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We calculate the electronic properties of the t-J model on a C60 molecule using the density-matrix
renormalization group and show that Hund’s first rule is violated and that for an average of three
added electron per molecule, an effective attraction (pair-binding) arises for intermediate values of
t/J . Specifically, it is energetically favorable to put four electrons on one C60 and two on a second
rather than putting three on each. Our results show that a dominantly electronic mechanism of
superconductivity is possible in doped C60.

Interest in the superconductivity of the alkali-metal
doped C60 compounds (fullerides)1–3 derives in part from
their status as a new class of superconductors with large
values of the superconducting critical temperatures Tc.
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There has been a great effort over the last two decades to
characterize and understand both the normal-state and
the superconducting properties of fullerides. A source of
renewed interest in these systems is the surprising indica-
tion of magnetism derived from strong electron-electron
repulsions in crystals in which the C60-C60 distance is
modestly expanded5–9 Several examples are now known
where this kind of expansion first leads to superconduc-
tivity with a dome-shaped Tc, followed by a Mott insu-
lating state. A superconducting dome proximate to an
antiferromagnetic Mott insulating state is a hallmark of
strong electron correlations in the high temperature su-
perconducting cuprates and organic charge-transfer salts;
its appearance in alkali- doped C60 suggests that electron
correlations are crucial in understanding the supercon-
ductivity in these materials, as well.

Although most theoretical work has focused on phonon
mechanisms, a dominantly electronic mechanism has also
been considered. In particular, it was argued in Refs.10,11

that the special geometry of the C60 molecule (that of
a truncated icosahedron - or more colloquially a soc-
cer ball) permits subtle intra-molecular electronic cor-
relation effects that give rise to an effective attraction
(i.e., positive pair-binding energy) between doped elec-
trons and violations of Hund’s first rule. This conjecture
was supported by extrapolating second-order perturba-
tive calculations for the one-band Hubbard model on
the C60 structure to intermediate values of U/t (where,
strictly speaking, low order perturbation theory is not
justified). These inferences were also supported12 by
exact diagonalization (ED) studies of smaller “Hubbard
molecules” – especially the somewhat analogous 12 site
truncated tetrahedron. However, various later numer-
ical studies13–21 of the C60 problem gave inconclusive
and conflicting results. Most significantly, the best ex-
isting quantum Monte Carlo (QMC) calculations22 on
the same system suggested significant failures of the ex-
trapolated perturbation theory; in particular, the QMC
results seemingly support the validity of Hund’s rule and

an absence of pair binding.

In order to resolve the issues of principle, we use
density-matrix renormalization group (DMRG)23–25 to
investigate the ground state properties of the t-J model
on a single C60 molecule, including the magnetic prop-
erties and electronic pair-binding energy of doped elec-
trons. The t-J model [see Eq.(1)] is a simplified model of
doped C60 which, in common with the Hubbard model,
can plausibly be assumed to capture the most significant
correlation effects of the system. Moreover, since the t-J
model is defined on a significantly smaller Hilbert space,
it is much less numerically demanding than the Hubbard
model. Our most important conclusion is that electronic
pair-binding (an effective attractive interaction) arising
from a purely electron-electron repulsions is a now es-
tablished feature of the t-J model for a finite interval
of the dimensionless parameter, t/J . In particular, it is
energetically favorable to add four electrons to one C60

molecule and two to a second rather than to add three
electrons to each of two C60 molecules – i.e. there is a
positive pair binding energy. In addition, we find that
Hund’s first rule is violated; the ground state is the state
of minimal total spin rather than maximal. For instance,
we find that the ground states with two and four doped
electrons has spin zero while the groundstate with three
doped electrons has spin 1/2.

