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Qimin Yan,† John L. Lyons,‡ Anderson Janotti,§ and Chris G. Van de Walle
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Point-defect formation energies calculated within the framework of density functional theory often
depend on the choice of the exchange and correlation (xc) functional. We show that variations
between the local density approximation (LDA), generalized gradient approximation (GGA), and
hybrid functionals mainly arise from differences in the position of the bulk valence-band maximum,
as well as in the reference energies for the chemical potential obtained with distinct xc functionals.
We demonstrate for point defects relevant for p-type GaN that these differences can be accounted
for by corrections, reducing the maximum disagreement between the different functionals from more
than 2 eV to below 0.2 eV. Our correction scheme should be useful for performing high-throughput
calculations in cases where full hybrid functional calculations are prohibitively expensive.

PACS numbers: 31.15.A-, 71.15.Ap, 61.72.J-

I. INTRODUCTION

The calculation of defect formation energies by means
of density functional theory (DFT) in a supercell geom-
etry has evolved into a standard tool to address doping
and doping limitations in semiconductor physics.1–3 Cal-
culated formation energies allow predicting, for example,
equilibrium concentrations of intrinsic and extrinsic point
defects or defect complexes. However, the predictive
power of this approach appears limited: the calculated
formation energy of point defects depends on details of
the theoretical method, notably the exchange-correlation
(xc) functional,4 and is also affected by spurious inter-
actions between a defect and its periodic images in the
supercell approach.5–8

Traditional functionals such as the local density ap-
proximation (LDA) or the generalized gradient approxi-
mation (GGA) severely underestimate the band gaps of
semiconductors and insulators. For a long time it was
believed that this is mostly due to an insufficiently accu-
rate description of unoccupied states, and hence correc-
tion schemes focused on the position of conduction bands
(CBs) and defect states with CB-like character such as
donors.9,10 However, it became clear that also valence-
band (VB) like states must be corrected,11 and that the
relative position of the VB with respect to the averaged
electrostatic potential is poorly described.12–14

Hybrid functionals have emerged as a reliable approach
for overcoming these problems. These functionals mix
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approximate (semi)local exchange functionals with exact
nonlocal Hartree-Fock exchange, yielding excellent struc-
tural properties as well as quantitatively better band gaps
and absolute band-edge positions.15,16 Of course, also hy-
brid functionals are approximate and parameterized; how
reliably a particular functional reproduces experiment is
still under active research (see, for instance, Komsa and
Pasquarello17). At present, however, hybrid functionals
are the widely used choice to overcome the limitations
of the conventional semilocal functionals. Unfortunately,
hybrid functionals are computationally very demanding.
This limits the size of affordable supercells, and makes
scanning large numbers of possible defect configurations
prohibitively time-consuming. It therefore remains desir-
able to employ standard functionals to estimate the for-
mation energy of candidate defects.18 Such an approach
is only effective, of course, if the calculations based on
standard functionals are reliable in identifying the most
relevant defects. In the present work, we propose such
an approach.

We will compare the results of three widely used xc
functionals: the LDA,19 the generalized gradient ap-
proximation of Perdew, Burke, and Ernzerhof (PBE),20

and the screened hybrid functional of Heyd, Scuseria,
and Ernzerhof (HSE).21,22 As a benchmark we consider
magnesium-doped gallium nitride (GaN:Mg), which has
a high technological relevance due to its use as the p-
conductive layer in GaN-based light-emitting devices.
Point defects in this material have been extensively stud-
ied both experimentally and theoretically.1,2,23–27 For ex-
ample, the study by Myers et al.2 provides a detailed
analysis of the energetics and electrical activity of vari-
ous point defects in GaN:Mg at the level of PBE. The
extensive set of defect structures investigated there will
be used as a test set in the present study. Note that we
use the term “defect” to include impurities, point defects,
as well as complexes.

The defect formation energies obtained with the vari-
ous xc functionals show an unacceptable scatter as dis-
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cussed in Sec. III. We will analyze the origin of the
differences in Sec. IV and show that they can be ex-
plained by an incomplete error cancellation between the
calculations for defect supercells and the correspond-
ing reference states. The incomplete cancellation of er-
rors has been observed and addressed before, see, e.g.,
Refs. 4, 28, and 29. For instance, in their work on alu-
mina Hine et al.29 exploited the fact that the error cancel-
lation between solids (Al and Al2O3) works better than
between solids and molecules (O2). Building on this ob-
servation, they rewrote the oxygen reference energy in
the defect-formation formalism described below in terms
of the DFT total energies of Al and Al2O3 and the exper-
imental formation enthalpy of Al2O3. Peng et al.4 com-
pared formation energies of GGA(+U) and HSE for de-
fects in a range of oxides and nitrides. They proposed to
apply corrections to the valence-band maximum (VBM)
from GW calculations and to the atomic reference ener-
gies from a fit to a set of experimental compound forma-
tion enthalpies, thereby reducing the differences between
the functionals to 0.34 eV on average. We will show here
that by correcting the chemical potentials of the electrons
and chemical elements for a specific system, the apparent
differences between different functionals can be reduced
to below 0.1 eV on average.

