli of δ6.  

Given the relevance of the vacancy density to the stability and shape of 2D boron sheets, its impact on 

thermal properties is not only to be expected but also worth exploring, which is what the present 

investigation purports to do.  The phonon and electron heat capacity at constant volume per unit area 

along with the phonon and electron thermal conductances are calculated on the basis of the previously 

calculated phonon spectra and electronic band structures for four boron sheets: δ6-, α-, δ5 -, and χ3- (with 

vacancy densities η = 0, 1/9, 1/7, and 1/5 respectively).  The lattice and electronic band structures are 

calculated using the density functional perturbation theory (DFPT) and the density functional theory 

(DFT) implemented in the Quantum Espresso package11, whereas thermal properties are computed using 

well-known thermal equations12,13.  The lattice and electronic thermal conductances are computed 

implementing ballistic transport equations14,15 for 2D materials.  Longitudinal and transverse sound 

velocities, extracted as slopes of acoustic branches, are used to estimate the Young’s modulus and 

Poisson’s ratio of hexagonal and non-hexagonal 2D boron lattices.     

The previous properties are also compared and contrasted with the same properties calculated for 

graphene in view of its high lattice thermal conductance.  A more minute rendition of the theoretical and 

computational framework is laid out in the next section.  The presentation of, the comments on, the 

discussions about, and the conclusions from the results will ensue in the successive section. 

 



 3

II. MODELS AND METHODS 

A. Phonon and electronic spectra 

Both DFT and DFPT calculations were performed using their numerical implementations in Quantum 

Espresso11.  Initial lattice parameters, angles, atomic positions and symmetries for δ6-, δ5 -, and χ3 -sheets 

are taken from Kunstmann et al.10 and Wu et al.6 (see TABLE I. for relaxed structural parameters).  The 

geometry optimization was done setting the plane-wave cutoff energy to 500 eV, the total energy 

convergence criterion to 5.0 μeV/atom, the criterion for the force on all atoms to less than 2.0 meV/atom, 

and the vacuum distance to 30 Å.  The ultra-soft pseudo-potentials and the exchange-correlation 

functionals in the form of Perdew-Burke-Ernzerhof (PBE) within the generalized gradient approximation 

(GGA)16 are used in all calculations. 

TABLE I. Relaxed structural parameters .  Lattice constants (a, b), angle (γ) between and , buckling and 

space groups for δ6, α, δ5, and χ3..  

 δ6 α δ5 χ3 

a (Å) 3.30 2.82a 5.10 5.046b 4.54 4.47b 2.97 2.90b 

b (Å) 1.61 1.60a 5.10 5.044b 4.54 4.47b 4.54 4.44b 

γ (º) 59.24 90.00a 120.00 59.99b 60.00 120.00b 70.89 70.95b 

Buckling (Å) 0.89 0.82a 0.14 0.17b 0.00 0.00b 0.00 0.00b 

Space group p1 pma p3 p3b p3 p3b p1 p1b 

a Kunstmann et al.10 

b Wu et al.6  

Wu et al.6 used first-principles particle swarm optimization (PSO) to stabilize the originally unstable α-

sheet resulting into a structure with every two adjacent atoms (with coordination number 6) moving 

upward and downward outside of the plane by the same amount, 0.17 Å.  In the said study, the lattice 

constants are slightly different, 5.046 Å vs 5.044 Å.  The approach used in this investigation entailed: 1) 

relaxing randomly and slightly buckled α-sheets, and 2) selecting the structure with the minimum energy.  
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Unlike α’-sheet proposed by Wu et al.6, the previous approach resulted in a structure similar to the 

original α-sheet with the lattice constants being equal (5.10 Å), and adjacent boron atoms (with 

coordination number 6) moving outside of the plane upward and downward by the same amount (0.14 Å).  