In the noninteracting limit, the electronic structure
of the C60 molecule is well known26, and the electronic
states can be labeled according to the irreducible rep-
resentations of the icosahedral group. The neutral C60

molecule has a unique ground-state and a substantial gap
between the filled and empty orbitals. The lowest un-
occupied molecular orbitals are the threefold-degenerate
t1u orbitals, whose degeneracy is an important property
of the molecule. For many purposes, the C60 molecule
can be approximated as a sphere, and the t1u orbitals
can then be thought of as p-orbitals with “angular mo-
mentum” L = 1. The electrons donated by the alkali-
metal atoms to the C60 molecule enter the threefold-
degenerate t1u orbitals. In the presence of orbital de-
generacy and weak interactions, the Hund’s rules can be
derived perturbatively,10 where Hund’s first rule is that
the exchange energy is minimized when the molecular
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state has the highest possible total spin and the second
rule is that it has the highest total orbital angular mo-
mentum compatible with the first rule. These rules, if
they applied, would imply that the ground state has a to-
tal spin 1 and “angular momentum” 1 when doped with
two or four electrons, and a total spin 3/2 and “angular
momentum” 0 when doped three electrons.

I. VERIFYING CONVERGENCE

The steps we have taken to test that all our DMRG
results for the t-J model on the C60 molecule have con-
verged with high accuracy are described in detail in Ap-
pendix B. To get convincing results we have had to keep
large numbers of DMRG states (e.g., up to m = 12000
states), and to iterate the DMRG a large number of times
(e.g., up to 100 sweeps). However, by doing this we
have been able to obtain results that we are confident
which have converged to the exact answer. The Hubbard
model on a single C60 would, presumably, require keeping
an even larger number of states; we have not currently
succeeded in obtaining clearly converged results for this
more difficult problem.

As a further test of the reliability of our simulation, we
have benchmarked the DMRG method on the one-band
Hubbard model on the C20 molecule. (See Appendix A
for details.) We find that the DMRG results converge
very rapidly to the exact diagonalization (ED) results,
even with a relatively small number of DMRG states, and
in particular gets values for both the ground state energy
and the pair binding energy that are more accurate than
those obtained using QMC. (See Fig.S1 in Appendix A
for details.)

II. t-J MODEL ON A C60 MOLECULE

We now investigate the ground state properties of the
t-J model on the single C60 molecule using DMRG. The
t-J model Hamiltonian on the C60 molecule is

H =
∑
〈ij〉σ

tij
(
c+iσcjσ + h.c.

)
+ J

∑
〈ij〉

(
~Si · ~Sj −

1

4
ninj

)
,(1)

where 〈ij〉 are nearest-neighbor (NN) sites, c+iσ (ciσ) is a
fermionic creation (annihilation) operator with spin-σ on

site i, ~Si is the spin and ni =
∑
σ c

+
iσciσ is the number

of holes on site i. The Hilbert space is constrained by
the no-double occupancy condition, ni ≤ 1. The sign of
the hopping term in Eq. 1 is the opposite of the usual
convention. We are interested in “electron-doped” C60

in which the total number of electrons is Ne = 60 + ne,
where ne = 0 − 6 is the number of “doped” electrons
added to the neutral C60 molecule. However, in deriv-
ing Eq. 1, we have made a particle-hole transformation,
which results in this sign change, and correspondingly it
is to be understood that

∑
i ni = 60 − ne. In the C60
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FIG. 1: (Color online) (a) The “spin gap” ∆s and (b) orbital
gap ∆o (defined in Sec. III) as a function of number of added
electrons ne, for different number of DMRG states m. Here
t/J = 2. The inset in (a) shows the “spin gap” ∆s for t′/t =
1.0 and t′/t = 1.2.

molecule, there are two inequivalent sets of NN bonds –
those bounding pentagonal plaquettes tij = t and those
connecting the pentagons tij = t′. The relation between
them is believed to be 1.0 < t′/t < 1.3.10 In our simula-
tion, we consider two cases with different values of t′/t,
i.e., t′/t = 1 and t′/t = 1.2. As shown in Fig.1(a) and
Fig.2, both cases give qualitatively similar results. Thus,
to simplify the discussion, unless otherwise specified we
will set t′ = t, and will consider the range of parameters
t/J = 1 − 5, which approximately corresponds to the
Hubbard model at U/t ∼ 4t/J = 4 − 20. We will define
the unit of energy such that J = 1 and employ the stan-
dard approach24,25 to choose a suitable one-dimensional
path over all sites of the C60 molecule. (See Appendix
C for details.) We perform up to 100 sweeps and keep
up to m = 12000 DMRG states with a typical trunca-
tion error ∼ 10−4. This led to excellent convergence for
the results that we report here. Extrapolating to m =∞
gives typical fractional errors in the total energy of about
∼ 10−3.