II. COMPUTATIONAL DETAILS

The key thermodynamic quantity for a point defect X
in charge state q is its formation energy1,3

Ef [Xq] = Etot[X
q]− Etot[bulk]

−
∑

i

niµi + qµe +∆q , (1)

which depends on the chemical potentials µi of atoms
that have been added (ni > 0) or removed (ni < 0) in
order to construct the defect, and on the chemical po-
tential for electrons µe. The total energy of the defect
Etot[X

q] and the energy of the defect-free bulk reference
Etot[bulk] are obtained by DFT. ∆q is the finite-supercell
size correction for charged defects,5,30 as explained below.
For each functional, the internal coordinates of each cell
are optimized using the bulk lattice constant for the em-
ployed functional.
We perform projector augmented wave (PAW)31 cal-

culations with the LDA,19 PBE,20 or HSE21,22 func-
tionals, using the Vienna Ab Initio Simulation Package

(VASP)32,33 as well as the SPHInX package,34 and the
VASP PAW potentials.33 Most of the LDA and PBE
calculations were done with the SPHInX package. We
checked that both packages give the same results to
within 0.05 eV. The Ga 3d electrons were treated as part
of the frozen core. For HSE an exact-exchange mixing of
α = 0.31 and a screening of ω = 0.2 Å−1 is used, which
produces a band gap for wurtzite GaN of 3.46 eV. In
our defect calculations we use an orthorhombic 3×2×2
supercell, containing 96 atoms. For LDA and PBE, an

TABLE I. Structural parameters of wurtzite GaN obtained
with different xc functionals and compared with experiment.

LDA PBE HSE expa

a (Bohr) 6.04 6.14 6.06 6.0263
c/a 1.627 1.626 1.623 1.626
u 0.377 0.377 0.378 —

gap (eV) 1.98 1.64 3.46 3.51

a Ref. [36]

energy cutoff of 476 eV and a 2×2×2 Monkhorst-Pack
mesh35 ensure convergence for the total energy within
1 meV and the lattice constant within 0.01 Bohr. For
HSE, the plane-wave cutoff was 300 eV. Relaxing the
structure to the energetic minimum results in the bulk
structural parameters in Table I. The lattice constants
for LDA and HSE agree closely with experimental data,
while PBE yields a slightly larger lattice constant. On
the other hand, HSE reproduces the c/a ratio slightly
worse (-0.2%) than LDA and PBE.
The chemical potentials µi represent the energies (in

the implicit reference given by the DFT code) of the
reservoirs that act as the sources of the individual species.
The chemical potentials appear as parameters in Eq. (1),
and can be chosen to correspond to specific physical
growth scenarios. The chemical potentials are referenced
to well-defined reference states,3 i.e.,

µi = µ0
i +∆µi , (2)

where µ0
i is the (fixed) reference and ∆µi is the value of

the chemical potential for a specific scenario relative to
the reference. The conventional standard reference state
for each chemical element is the phase of that element
at standard conditions, i.e., the bulk metals for Ga and
Mg, and molecular N2 and H2 for nitrogen and hydrogen,
respectively. Neglecting the effects of temperature and
pressure, the reference energies are directly obtained from
DFT total energies. For instance, µ0

Ga is given by

µ0
Ga =

1

8
EDFT(Ga bulk) , (3)

where EDFT(Ga bulk) is the total energy of the 8-atom
orthorhombic unit cell of Ga. Given these references, and
assuming equilibrium with bulk GaN, we then obtain:

∆µN +∆µGa = ∆Hf (GaN) , (4)

where ∆Hf (GaN) is the formation enthalpy of GaN.
Both ∆µN and ∆µGa can thus vary over a range given
by the magnitude of the enthalpy of formation.
Similarly, the chemical potential of electrons µe is ref-

erenced to a standard reference, conventionally taken to
be the VBM:

µe = εVBM + εFermi. (5)

The VBM reference energy is likewise taken in the im-
plicit reference of the DFT code used. The range of εFermi
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is typically taken to be the band gap, i.e., the Fermi
energy can vary between the VBM and the conduction-
band minimum (CBM).
As far as thermodynamics is concerned, chemical

species and electrons can be treated on the same foot-
ing, and indeed, we will exploit this analogy in our dis-
cussions. To keep the distinction clear, however, we will
generally restrict our use of the term “chemical poten-
tial” to refer to chemical species only, and use the term
“Fermi energy” when discussing the chemical potential
for electrons, thereby following the conventional termi-
nology in the field of semiconductors.
The values of the chemical potential reference ener-

gies µ0
i and of the VBM energy εVBM are specific to a

particular theoretical approach (xc functional, potentials,
DFT code, etc.). The parameters ∆µi and εFermi, on the
other hand, can be chosen to correspond to specific ex-
perimental conditions: in the case of the chemical poten-
tials to reflect physical growth scenarios, and in the case
of the Fermi level to represent specific electronic condi-
tions (e.g., due to doping) in the material. In contrast to
µ0
i and εVBM, the parameters ∆µi and εFermi should be

independent of the computational details.
For the purpose of listing defect formation energies,