The resulting phonon spectrum is more symmetric than that of α’-sheet proposed by Wu et al.6.  For the 

sake of simplicity, the buckled α-sheet will be referred to as α-sheet.  The relaxed δ6 boron sheet shows a 

buckling of ~0.89 Å in line with 0.82 Å obtained using the local density approximation (LDA)10.  Boron 

sheets δ5 and χ3 are found to be flat (no buckling) in accordance with comparable studies in the 

literature5,6.  For the geometry optimization process as well as the wave function calculation, a uniform k-

point grid of 50×70×1, 30×30×1, 20×20×1, 30×50×1 for δ6-, α-, δ5-, and χ3-boron sheets respectively 

were used.  The dynamical matrix for the calculation of phonon frequencies are computed on a uniform q-

point mesh of 7×10×1, 8×8×1, 5×5×1, 5×5×1 for δ6-, α-, δ5-, and χ3-boron sheets respectively. 

B. Heat capacity and ballistic thermal conductance 

The phonon or electronic heat capacity at constant volume per unit area, 

, can be obtained from the phonon, 

, or electronic, , energy 

where  is the phonon wave vector, s  is the phonon mode index, is the electron wave vector, n  is 

electron band index, is the Bose-Einstein distribution, 

 is the Fermi-Dirac distribution, and  is the sample 

area,  being the number of phonon or electron wave vectors in the Brillouin zone.  This number is 

chosen as the number of points in the k-point sampling for the geometry optimization (see Sec. II. A).  It 
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also represents the total number of unit cells.  The area of a single unit cell is  where  and  are 

the vectors whose magnitudes are the lattice constants (see Sec. II. A).  Ballistic thermal transport 

equations14,15 sum up the individual contributions of the two heat carriers involved in the chosen thermal 

processes, namely, phonons (see Eq. (1)), and electrons (see Eq. (2)). 

 ,                                                                             (1) 

 ,                                                                             (2) 

where the phonon, , and electron, , velocities determine the 

direction, , of the transport x  (horizontal) or y (vertical).  The phonon and electron heat capacities as 

well as the phonon and electron ballistic thermal conductances were calculated for graphene as well.  

C. Young’s modulus and Poisson’s ratio 

Two-dimensional (2D) elastic moduli calculated through Eq. (3) are obtained combining the relations of 

longitudinal ( cL ) and transverse ( cT ) speeds of sound to 2D bulk ( K ) and shear ( G ) moduli17 with the 

relations of  2D bulk  and shear moduli to the Young’s modulus ( E ) and the Poisson’s ratio (ν )18. 
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In Eq. (3), the expression for να /δ5
is chosen because of α-, and δ5- sheets’ hexagonal symmetry.  

The expression for νδ6 / χ3
is chosen because of δ6- and χ3 sheets’ rectangular symmetry and better 
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ability to reproduce similar calculations through elastic constants9. cL and cT are obtained by finding the 

best fitting coefficients, cn , for the longitudinal and transverse, , 

acoustic dispersion relations around Γ.  The surface density, 

 

, is expressed in terms of 

the unit cell area, , the number of atoms per unit cell, Nat , and the mass of boron atom, m .  

 

III. RESULTS AND DISCUSSION 

A. Phonon and electronic spectra 

The crystal structure of, the phonon and electronic spectra for δ6- (FIG. 1(a)), α- (FIG. 1(b)), δ5- 

(FIG. 1(c)), and χ3- (FIG. 1(d)) are evincive of their stability (no imaginary frequencies) and 

metallicity (no gap around the Fermi energy level).  While δ6- and α- sheets are buckled in a manner 

described in Sec. II and drawn in FIG. 1(a) and FIG. 1(b) with red (up) and blue (down) circles, δ5- 

and χ3- sheets are flat in their most stable configurations.  The anisotropy of δ6- and χ3- sheets is 

observed through the difference in the dispersion relation around  between [Γ→X0] and [Γ→X2] 

for δ6-sheet and between [Γ→Y0] and [Γ→Y2] for χ3-sheet.  Longitudinal (LA), transverse (TA), 

and flexural (ZA) acoustic branches are zoomed into the insets in the phonon spectra of FIG. 

2(a)-(d) to highlight the area used in the polynomial fitting (Sec. II. C) from which sound 

velocities are extracted.   