III. HUND’S RULE VIOLATION

One of our main observations is that Hund’s first rule
is violated for this range of parameters. The state with
the minimal possible total spin has smin = 1/2 for ne
odd and smin = 0 for ne even, i.e. ~S · ~S ≥ smin(smin+ 1)

where ~S =
∑
i
~Si is the total spin operator. The ground-

state is generically an eigenstate of total spin, so in test-
ing for violations of Hund’s first rule, we measure the

“excess spin,” δS2 ≡ 〈~S · ~S〉 − smin(smin + 1), which is
zero in the minimal spin state, and satisfies the inequal-
ity δS2 ≥ 2 otherwise. We always find that, for large
enough number of kept states, δS2 = 0 to high accuracy
(δS2 < 1.2 × 10−2); representative data for t/J = 2 for
all values of ne in the range 0 − 6 are shown in Fig.
S2(a). (See Appendix B for details.) In addition, we
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define the “spin-gap,” ∆s ≡ E0(smin + 1) − E0(smin),
where E0(Sz) is the ground state energy for given value
of z-component of total spin Sz. In any state with more
than the minimal spin, ∆s = 0, while, baring an acci-
dental degeneracy, in a minimal spin state, ∆s > 0. The
value of ∆s as a function of ne is shown in Fig. 1(a) for
t/J = 2; the different colored points represent the results
with different numbers of kept states, m. (A more com-
plete presentation of the convergence to the m→∞ limit
is shown in Fig.S2 (a).) It is clear that ∆s is non-zero in
all cases, which is independent confirmation of the con-
clusion that the ground state has the minimum possible
spin. For ne = 2, 3, and 4 this represents a violation of
Hund’s first rule.

In Fig. 1(b) we show the “orbital gap,” ∆o ≡
E1(smin)− E0(smin), where E1(Sz) is the energy of the
first excited for given Sz. If the ground state is an orbital
singlet, ∆o > 0, while for any orbital multiplet (higher
angular momentum) ∆o = 0. For ne even, both ∆s and
∆0 are non-zero, implying that the ground states are
both orbital and spin singlets. For odd ne, that ∆s > 0
and ∆o = 0 implies that the ground states have spin 1/2
and are orbital multiplets.

All these findings are consistent with an analysis10 in
which the ground-states are adiabatically connected to
appropriate (symmetry determined) combinations of the
non-interacting ground-states: The states with one or
five electrons in a p-orbital have total spin s = 1/2 and
angular momentum l = 1 (i.e. an orbitally degenerate
minimal spin state consistent with what we find). The
states with two or four electrons can have s = 1 and
l = 1 (the state favored by Hund’s first rule), s = 0
and l = 2 (the state favored by Hund’s second rule, if
the first were to be ignored), or s = 0 and l = 0 (i.e.
an orbitally non-degnerate minimal spin state consistent
with what we find). The states with three electrons can
have s = 3/2 and l = 0 (the state favored by Hund’s first
rule), or s = 1/2 and l = 2 or l = 1 (either of which is an
orbitally degenerate minimal spin state consistent with
what we find). From the weak coupling perspective, the
fact that the ground-state is an orbital and spin singlet
when ne = 0 or 6 appears obvious (corresponding to
an empty or full t1u orbital). However, the fact that the
ground states of the t-J model have the same symmetries
as the non-interacting ground-states even in these cases
is a non-trivial observation. In particular, for ne = 0,
this is a statement concerning the ground-state of the
spin-1/2 Heisenberg model on the C60 lattice, a problem
which has many interesting features in its own right.27

IV. PAIR-BINDING ENERGY

The electronic pair-binding energy is defined as
Eb(ne) = 2E0(ne)−E0(ne+1)−E0(ne−1), where E0(ne)
is the ground-state energy of the system with ne doped
electrons. If we consider a system with an average of ne
doped electrons per molecule, a positive pair-binding en-
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FIG. 2: (Color online) Electronic pair-binding energy Eb(ne)
as a function of t/J with different ne for both m = 8000 and
m = 10000 number of DMRG states. The shaded region and
lines connecting the data points are guides to the eye only.
The inset is the electronic pair-binding energy Eb(ne) as a
function of ne for both t′/t = 1.0 and t′/t = 1.2 with t/J = 2
and m = 8000.