it is common practice not to use the “standard for-
mation energies” (∆µi = 0), but to employ a certain
choice of limiting conditions, given by equilibrium with
selected phases, and setting the Fermi energy to the VBM
(εFermi = 0). In our case, the reservoirs will be wurtzite
GaN, orthorhombic Ga metal, hexagonal Mg metal, and
the H2 molecule, all at zero temperature. These choices
correspond to ∆µGa=∆µMg=∆µH=0 and, given Eq. (4),
∆µN=∆Hf (GaN). The corresponding values for the
chemical potentials µi can then be directly extracted
from DFT total energy calculations. For internal con-
sistency, the energies of the reservoirs must be calculated
at the same level of theory as the defect supercell and
the perfect bulk system.
Formally, the choice of reservoirs for listing the defect

formation energies is irrelevant. In practice, when one
aims at comparing different theoretical approaches, or
theory and experiment, the choice of the reservoirs used
for comparison does matter (see, e.g., Hine et al.,29 Peng
et al.4) since errors of a given xc functional in describing
the defect, the perfect bulk, and the reservoirs of choice
do not cancel out completely. We will discuss this in
detail in Sec. IVB.
We will also examine charge-state transition levels,

which are defined as

εq1/q2 =
Ef [Xq1 ]− Ef [Xq2 ]

q2 − q1
− εVBM . (6)

These correspond to the Fermi-level positions at which
a defect changes its charge state. Note that these values
do not depend on the chemical potentials.
Charged defect calculations in the supercell approach

suffer from the long-range Coulomb interaction of the de-
fect with its periodic images. The formation energy of a

TABLE II. Charge-state transition levels for selected defects
(in eV) with respect to the VBM, from Eq. (6), without
supercell-size correction for charged defects. The defect-free
supercell contains 96 atoms. Data from Ref. 2 (72 atoms) are
listed for comparison.

defect LDA PBE PBEa HSE

V
3+/+
N 0.33 0.41 0.39 1.14

(MgVN)2+/0 0.35 0.40 0.45 1.17

(MgHVN)3+/+ 0.36 0.43 0.33 1.21

a Ref. [2], 72-atom supercells, ultra-soft pseudopotentials
(USPP).

charged defect therefore depends on the chosen super-
cell size unless the interactions are corrected for [∆q in
Eq. (1)].5,30 Finite-size errors can be a sizeable effect that
has the potential of changing the qualitative physics of
the system. The case of the 3+ charge state of the ni-
trogen vacancy in GaN (VN), calculated within LDA, is
an excellent example. For commonly employed supercells
consisting of approximately 100 atoms, V3+

N is thermody-
namically stable for Fermi levels in the lower part of the
band gap, and the (3+/+) charge-state transition level
appears in the band gap (see Table II). In the limit of
infinite supercell size, however, V3+

N is no longer stable,
i.e., the (3+/+) level lies below the VBM37 —which in
itself is a failure of LDA, as explained below. The charge
corrections ∆q recover the infinite-supercell-size limit at
much smaller supercell sizes.

III. APPLYING THE “STANDARD

APPROACH”

The dominant defects in GaN:Mg as grown with metal-
organic vapor phase epitaxy include substitutional Mg on
the Ga site; interstitial hydrogen in the positive charge
state, H+, in the bond center (BC) or anti-bonding (AB)
site; the nitrogen vacancy, VN; and combinations of these
point defects. In the following we use a similar notation
as in Ref. 2, notably for the orientation of defects or de-
fect complexes: Some defects can be viewed as modifica-
tion of a Ga-N bond: H+ inserted into (or attached to) a
Ga-N bond, or a complex formed by Mg on a Ga site and
a defect on a N site (VN or HN). For these defects, the
orientation can be characterized by the two inequivalent
types of Ga-N bonds: parallel to the c-axis (subscript
‖), or one of the three Ga-N bonds lying largely in the
ab plane (subscript ⊥). For a detailed description of the
defects we refer to Ref. 2 and references therein.

The calculated formation energies, based on the for-
malism described in Sec. II, are shown in Table III, where
the rightmost three columns contain the differences be-
tween the three functionals. Different xc functionals
clearly give rise to defect energies that can vary by a few
eV (here up to 2.4 eV for V3+

N in LDA vs. HSE). We have
computed the root-mean-square (rms) deviation, giving
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TABLE III. Defect formation energies calculated with LDA,
PBE, and HSE, including the supercell-size correction of
Ref. 5. The chemical potentials correspond to equilibrium
with bulk GaN, Ga, Mg, and the H2 molecule (see text). The
Fermi level is set to the VBM as calculated with each xc
functional. All values in eV. The right columns show pair-
wise differences between the three functionals. The weighted
rms error gives each of the eight defect classes equal weight.