 

Γ
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FIG. 1. Boron sheets phonon spectra and electronic band structures.  Top view and Brillouin zone, phonon 

spectrum, electronic band structure for: (a) δ6 boron sheet (η = 0), (b) α boron sheet (η = 1/9), (c) δ5 boron sheet (η = 

1/7)  (d) χ3 boron sheet (η = 1/5).  Black frames indicate the extent of the primitive cell, red circles atoms sticking 

out of the plane upward, blue circles atoms sticking out of the plane downward.  The dashed red line is the Fermi 
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energy level. Acoustic branches near Γ, longitudinal (LA), transverse (TA) and flexural (ZA) are zoomed into the 

insets of the phonon spectra. 

B. Heat capacity and ballistic thermal conductance 

The detrimental effect of the vacancy density on boron sheets is observed in the phonon contribution to 

the heat capacity at constant volume per unit area (FIG. 2(a)) and the phonon contribution to the ballistic 

thermal conductance (FIG. 2(b) where both x (solid lines) and y (dashed lines) directions are considered.  

In fact, from δ6 (η = 0 blue lines) and α (η = 1/9 green line) to δ5 (η = 1/7 red line) and  χ3 (η = 1/5 

turquoise lines), the phonon heat capacity and the phonon thermal conductance tend to decrease as the 

vacancy density increases. 

 

FIG. 2. Boron sheets thermal properties.  Effect of the vacancy density, η, on the: (a) Phonon heat capacity at 

constant volume per unit area, (b) Ballistic phonon thermal conductance, (c) Electron heat capacity at constant 

volume per unit area, (d) Ballistic phonon thermal conductance. The inset in (c) indicates graphene’s electron heat 

capacity per unit area roughly three orders of magnitude lower than that of boron sheets.  In (b) and (d), solid lines 

a 

b 

c

d
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refer to the x-direction and dashed lines refer to the y-direction.  For graphene, α, and δ5, solid and dashed black 

lines are overlapped.  The inset in (d) further elucidates the difference of electron thermal conductance for χ3 

depending on the direction.   

The calculated phonon and electron heat capacities as well as phonon and electron ballistic thermal 

conductances for graphene (FIG. 2(a)-(d)) were found to be in agreement with similar calculations in the 

literature19-22.  In both phonon heat capacity at constant volume per unit area and phonon ballistic thermal 

conductance, while graphene is outperformed only by δ6 (in the x-direction), an increase in the vacancy 

density coincides with a decrease in the lattice thermal properties.   Such a behavior is related to the 

average interatomic distance partly responsible for the vibrational frequencies that decrease as the sheets 

become less dense.   

Being directly proportional to the vibrational frequencies, the internal energy will decrease with the 

vacancy density thereby transferring the same dependence on related quantities such as the lattice heat 

capacity and the lattice thermal conductance, the latter being additionally contributed to by the phonon 

velocities.  An analogical detrimental impact of the defect concentration on the thermal conductivity of 

silicene was revealed by a molecular dynamic study23.  To be additionally noted is a further confirmation 

of the anisotropic nature of δ6  and χ3 as well as the isotropic nature of α and δ5.  The ratio of the x-

direction phonon thermal conductance to the y-direction phonon thermal conductance in the high 

temperature regime (T > 1500 K) is roughly 1.55 and 1.10 for δ6  and χ3, respectively, and nearly 1.0 for α, 

δ5 and graphene.  The anisotropic behavior of δ6 (1.55) appears to be chiefly ascribed to its profound 

buckling (0.89 Å) responsible for the mixing of in-plane sp2 orbitals with out-of-plane pz orbitals in the x-

direction4, thus favoring the phonon propagation in the said direction.  The anisotropic behavior of χ3 

(1.10) can be explained in terms of the directionality of its vacancy arrangement.  Looking at χ3-sheet in 

the x-direction, atoms are more densely packed than they are looking at the same sheet in the y-direction, 

which is an indication of the heat flowing more in the former direction than in the latter direction.  It is 

worth observing that the vacancy arrangement in both x and y directions is almost identical in α, δ5 and 

graphene hence the isotropic ballistic thermal conductance observed thereof.    