ergy can be interpreted as an effective attraction between
electrons in the sense that it is then energetically favor-
able to add ne + 1 electrons to half the molecules and
ne−1 to the other half, rather than to place ne electrons
on every molecule. For ne even, we always find that the
pair-binding energy is negative. However, for ne = 1,
3, and 5, Eb(ne) is positive for a range of intermediate
t/J . This is illustrated in Fig.2, which shows Eb(ne) as a
function of t/J for ne = 1, 3 and 5. Importantly, for the
whole t/J parameter region we have explored, Eb(ne = 3)
is positive, although at our largest value of t/J = 5 it is
close to zero and appears to be headed to negative values
at still larger t/J . For ne = 1 and ne = 5, Eb is positive
for small enough t/J , but crosses zero and is distinctly
negative (corresponding to an effective repulsion between
electrons) beyond a critical value of t/J .

For t/J <∼ 1, it can be plausibly argued that the t-
J model is unphysical, and in particular has, in effect,
microscopically attractive interactions, so the results for
ne = 1 and 5 are of uncertain physical significance, as
pair binding is only seen for t/J <∼ 1.5 and t/J <∼ 2, re-
spectively. But the pair-binding for ne = 3 is manifestly
robust in the regime 2 < t/J < 5, where these concerns
do not arise. (Note that the absence of pair-binding as
t/J → ∞ is expected on general grounds. For ne = 1,
a rigorous proof exists28 that Eb ≤ 0 in this limit, as a
correlary of a generalized version of Nagaoka’s theorem.
Under the assumption that the fully spin polarized (Na-
gaoka) state is the ground-state for large enough t/J for
ne = 3 it follows that Eb(3) = 0 at large t/J .)
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V. CONCLUSIONS

In this paper, we have studied the t-J model on the
C60 molecule through DMRG simulation. Several differ-
ent quantities are calculated, including the ground state
energy, spin excitation gaps and electronic pair-binding
energy, for ne = 0 − 6 and 1 ≤ t/J ≤ 5. In all cases,
the ground-state has the minimum possible spin, which
for ne = 2, 3, and 4 constitutes a violation of Hund’s
first rule. Correspondingly, for all ne, there is a non-zero
spin gap. The ground-state is an orbital singlet for the
even values of ne and orbitally degenerate for the odd
values. For ne = 3 we find a positive pair-binding en-
ergy for the entire range of t/J ; thus, we establish that it
is possible that an effective attraction of the sort neces-
sary to mediate superconducting pairing, can arise from
purely repulsive electron-electron interactions on a sin-
gle C60 molecule. This establishes an important point of
principle.

Naturally, our results do not address the issue of
what differences arise in considering more realistic (non-
zero range) microscopic electron interactions, some of
which can be expected to enhance20,21 and others to
suppress12,13,17–19 pair-binding. It also leaves open
the relevance of our findings to the physical prob-
lem of superconductivity in alkalai doped C60 where
both inter-molecular interactions, and electron-phonon
interactions4 must be included in a complete analysis
of the problem. In this context, it is important to
note that the purely electronic model we have solved re-
sults in precisely the same inversion of Hund’s rule that
elsewhere29,30 has been attributed to the effect of Jahn-
Teller phonons. The putative signatures of a dynamical
Jahn-Teller effect – including the remarkable recent ex-
perimental observations reported in Ref.31 – in most cases
depend more on the emergent symmetries of the molec-
ular ground-states, than on the details of the mechanism
that produces these states. As there is no distinction in
symmetry between the molecular ground-states favored
by the dynamical Jahn-Teller effect and those of the t−J
model, unraveling the relative importance of the various
contributions to the physics of real materials is likely to
be more subtle than was previously believed.
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FIG. S1: (Color online) Ground state energy difference δE =
E0(m)−E0 as a function of DMRG states m for the one-band
Hubbard model (see Eq.(S1)) with Ne electrons on the C20