LDA PBE HSE LDA
-HSE

PBE
-HSE

LDA
-PBE

Mg− 1.35 1.19 2.38 -1.03 -1.19 0.16

V+
N 0.63 0.54 -0.18 0.81 0.72 0.09

V3+
N 1.25 0.88 -1.13 2.38 2.01 0.37

H+
‖ (AB) -0.07 0.16 -0.54 0.47 0.70 -0.23

H+
⊥(AB) -0.20 0.04 -0.69 0.49 0.73 -0.24

H+
‖ (BC) -0.25 -0.11 -0.73 0.48 0.62 -0.14

H+
⊥(BC) -0.02 0.09 -0.52 0.50 0.61 -0.11

H2+
N -0.23 -0.12 -1.71 1.48 1.59 -0.11

(MgH)0‖(BC) 0.06 0.15 0.50 -0.44 -0.35 -0.09

(MgH)0‖(AB) 0.18 0.30 0.65 -0.47 -0.35 -0.12

(MgH)0⊥(AB Mg⊥) -0.03 0.12 0.41 -0.44 -0.29 -0.15
(MgH)0⊥(BC Mg⊥) 0.30 0.38 0.69 -0.39 -0.31 -0.08
(MgH)0⊥(AB Ga‖)

0.23 0.36 0.67 -0.44 -0.31 -0.13

(MgH)0⊥(AB Ga⊥) 0.17 0.32 0.52 -0.35 -0.20 -0.15
(MgVN)0‖ 1.04 0.90 1.27 -0.23 -0.37 0.14

(MgVN)0⊥ 1.07 0.92 1.25 -0.18 -0.33 0.15
(MgVN)2+‖ 0.93 0.62 -0.42 1.35 1.04 0.31

(MgVN)2+⊥ 0.91 0.56 -0.44 1.35 1.00 0.35

(MgHN)+‖ -0.23 -0.14 -0.78 0.55 0.64 -0.09

(MgHN)+⊥ -0.27 -0.18 -0.74 0.47 0.56 -0.09

(MgHVN)+
‖ (AB Mg) 0.16 0.29 -0.14 0.30 0.43 -0.13

(MgHVN)3+‖ (AB Mg) 0.61 0.56 -1.35 1.96 1.91 0.05

weighted rms error 1.12 1.10 0.18

equal weight to each of the eight defect classes. The
weighted rms deviation compared to HSE is 1.12 eV for
LDA and 1.10 eV for PBE, while LDA and PBE differ on
average by 0.18 eV. These large errors between the semi-
local functionals and HSE do not seem systematic—they
vary in sign and magnitude from defect to defect. This
suggests that any conclusions about the relative impor-
tance of the defects drawn at the level of LDA or PBE
cannot be trusted.

Table IV lists the charge-state transition levels as de-
fined in Eq. (6). As alluded to before, the (3+/+)
VN transition level is unstable at the LDA and PBE
level of theory when charged supercell artifacts are cor-
rected for, in accordance with previous findings for large
supercells.37 This is not the case for HSE, which is re-
garded as superior compared to LDA and GGA due to
the vastly improved description of the bandgap. Indeed,
the higher relative position of deep charge-state transi-
tion levels in HSE and other hybrid functionals can be
rationalized by a lowering of the VBM compared to LDA
and GGA functionals.12–15,38

Interestingly, the charge-state transition levels neglect-
ing supercell-size corrections obtained with LDA and

TABLE IV. Charge-state transition levels of selected defects
(in eV) with respect to the VBM, from Eq. (6), with supercell-
size correction for charged defects.

defect LDA PBE HSE

V
3+/+
N −0.31 −0.17 0.48

(MgV)
2+/0
N 0.06 0.14 0.85

(MgHV)
3+/+
N −0.22 −0.14 0.61

PBE (see Table II) agree with the HSE values including
the supercell corrections much better (to within 0.5 eV)
than what could have been estimated from the magni-
tude of the band gap error (up to 1.8 eV) and the charge
corrections (up to 0.6 eV). It seems that earlier defect
calculations (before HSE defect calculations and reliable
charged defect corrections became practical about five
years ago) have profited from a fortuitous error cancela-
tion in some cases. Indeed, the charged-defect artifacts
for typical supercells systematically decrease the spacing
between charge-state transition levels,5 squeezing them
into the too small band gap of LDA and PBE. This can-
cellation explains why the large number of defect calcu-
lations published in the 1990’s and early 2000’s (that
were based on LDA/PBE and neglected supercell-size
corrections) produced results that are often qualitatively
correct and hence more relevant than could have been
guessed by assessing the individual errors.

IV. CORRECTIONS TO REFERENCE

ENERGIES

A. Electrons: VBM alignment

It has long been recognized that the errors in the
valence- and conduction-band positions lead to errors in
the defect formation energy as calculated in the stan-
dard approach that can and should be corrected for.10,11

Here, we take a slightly differently phrased, yet equiva-
lent approach for deep defects. Instead of correcting the
formation energy directly, we correct the position of the
bulk valence band entering Eq. (1) as reference for the
Fermi level [see Eq. (5)]. From a conceptual point of view,
we thus correct for the known weakness of a functional in
describing the extended host states, while leaving the de-
scription of the localized defect states unaltered. This is
appropriate for defects that possess well-localized defect
states within the band gap.
In order to obtain values for the valence-band shift,

we will use the HSE data as the “best available the-
ory” reference. We thus need the relative position of
the LDA or PBE valence-band edges with respect to
HSE. Such alignments have been discussed in the liter-
ature and can be based on the position of the average
electrostatic potential39 or on the alignment of the vac-
uum level.38 Recent studies indicate that localized defect
states in the band gap suffer less from the band-gap prob-