 10

The regular correlation between the vacancy concentration, η, and the phonon heat capacity and thermal 

conductance does not occur in their electronic counterparts.  Indeed, FIG. 2(c) and FIG. 2(d) does not 

display a regular pattern of behavior between the electronic contribution to the heat capacity or thermal 

conductance and the vacancy density.  Unlike the case of lattice vibrations, the availability and speed of 

conductive electrons is independent of the vacancy density which is the reason why a regular correlation 

with the electron heat capacity and the electron ballistic thermal conductance has been found.  It is 

nonetheless striking that δ6-boron sheet have a much higher electronic heat capacity and electronic 

thermal conductance than all other sheets including graphene (expectedly not as metallic as boron sheets).   

This observation may have an explanation in terms of the morphology of the triangular sheet where 

because of the very small interatomic distances, in-plane sp2 orbitals overlap much more than they do in 

other sheets thereby contributing to a greater orbital delocalization, itself partly responsible for both a 

greater number of conductive electrons and a higher electron velocity4.  The previous considerations thus 

conspire to the triangular sheet’s superior electron heat capacity and electron ballistic thermal 

conductance.  It is also to be remarked that δ6 and χ3 preserve their anisotropic nature (see difference 

between solid and dashed lines) while α, δ5, and graphene preserve their isotropic nature.  This is 

supported by the ratio of the x-direction electron thermal conductance to the y-direction electron thermal 

conductance at room temperature being roughly 0.75 and 1.32 for δ6  and χ3, respectively, and nearly 1.0 

for α, δ5 and graphene (see FIG. 2(c) and FIG. 2(d)). 

C. Young’s modulus and Poisson’s ratio 

A correlation has been found between the vacancy density dependence of the binding energy (TABLE II.   

row 2, taken from Tang et al.5) and the calculated vacancy density dependence of the Young’s modulus 

and speeds of sound (TABLE II. rows 3, 5 and 6 considering soft directions).  Indeed, the Young’s 

modulus as well as the longitudinal and transverse speeds of sound tend to relate to the vacancy density 

the same way the binding energy relates to the vacancy density.  Besides the case of buckled triangular 

sheet, they all tend to decrease as the vacancy density increases.  This correlation may be expected 

because the binding energy informs the stability and consequently the mechanical responses of the sheets.  
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A comparable study was done by Jing et al.24 on graphene where an increase on the defect concentration 

produces a decrease in the Young’s modulus, the trend of which is indicated by the binding energy.   

TABLE II. Mechanical properties.  Binding energies (EBinding), Young’s modulus (E), Poisson’s ratio (ν), 

longitudinal speed of sound (cL), and transverse speed of sound (cT) for  δ6, α, δ5, and χ3..  

 δ6  (η = 0) α (η = 1/9) δ5 (η = 1/7) χ3 (η = 1/5) 

EBinding (eV) 6.75a 6.85a 6.80 a 6.58 a 

E (N/m) 171.03b 194.20c 618.93 545.617 259.98d 738.26e 

ν 1.71e-17b 6.05e-16c 0. 562 0.578 3.55e-18d 4.83e-18e 

cL (km/s) 10.52b 11.21c 17.65 16.91 15.18d 25.58e 

cT (km/s) 7.65b 5.54c 11.68 10.98 10.50d 15.42e 

a Tang et al.5  

b δ6�s soft direction, [Γ→X0] in FIG. 1(a). 

b δ6�s hard direction, [Γ→X2] in FIG. 1(a). 

b χ3�s soft direction, [Γ→Υ0] in FIG. 1(d). 

b χ3�s hard direction, [Γ→Υ2] in FIG. 1(d). 