molecule at U/t = 2 in (a) and U/t = 5 in (b). Here E0 is the
ground state energy obtained by exact diagonalization (see
Ref.32,33), while E0(m) is the ground state energy obtained
by DMRG simulation with minimal value of z-component to-
tal spin Sz = smin, i.e., smin = 0 for Ne = 20, 22, and
smin = 1/2 for Ne = 21. The dashed lines in (a) denote the
ground state energy difference between QMC and exact di-
agonazation with same Ne and Sz (see Ref.33 Table II), for
comparison with the DMRG simulation labeled by the same
color. The inset in (b) is the electronic pair-binding ener-
gies Eb = 2E0(Ne = 21) − E0(Ne = 22) − E0(Ne = 20) from
DMRG (red circle) and ED simulations (solid line). Note that
here we use a different definition of the pair-binding energy
compared with Ref.32,33, and a negative Eb means a repulsive
interaction between doped electrons.

Appendix A: Hubbard model on the C20 molecule

The one-band Hubbard model on the C20 molecule is
given by the Hamiltonian

H = −t
∑
〈ij〉σ

(
c+iσcjσ +H.c.

)
+ U

∑
i

ni↑ni↓. (S1)

Here c+iσ is the electron creation operator with spin-σ on
site i, and niσ = c+iσciσ is the number of electrons with
spin-σ on site i. t is the nearest-neighbor hopping con-
stant and U is the on-site Coulomb interaction. Previous
studies32,33 using QMC and exact diagonalization meth-
ods have found a negative pair-binding energy (repulsive
interaction) on this molecule. Moreover, they found that
the Hund’s rule is obeyed for the corresponding range
of parameters U/t ≤ 3 where the ground state has the
maximum values of total spin ranging from spin-1 for 20
electrons through spin-2 for 22 electrons, while Hund’s
rule is violated for larger U/t > 4.2. However, due to
the presence of the geometrical frustration, a system-
atic weakness of QMC simulation was also recognized,
for both large U/t range where the sign problem becomes
significantly worse and small U/t range where the ground
state is a spin multiplet state.

To demonstrate the reliability of the DMRG simu-
lation, we have benchmarked the DMRG method on
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FIG. S2: (Color online) (a)“Excess spin” δS2 = ~S · ~S −
smin(smin + 1) where ~S =

∑
i
~Si and (b) “Spin gap” ∆s =

E0(smin + 1) − E0(smin) as a function of number of DMRG
states m, for t/J = 2 and different number of added electrons
ne. Here E0(Sz) is the ground state energy for given value of
spin Sz. Inset in (b): “Spin gap” ∆s as a function of m for
ne = 0 and 1.

the one-band Hubbard model on the C20 molecule (see
Eq.(S1)) by comparing the QMC and DMRG data. As
we will see in Fig. S1, for both ranges of U/t, we find
that the DMRG results converges very rapidly to the ED
results with relatively small number of DMRG states m.
In particular, we can get values for both the ground state
energy and the pair binding energy Eb that are more ac-
curate than those obtained using QMC.32,33 For instance,
with the same Ne and Sz, DMRG can easily produce a
better ground state energy than QMC with only a mod-
erately number of DMRG states m, say m ∼ 1800 for
Ne = 20 while a much smaller valuem ∼ 500 forNe = 22.
Compared with U/t = 2, where QMC already has a
sign problem for the non-bipartite dodecahedral molec-
ular geometry, a larger U/t = 5 introduce significantly
more sources of negative probability weight, lowering the
average value of the sign, thus making that a reliable
QMC simulation is not applicable32,33. On the contrary,
DMRG is immune to such a problem and still provides
us with reliable results, including the ground state en-
ergy and electronic pair-binding energy Eb(Ne = 21) as
shown in Fig.S1(b). Especially, a relatively small number
of state m ∼ 1000 has had given us a reliable Eb which is
very close to the ED results. Therefore, DMRG method
works well for the Hubbard model on the C20 molecule.