5

LDA PBE HSE LDA PBE

0

1

2

3

4
el

ec
tr

on
 e

ne
rg

y 
(e

V
)

standard VBM alignment deep-level alignment

calculated CBM

calculated VBM

V
N

 (3+/+)

MgV
N

 (2+/0)

MgHV
N

 (3+/+)
∆ VBM

FIG. 1. (Color online). Alignment of the electron chemical
potential scales between LDA, PBE, and HSE. For each of the
functionals, the VBM defines the energy zero. Left: the stan-
dard alignment, using the calculated VBM as a common point
of reference for all defects. Right: modified alignment, using
the (3+/+) charge-state transition level for VN (violet lines)
as the common point of reference. The charge-state transi-
tion levels (2+/0) for MgVN (cyan) and (3+/+) for MgHVN

(green) are also indicated, as well as the position of the cal-
culated VBM and CBM of LDA and PBE.

lem if referenced to the average electrostatic potential.13

In the spirit of the Langer-Heinrich rule40 and the marker
method ,41 we align the energy scales via the charge-state
transition level of a deep and spatially well localized

defect, specifically the V
3+/+
N transition level. This is

achieved by shifting the VBM of LDA down by−0.785 eV
and that of PBE by −0.645 eV, as shown schematically
in Fig. 1. These shifts agree with alternative schemes
(electrostatic potential, vacuum level) to within ∼0.3 eV.
Note that the VBM and the conduction-band minimum
(CBM) as calculated from the respective functional are
then no longer needed (see Fig. 1).

Applying the above alignment substantially reduces
the differences between the LDA, PBE, and HSE for-
mation energies for charged defects. The charge-state
transition levels (Table V) agree to within 0.1 eV. The
improvement for the transition levels is not too surpris-
ing, since the transition levels of Table V all derive from

the V
3+/+
N transition level. Yet, the formation energies

listed in Table VI and visualized in Fig. 2 compare much
better to each other even for defects completely unrelated
to VN. The maximum error is reduced to 0.55 eV (PBE
vs HSE for Mg−). A close inspection of Table VI and
Fig. 2 shows that the error is now dominated by system-
atic shifts for the individual defect classes.

Figure 3 depicts the main principle of the VBM align-
ment with the help of plots of formation energy (Ef ) vs.
Fermi level (εFermi) for LDA, PBE, and HSE. More pre-
cisely, we first note that the formation energy [Eq. (1)]
depends on the absolute electron chemical potential µe =
εV BM + εFermi [Eq. (5)] in the implicit reference of the

TABLE V. Charge-state transition levels after applying cor-
rections ∆εVBM to the position of the VBM of LDA and PBE.

The corrections have been chosen to bring the V
3+/+
N into

agreement with HSE, which are therefore marked with “!”.

defect LDA PBE HSE

V
3+/+
N 0.48! 0.48! 0.48

MgV
2+/0
N 0.84 0.79 0.85

MgHV
3+/+
N 0.56 0.51 0.61

∆εVBM −0.79 −0.65 0

TABLE VI. Defect formation energies calculated with LDA,
PBE, and HSE, including supercell-size corrections,5 and with
a correction applied by shifting the VBM: the VBM values of
LDA and PBE (used for referencing the Fermi level) have
been adjusted as indicated in the first row of the Table to

bring the V
3+/+
N level in agreement with HSE (see text and

Table V). All values in eV. The right columns show pairwise
differences between the three functionals. The weighted rms
error gives each of the eight defect classes equal weight.

LDA PBE HSE LDA
-HSE

PBE
-HSE

LDA
-PBE

∆εVBM -0.79 -0.65
Mg− 2.14 1.84 2.38 -0.25 -0.55 0.30

V+
N -0.16 -0.11 -0.18 0.02 0.08 -0.05

V3+
N -1.11 -1.06 -1.13 0.02 0.07 -0.05

H+
‖ (AB) -0.86 -0.49 -0.54 -0.32 0.06 -0.37

H+
⊥(AB) -0.99 -0.61 -0.69 -0.30 0.09 -0.38

H+
‖ (BC) -1.04 -0.76 -0.73 -0.31 -0.03 -0.28

H+
⊥(BC) -0.81 -0.56 -0.52 -0.29 -0.04 -0.25

H2+
N -1.80 -1.41 -1.71 -0.09 0.30 -0.39

(MgH)0‖(BC) 0.06 0.15 0.50 -0.44 -0.35 -0.09

(MgH)0‖(AB) 0.18 0.30 0.65 -0.47 -0.35 -0.12

(MgH)0⊥(AB Mg⊥) -0.03 0.12 0.41 -0.44 -0.29 -0.15
(MgH)0⊥(BC Mg⊥) 0.30 0.38 0.69 -0.39 -0.31 -0.08
(MgH)0⊥(AB Ga‖)