The Young’s moduli in TABLE II (second row) for δ6- (171.03 N/m) and χ3-sheets (256.0 N/m) in the 

soft directions ([Γ→X0] and [Γ→Y0] for δ6 and χ3 respectively) appear to be lower than those (194.20 

N/m for δ6 and 738.26 N/m for χ3) in the hard directions ([Γ→X2] and [Γ→Y2] respectively).  The 

aforementioned observation, although quantitatively partially in line with calculations from elastic 

constants7 in the case of δ6 (170 N/m and 398 N/m), confirms the strong anisotropy of the said sheets, 

from a mechanical perspective.   

Longitudinal and transverse sound velocities (TABLE II. 2 rows 5 and 6) calculated as described in Sec. 

II. and fed into Eq. (3) to obtain the Young’s modulus and the Poisson’s ratio, also follow the trend 

indicated by the binding energies of the sheets.  In δ6’s and χ3’s hard directions, the longitudinal and 

transverse speeds of sound were different from those in the soft directions. 
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The very low Poisson’s ratio for δ6-sheet in TABLE II. (row 4) also appears to be in qualitative 

agreement with calculations from elastic constants9.   The mechanical information about boron sheets 

obtained from vibrational spectra, although expectedly less quantitatively accurate than a more rigorous 

ab initio approach based on derivatives of the total energy of the layers with respect to its lattice constants, 

shows nonetheless an sound qualitative insight into the mechanical behavior of the sheets in relation to 

their intrinsic vacancy concentrations.    

Overall, the correlation of the vacancy density to the mechanical and thermal properties appears directly 

due to the correlation between the vacancy density and the bonding arrangement discussed in physics 

literature4: the structures whose valence electrons most effectively fill in-plane sp2 orbitals do form a 

stronger network of σ-bonds than the structures whose electrons partially fill weaker out-of-plane pz 

orbitals4.  Since the distribution of hexagonal holes (vacancies) and triangles determines the effectiveness 

of in-plane sp2 orbital filling, it therefore further determines the stiffness/modulus of the sheet, E. The 

direction dependence of orbital filling on the basis of symmetry, vacancy density and buckling, originates 

the mechanical anisotropy observed in δ6 and χ3.  The speed of sound is controlled by the stiffness and the 

mass density σ , as c ∝ E
σ
⎛
⎝
⎜

⎞
⎠
⎟

1
2

, and σ  varies by only 20%, and therefore c’s behavior mostly tracks the 

stiffness, as direct computations confirm (TABLE II. row 3).   It is also worth noting that isotropic sheets, 

α and δ5 appear to be roughly 1.7 times stiffer than graphene because the stiffness is a direct combination 

of the square of the transverse speed of sound and the surface density (see Eq. (3)).  While the transverse 

speeds of sound (~11 km/s) for isotropic boron sheets (α and δ5) are only 0.81 times that of graphene 

(13.6 km/s), their surface densities (~0.61 mg/m2) are ~10 times that of graphene (0.063 mg/m2) thereby 

leading to an expected superior stiffness.   Therefore, on the basis of small variations on the transverse 

speed of sound, the atomic packing, related to the vacancy concentration, is an indication of the 

interatomic bond strength as well as the material’s stiffness. 
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Turning once more to the thermal conductance, we note that the dense packing of the δ6-triangular sheet 

logically (and per calculations) makes interatomic vibrations more rigid. This leads to higher phonons 

group velocities and, accordingly, greater integral transport (Eq. (1)), as we see indeed in FIG. 2(b) 

highest δ6-curve. Regarding electronic contribution, again the ~3 times higher density of states in the 

triangular (δ6) than in α-sheet4, is apparently responsible for a noticeably higher electron heat capacity 

and electron thermal conductance seen in FIG. 2(c) and FIG. 2(d). 

While noting that most of our analysis revolves around ballistic transport (which is in fact very relevant in 

the context of modern nanoscale devices and measurements, often in submicron range – that is likely 

below the mean-free path), it can be complemented by at least an estimate in the other limit of very short 

mean-free path. In this case, the high-temperature minimum phonon conductivity25, 

, h  = 3.84 Å is boron van-der-Waals diameter, provides a 

lower bound usually achieved in the high temperature regime.  The same estimate for α and δ5 yields 

greater high-T phonon conductivity (4.61 W/mK and 4.23 W/mK respectively) than for δ6 (3.32 W/mK) 

and χ3 (3.76 W/mK) in their respective soft directions, conforming to the  vacancy-density dependence in 

TABLE II.   