Appendix B: t-J model on the C60 molecule

In the main text, we have introduced the t-J model
on the C60 molecule and summarized the main DMRG
results, including spin excitation gap and electronic pair-
binding energy. Now, we will show more details of the
DMRG simulation about the convergence of the DMRG
results. For this purpose, we first consider t/J = 2 as an
example and the results are given in Fig.S2. As seen in
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FIG. S3: (Color online) Electronic pair-binding energy Eb(ne)
for t/J = 2 as a function of DMRG states m with different
number of added electrons ne. The dashed line indicates the
zero. The lines connecting the data points are guides to the
eye only.

the figure, “excess spin” δS2 > 0 (see main text for de-
tails) when m is small, indicating that the DMRG simu-
lation may get stuck in a metastable spin multiplet state.
This is because the states with smaller values of |Sz| may
mix with higher-lying states that have the same value of
|Sz| but different total spin. However, such a state is not
the true ground state, instead the true ground state is
obtained when ≥ 7000, where ST = 0 for ne = 0 ∼ 6
cases. Therefore, the ground state is a spin singlet state,
which violates the Hund’s rule.

In addition to “excess spin” δS2, we have also cal-
culated the “spin gap” ∆s (see main text for details).
Fig.S2 (b) shows the spin gap ∆s as a function of DMRG
states m. Similar with δS2, ∆s starts to converge and
saturate to finite values when m ≥ 7000, for ne = 0 − 6.
On the contrary, for the metastable state whenm ≤ 6000,
∆s vanishes for ne = 2, indicating that the metastable
state is a spin multiplet state. Consistent with the mini-
mal spin state, a finite “spin gap” ∆s again indicates that
the ground state is a minimal spin state. For ne = 2 − 4,
this indicates that Hund’s rule is violated, which is in
contraction to the QMC results.34

Until now, we have demonstrated that the ground
state of the t-J model on the C60 molecule is a min-
imal spin state. To provide more information of the
ground state, we have also computed the “orbital gap”
∆o = E1(smin)−E0(smin), where E0 is the ground state
energy and E1 is the first excited state state, both in the
same spin Sz = smin sector. The results are given in
Fig.1(b). Similar with∆s, ∆o is also finite for ne = 0, 2
and 4, indicating a unique ground state without orbital
degeneracy. Interestingly, for other ne cases, ∆o ∼ 0,
indicating that the ground state is an orbital multiplet,
which is consistent with10.

Fig.S3 shows the results of the electronic pair-binding
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FIG. S4: (Color online) We map the C60 molecule to a one-
dimensional chain shown in the figure, where the sequence of
sites is represented by the numbers.

energy Eb(ne) (see main text for details) for t/J = 2
with ne = 1, 3 and 5, as a function of the number of
DMRG states m. Similar with δS2 and “spin gap” ∆s,
Eb is also affected by the convergent problem for the nu-
merical simulation when m ≤ 6000, where Eb is either
vanishingly small or negative (repulsive interaction be-
tween doped electrons). Interestingly, when m ≥ 7000,
our DMRG simulation is well converged, and we find a

big and positive Eb(ne = 3) ∼ 0.1J . This suggests that it
is energetically favorable to put four electrons on one C60

and two on the other (positive pair binding) that putting
three electrons on each of the C60 molecules (negative
pair binding). On the contrary, for both ne = 1 and
ne = 5 cases, Eb(ne) is either zero or slightly negative, in-
dicating that there are no attractive interaction between
doped electrons.

Appendix C: Mapping C60 molecule to
one-dimensional chain for DMRG treatment

As DMRG is a one-dimensional method, the two-
dimensional lattice on cylinder and torus, such as square
lattice, has to be mapped to a one-dimensional chain with
long-ranged interactions. This is known as the multichain
approach,24,25 which defines a suitable one-dimensional
path over all sites of the two-dimensional lattice. Simi-
larly, the spirit of the multichain approach can be natu-
rally applied to any systems, including the C60 molecule
that we study in this paper. Fig.S4 shows the map-
ping of a C60 molecule to a one-dimensional path, where
the numbers represent the sequence of site of the one-
dimensional chain. Approximately, the numerical cost
after this mapping is similar with the t-J model on the
square lattice with system size N = 10× 6 on a cylinder,
where 10 is the width and 6 is the length of the cylinder.
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