0.23 0.36 0.67 -0.44 -0.31 -0.13

(MgH)0⊥(AB Ga⊥) 0.17 0.32 0.52 -0.35 -0.20 -0.15

(MgVN)0‖ 1.04 0.90 1.27 -0.23 -0.37 0.14

(MgVN)0⊥ 1.07 0.92 1.25 -0.18 -0.33 0.15
(MgVN)2+

‖
-0.64 -0.67 -0.42 -0.22 -0.25 0.03

(MgVN)2+⊥ -0.66 -0.73 -0.44 -0.22 -0.29 0.07

(MgHN)+‖ -1.02 -0.79 -0.78 -0.24 -0.01 -0.23

(MgHN)+⊥ -1.06 -0.83 -0.74 -0.32 -0.08 -0.23

(MgHVN)+‖ (AB Mg) -0.63 -0.36 -0.14 -0.49 -0.22 -0.27

(MgHVN)3+‖ (AB Mg) -1.75 -1.38 -1.35 -0.40 -0.02 -0.37

weighted rms error 0.29 0.28 0.26

respective DFT bulk calculation. We then attach two
Fermi energy scales to this plot: The bottom scale in
each graph corresponds to the standard scheme, where
the Fermi energy εFermi = µe − εV BM relative to the
VBM at the respective level of theory is indicated. The
top scale for LDA and PBE corresponds to the adjusted
VBM. The three graphs in Fig. 3 show the same range of
the adapted scale. The gray part marks the bulk valence
band within LDA and PBE, respectively. The formation
energies of the standard scheme, listed in Table III, cor-
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FIG. 2. (Color online). Comparison of the formation energies
of LDA (crosses) and PBE (squares) with those of HSE, with
corrections for the VBM (see Table VI). Perfect agreement
corresponds to the solid line. Dashed lines delimit deviations
within the indicated bounds.

respond to the crossing points of the formation energy
lines with the µe = εVBM(DFT) vertical line. It is obvious
that errors in correctly positioning the VBM related to
the choice of the xc functional have a direct and large
impact on the formation energy of charged defects. The
formation energies in the adjusted VBM scheme, listed in
Table VI, correspond to the crossing points with the ad-
justed VBM at the left edge of the graph (no adjustment
for HSE). Inspection of Fig. 3 drives home the point that
the energies of the various defects are much more con-
sistent with each other than the cut at the calculated
(functional-specific) VBM suggests.

B. Reference energies for chemical elements

Despite the improvements resulting from the alignment
of the VBM, systematic differences remain in the forma-
tion energies of Table VI and Fig. 2. For instance, the
formation energies of all Mg-containing defects are lower
in LDA by 0.2–0.5 eV compared to HSE. Similarly, the
proton-like H+ defects are too low by 0.3 eV. Such sys-
tematic deviations arise from the incomplete error can-
cellation of the underlying DFT calculations, namely the
defect-containing supercell, the perfect bulk cell, and the
various reference systems (Mg and Ga metal, and H2).
In analogy to the approach taken for the VBM as refer-

ence state for the electron chemical potential, we will ad-
just the reference energies µ0

i , entering Eq. (1) via Eq. (2),
to account for the differences in the description of the em-
ployed reservoirs by different functionals, as previously
proposed by Peng et al.4

To be specific, let us develop the analogy for the case
of the nitrogen reference energy, µ0

N. The standard refer-
ence state is the nitrogen molecule, N2, at zero temper-
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FIG. 3. (Color online). Defect formation energies as a func-
tion of electron chemical potential µe = εVBM + εFermi, cal-
culated with LDA, PBE, and HSE. The bottom scale reflects
the standard referencing scheme with respect to the calcu-
lated VBM at the respective level of theory. The top scale for
LDA and PBE reflects the adjusted scale.

ature and the reference energy (in the implicit reference
of the DFT code used) is

µ0
N(N2) =

1

2
EDFT(N2) . (7)

It is well known that the errors in the total energy from a
specific xc functional do not cancel out between molecules
and solids.4,28,29,42 It is here where the choice of the reser-
voirs for the comparison of defect energies and the con-
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sistent use of the same level of theory comes into play.
For instance, let us assume equilibrium with bulk GaN
[see Eq. (4)] and Ga-rich conditions, i.e., equilibrium with
bulk Ga (∆µGa=0). In this scenario—which we will ab-
breviate with GaN/Ga—the nitrogen chemical potential
is given by

∆µN(GaN/Ga) = ∆Hf (GaN) . (8)

If ∆Hf (GaN) is calculated consistently at the level of
theory used for the defects as

∆Hf (GaN) = EDFT(GaN)− µ0
Ga − µ0

N , (9)

the absolute nitrogen chemical potential for Eq. (1) be-
comes

µN(GaN/Ga) = µ0
N +∆µN = EDFT(GaN)− µ0

Ga (10)

and hence independent of the molecular reference.
In experiment, chemical potentials are usually limited

to the stability region of the host material

∆µN(GaN/Ga) ≤ ∆µN ≤ 0 , (11)

very much like the Fermi energy is limited to the band
gap

VBM ≤ εFermi ≤ CBM . (12)