The previous ballistic-limit/small-distance analysis might encounter some discrepancies for buckled 

sheets (δ6 and α) because of their puckered nature.  In fact, two-dimensional out-of-plane modes (ZA) are 

expected to have a significant contribution to the thermal conductivity both at long and small distances as 

evinced in the case of graphene26 (ZA mode contributes roughly 75% of the total thermal conductivity).  

However, buckled structures limit the out-of-plane vibrations insofar as the Umklapp phonon-phonon 

scattering time27, τU
ZA ∝ exp 3T

θZA

⎛

⎝
⎜

⎞

⎠
⎟ , is inversely proportional to the out-of-plane Debye temperature, θZA , 

that tends to increase with the buckling of the structure.  As a result, the more buckled the structure, the 

smaller the out-of-plane inelastic scattering time, τU
ZA , the more diffusive the transport and the lower the 
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thermal conductivity.  The bucklings of stanene28(0.86-1.1 Å), silicene29(0.44 Å) and phosphorene30(2.51 

Å), just to name a few, are greatly responsible for a significant reduction in their thermal conductivities31-

33 in proportion to extend of the buckling.  The buckling of α-boron sheet (0.14 Å) being very small 

compared to that of δ6 boron sheet (0.89 Å), coupled with the binding energy difference between buckled 

α-boron sheet and flat α-boron sheet6 (2 meV/atom) being very small compared to the binding energy 

difference between buckled δ6-boron sheet and flat δ6-boron sheet10 (100 meV/atom), suggests that the 

aforementioned high-T ballistic limit is more likely to apply to α-boron sheet but less likely to apply to δ6 

-boron sheet.  Moreover, δ6 boron sheet’s superior ballistic lattice thermal conductance (roughly 2.06 

times graphene lattice thermal conductance at room temperature) is likely to translate into a reduced 

thermal conductivity as well as a more diffusive thermal transport. 

IV. SUMMARY 

A study of thermal and mechanical properties of boron sheets has been presented.  The study was 

performed feeding thermodynamic equations, ballistic Boltzmann transport formalism, and elasticity 

equations, the electronic and lattice spectra.  Electron and phonon spectra were obtained using density 

functional theory (DFT) as well as density functional perturbation theory (DFPT) both implemented in 

the Quantum Espresso package11.  A diminishing effect of the vacancy density on the heat capacity at 

constant volume and lattice ballistic thermal conductance is observed.  A correlation between the binding 

energy, the Young’s modulus, the Poisson’s ratio, the longitudinal and transverse speeds of sound in their 

relationship to the vacancy density has been found.  The electronic contribution to the thermal 

conductance was found not to have a regular relationship with the vacancy density which affects only the 

lattice vibrations, not the electron density. 

Considering both heat carriers (phonons and electrons), the present study reveals 3 outcomes:  First, 

phonon thermal quantities (heat capacity and thermal conductance) tend to decrease with an increase in 

the intrinsic vacancy concentration of boron sheets, while electron thermal counterparts appear not to 

have a regular correlation with it. Second, the triangular sheet’s (δ6) room-temperature phonon and 

electron ballistic thermal conductances (in the x-direction) are roughly 2.06 times and 6.60 times greater 
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than those of graphene, respectively.  Third, α-sheet and δ5-sheet exhibit a higher (619 N/m and 546 N/m) 

in-plane stiffness (2D Young’s modulus) than graphene34 (~340 N/m).   

The remarkable thermal and mechanical responses of some boron sheets raise additional questions as to 

not-yet revealed mean free paths, scattering rates, diffusive thermal conductivity, as well as 

thermoelectric, magnetic, electrical, superconductive properties and their dependence on size (ribbons), 

morphology (sheet, cluster, tubes), chemical doping and functionalization.  Answers to those questions 

will certainly open the door to scientific and technological breakthroughs to come.  
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