It is therefore natural to use one of the two limits for the
comparison of defect energies. Which of the two limits is
used (GaN/Ga or N2) is formally arbitrary. In practice,
with the use of imperfect functionals, the choice of the
reference state does matter, in particular if the formation
enthalpy of the host material is not well reproduced. This
can be seen as the analogue of the band-gap problem.
Indeed, choosing a computational reservoir in order to

optimize the error cancellation between the host com-
pound and the reservoirs has been exploited before, e.g.,
by Finnis et al.29,42 for Al2O3 in contact with oxygen gas.
The computational reservoirs for the DFT calculations
were Al2O3 and bulk Al, thereby eliminating the need to
calculate the notoriously problematic O2 molecule. The
oxygen reference energy was then obtained from

∆Hf (Al2O3) = EDFT(Al2O3)− 2µ0
Al − 3µ0

O (13)

using the experimental formation enthalpy of Al2O3.
Let us invoke the analogy with the Fermi energy again.

Replacing the calculated formation enthalpy of GaN by
the correct one and keeping the calculated Ga reference
energy unchanged corresponds to correcting the band gap
and keeping the VBM unchanged. Yet, as we have seen
above for the case of the electrons, corrections must be
applied in general to both limits, the VBM and CBM.
Analogously, we should apply a correction ∆µ0 to both
the N and Ga reference energies. Note that these ref-
erence energy corrections ∆µ0 are independent of the
chemical-potential scenario expressed by a specific choice
of ∆µ.

We will again use the HSE results for defining cor-
rections to the LDA and PBE reference energies. HSE
generally reproduces thermochemical data rather well.
The experimental formation enthalpy of GaN has been
debated,43–45 and extrapolations from high-temperature
experiments to standard conditions range between −1.15
eV and −1.71 eV.45 Both LDA (−1.50 eV) and HSE
(−1.34 eV) values fall in this range, while PBE yields
a smaller value (−0.90 eV).

For Ga and N, we require that the corrections repro-
duce the HSE enthalpy of formation, i.e.,

EDFT(GaN)− EDFT(Ga)−
1

2
EDFT(N2) (14)

−∆µ0,DFT
Ga −∆µ0,DFT

N = ∆Hf,HSE(GaN) ,

where the superscript DFT stands for either LDA or
PBE. This leaves one free parameter to be determined,
which then makes the defect energies consistent over the
entire chemical-potential range. For the impurity ele-
ments Mg and H, no lower limit exists.

In practice, we proceed as follows: first, we set the
correction of the Ga reference energy, which defines the
nitrogen reference energy via Eq. (14), to bring the for-
mation energy of the nitrogen vacancy in agreement with
HSE. This is achieved by ∆µ0

Ga=+0.025 eV for LDA, and
+0.075 eV for PBE. The corresponding corrections for
nitrogen [cf. Eq. 14] are ∆µ0

N=+0.19 eV for LDA and
+0.68 eV for PBE, respectively. The value for the cor-
rection to the H chemical potential is a compromise be-
tween the proton-like H+ and substitutional H2+

N defects,
amounting to −0.2 eV and +0.15 eV for LDA and PBE,
respectively. Last, the correction to the Mg reference en-
ergy is set to −0.2 eV (LDA) and −0.3 eV (PBE) in order
to reduce the overall disagreement of Mg-containing de-
fects.

The resulting corrected formation energies as well as
the differences between the different functionals are col-
lected in Table VII and visualized in Fig. 4. It is obvious
that the corrections to the reference energies lead to a
further improvement of the agreement between the dif-
ferent functionals. The root-mean-square errors are 0.1
eV or less, and the maximum errors are all below 0.2 eV.
We note that these errors are of the same order as the
uncertainties inherent in the potential alignment for the
supercell charge corrections (∼0.05 eV) or the effect of
implementational details between the VASP and SPHInX
codes (∼0.05 eV). We further note that adapting a lattice
constant different from the optimized lattice constant for
each functional, and hence putting the supercells under
compressive or tensile stress, changes the defect forma-
tion energies considerably and proportional to the defect
excess volume. The agreement between different func-
tionals becomes worse if the lattice constant is forced to
be the same.
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TABLE VII. Defect formation energies calculated with LDA,
PBE, and HSE, including supercell-size corrections5 and a
correction applied by shifting the VBM, as in Table VI. In
addition, the reference energies of LDA and PBE have been
adjusted as indicated at the top of the table. The energies of
VN have been used to adjust µ0

Ga; the differences are zero by
construction and are marked =0!. All values in eV. The right
columns show pairwise differences between the three func-
tionals. The weighted rms error gives each of the eight defect
classes equal weight.

LDA PBE HSE LDA
-HSE

PBE
-HSE

LDA
-PBE

∆εVBM -0.79 -0.65
∆µ0

Mg -0.20 -0.30
∆µ0

Ga +0.03 +0.08
∆µ0

H -0.20 +0.15
Mg− 2.36 2.21 2.38 -0.02 -0.17 0.15

V+
N -0.18 -0.18 -0.18 =0! =0! =0!

V3+
N -1.13 -1.13 -1.13 =0! =0! =0!

H+
‖ (AB) -0.66 -0.64 -0.54 -0.12 -0.09 -0.02

H+
⊥(AB) -0.79 -0.76 -0.69 -0.09 -0.06 -0.03

H+
‖ (BC) -0.84 -0.91 -0.73 -0.11 -0.18 0.07

H+
⊥(BC) -0.61 -0.71 -0.52 -0.08 -0.19 0.10

H2+
N -1.63 -1.64 -1.71 0.08 0.07 0.01

(MgH)0‖(BC) 0.49 0.38 0.50 -0.01 -0.13 0.11

(MgH)0‖(AB) 0.61 0.53 0.65 -0.05 -0.13 0.08

(MgH)0⊥(AB Mg⊥) 0.40 0.35 0.41 -0.02 -0.06 0.05
(MgH)0⊥(BC Mg⊥) 0.73 0.61 0.69 0.04 -0.09 0.12
(MgH)0⊥(AB Ga‖)

0.66 0.59 0.67 -0.02 -0.09 0.07

(MgH)0⊥(AB Ga⊥) 0.60 0.55 0.52 0.07 0.03 0.05
(MgVN)0‖ 1.24 1.20 1.27 -0.03 -0.07 0.04

(MgVN)0⊥ 1.27 1.22 1.25 0.02 -0.03 0.05
(MgVN)2+‖ -0.44 -0.37 -0.42 -0.02 0.05 -0.07

(MgVN)2+⊥ -0.46 -0.43 -0.44 -0.02 0.01 -0.03

(MgHN)+‖ -0.62 -0.64 -0.78 0.17 0.15 0.02

(MgHN)+⊥ -0.66 -0.68 -0.74 0.08 0.07 0.02

(MgHVN)+‖ (AB Mg) -0.23 -0.21 -0.14 -0.09 -0.07 -0.02

(MgHVN)3+‖ (AB Mg) -1.35 -1.23 -1.35 0.01 0.13 -0.12

weighted rms error 0.07 0.10 0.07

C. Discussion

Our results clearly indicate that differences in the ref-
erence energies for electrons (the VBM) and chemical ele-
ments account for a very significant part of the differences
in the formation energies calculated in the standard ap-
proach. As Table VII shows, our approach for adjusting
the reference energies brings the LDA and PBE results
in close agreement with the HSE results. This suggests
that LDA and PBE may serve as reliable approaches to
pre-screen a large set of defect configuration candidates.
Of course, we have purposely selected defects that are
qualitatively correctly described at the level of LDA or
PBE. Failures must be expected when electron (or hole)
localization become important,46–48 or when defect states
that are actually deep levels in the gap are hidden by the
band edges—even though [as we saw in the case of the
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FIG. 4. (Color online). Comparison of the formation ener-
gies of LDA (crosses) and PBE (squares) with those of HSE,
with corrections for the VBM and for the energies of the refer-
ence systems (see Table VII). Perfect agreement corresponds
to the solid line. Dashed lines delimit deviations within the
indicated bounds.

(3+/+) level of VN], charged-supercell artifacts (if not
properly corrected) may apparently shift them into the
LDA or PBE band gap in some cases, fortuitously help-
ing to identify and study such levels. We note in pass-
ing that Sadigh et al. have recently proposed a scheme
to describe bulk polarons even at the level of semilocal
functionals;49 whether it works also for polaronic effects
in defects remains to be investigated.
The corrections to the chemical potentials also help to

identify more clearly where LDA, PBE, and HSE show
significant differences. For instance, LDA and PBE sys-
tematically place proton-like H defects lower than HSE
compared to HN. This may be due to a reduction of the
artificial self-energy within the substitutional hydrogen
atom from the exact-exchange part of HSE. We believe
that the described correction scheme may also help to
assess the performance of advanced theoretical methods
in separating the improvement of the description of indi-
vidual defects from the changes in the description of the
reference systems.
Finally, we note that in our work, the corrections to

the chemical potentials are derived by comparison to HSE
calculations. In general, however, experimental or high-
level theoretical data for selected cases might be used to
define appropriate corrections.

V. SUMMARY & CONCLUSION

We have calculated formation energies of important
point defects in GaN:Mg using LDA, PBE, and HSE. The
standard approach, using each functional consistently to
calculate the energies of the perfect bulk, the defect su-
percells and the relevant reference states of chemical ele-
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ments shows differences of up to 2.4 eV between the dif-
ferent functionals. We show that these differences largely
arise from the incomplete error cancellation when com-
paring different materials within the same functional, in
addition to the well-known weakness of LDA and PBE to
reproduce band-edge positions of semiconductors or insu-
lators. By correcting for known failures in the reference
chemical potentials of the electron (in other words: the
valence-band maximum) and of the chemical elements in
an analogous way, we arrive at a consistent picture: af-
ter corrections are applied, the LDA, PBE, and HSE re-
sults for all of the defects considered here agree to within
0.2 eV. This suggests that, when appropriate corrections
are applied, the standard local and semilocal functionals
can be used to screen for relevant defect configurations
before using the computationally more demanding HSE

functional.
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