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The dynamical cluster approximation (DCA) and its DCA+ extension use coarse-graining of the
momentum space to reduce the complexity of quantum many-body problems, thereby mapping the
bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of
an interlaced coarse-graining and compare it with the traditional coarse-graining. While it gives a
more localized self-energy for a given cluster size, we show that it leads to more controlled results with
weaker cluster shape and smoother cluster size dependence, which converge to the results obtained
from the standard coarse-graining with increasing cluster size. Most importantly, the new coarse-
graining reduces the severity of the fermionic sign problem of the underlying quantum Monte Carlo
cluster solver and thus allows for calculations on larger clusters. This enables the treatment of longer-
ranged correlations than those accessible with the standard coarse-graining and thus can allow for the
evaluation of the exact infinite cluster size result via finite size scaling. As a demonstration, we study
the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in
combination with the extended DCA+ algorithm permits the determination of the superconducting
Tc on cluster sizes for which the results can be fit with a Kosterlitz-Thouless scaling law.

PACS numbers:

I. INTRODUCTION

Much of the numerical work in the area of
strongly correlated electron materials is based on exact
calculations that determine the state of a finite size
lattice and regard this state as an approximation
of the thermodynamic limit. The dynamic cluster
approximation (DCA)1,2 uses a similar philosophy, in
which the bulk lattice problem is represented by a
finite number of cluster degrees of freedom. But in
contrast to finite size calculations, the DCA uses coarse-
graining to retain information about the bulk degrees of
freedom not represented on the cluster. This leads to an
approximation of the thermodynamic limit, in which the
bulk problem is replaced by a finite size cluster embedded
in a mean-field host that is designed to represent the rest
of the system. This approximation makes the problem
tractable so it can be solved with exact methods such as
quantum Monte Carlo3.

To setup the cluster problem, one starts by dividing the
first Brillouin zone (BZ) into Nc patches, each of which
is represented by a cluster momentum K (see Fig. 1,
top left, for an example of a 16-site cluster)2. One then
assumes that the self-energy is well approximated by a
coarse-grained self-energy2,4

ΣDCA(k, iωn) =
∑
K

φK(k)Σc(K, iωn) . (1)

Here, Σc(K, iωn) is the self-energy of the Nc-site cluster
and the patch function φK(k) = 1 for k inside the Kth

patch, and 0 otherwise. One then coarse-graines the
Green’s function

Ḡ(K, iωn) =
Nc
N

∑
k

φK(k)
1

iωn + µ− εk − ΣDCA(k, iωn)

(2)
to set up an effective cluster problem, in which the cluster
self-energy Σc(K, iωn) = Σc[G0(K, iωn)] is calculated as
a functional of the corresponding bare cluster propagator
G0(K, iωn) = [Ḡ−1(K, iωn) + Σc(K, iωn)]−1. The
approximation in Eq. (1) of the lattice self-energy as a
piecewise constant continuation of the cluster self-energy
leads to discontinuities between the patches and in some
cases to strong finite size effects, manifested as a strong
dependence on the cluster shape and size5.

In order to weaken these effects, the DCA method
was recently extended through the inclusion of a lattice
self-energy with continuous momentum dependence5.
This extended DCA+ algorithm is obtained by reversing
Eq. (1) to give a relation

Σc(K, iωn) =
Nc
N

∑
k

φK(k)ΣDCA+

(k, iωn) (3)

between the cluster self-energy Σc(K, iωn) and the

DCA+ lattice self-energy ΣDCA+

(k, iωn). As discussed

in Ref.5, ΣDCA+

(k, iωn) with continuous momentum
dependence is then determined from a deconvolution
of Eq. (3) after the cluster self-energy Σc(K, iωn) is
interpolated between the cluster K momenta. It was
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shown that the DCA+ algorithm reduces the cluster
shape and size dependence of the DCA self-energy, and,
in addition, weakens the fermion sign problem6 of the
underlying QMC cluster solver.

One usually defines the patches as the Brillouin zones
of the superlattice (see Fig. 1 left) and sets φK(k) = 1 or
0 for k inside or outside the Kth patch, respectively2. But
the choice of coarse-graining patch functions φK(k) in the
DCA and DCA+ is not unique. In Ref.7, for example,
Gull et al. used a star-like patch geometry for a 4-site
cluster to deform the central patch in order to capture an
important part of the Fermi surface. As we will discuss,
there is a set of constraints that must be satisfied by the
patching. But these constraints leave ample freedom in
choosing different shapes of the coarse-graining patches
and different forms of the functions φK(k).

Here, we introduce a new interlaced coarse-graining,
study its effects on the self-energy of a single-band
Hubbard model and compare the results with the
standard coarse-graining. For small cluster sizes, we
find that the interlaced coarse-graining leads to a more
localized self-energy with less dependence on the shape
of the cluster. In the infinite cluster size limit, it
gives results that converge with those obtained from
the standard coarse-graining. As an important benefit,
it significantly reduces the QMC fermion sign problem,
enabling calculations with larger cluster sizes. As
an example, we show results for the superconducting
transition temperature, for which the interlaced coarse-
graining provides access to large enough clusters, so that
Tc can be converged.

II. INTERLACED COARSE-GRAINING

As noted, the patching must satisfy a number of
constraints8. First, all patches must have equal size. This
ensures that the algebra of the operators of the effective
cluster model obey the usual fermionic algebra. Second,
the patch functions should satisfy an orthonormality
condition, i.e. Nc

N

∑
k φK(k)φK′(k) = δKK′ , so that

different patches do not overlap or, in other words, at
any momentum k, there is exactly one K for which
φK(k) is nonzero. Finally, the patches should have the
same symmetry as the cluster, so that the coarse-grained
Green’s function and self-energy have the same symmetry
as the cluster.

For the regular 4×4 cluster labeled as 16A, the
standard choice of the coarse-graining patches, which
we label φ(0)(k), is shown in Fig. 1 in the top left
panel. In the top right panel, we introduce a new striped
coarse-graining scheme defined by the patch functions

φ
(2)
K (k), in which patches from neighboring K-points are

interleaved. The generation of these patches is detailed
in the Appendix and the label (2) indicates the number
of stripes (see Appendix). Obviously, these patches
satisfy the constraints of equal volume, orthonormality
and symmetry. The bottom panels show the standard

FIG. 1: The location of the cluster momenta K and the
shape of the patches for a 16A cluster (top) and 16B cluster
(bottom). The standard coarse-graining uses the Brillouin
zone of the superlattice as the patches (left), while the new
coarse-graining uses patches, in which regions assigned to
neighboring K points are interleaved.

coarse-graining φ(0) and new patching φ(2) for the case
of another 16-site cluster with different shape, the 16B
cluster.

As discussed in Ref. [5], Eq. (2) may be interpreted as a
convolution of the lattice Green’s function G(k, iωn) with
the patch function φK(k), which may also be written as
φ(k−K). Thus, the patch function essentially acts as a
filter. Since it is used to map the lattice problem onto
the cluster problem, it should pass the contribution to
G(k, iωn) that is localized on the cluster, and cut off
contributions outside the cluster. Therefore, it is useful
to investigate the coarse-graining in real space, where,
after Fourier-transforming Eq. (2), one has

Ḡ(X, iωn) =
∑
x

φ(X + x)G(X + x, iωn) . (4)

Here, a vector r = X + x to a site in the real space bulk
lattice is broken up into a vector X within the real space
cluster and a vector x to the location of a cluster in the
bulk lattice, and φ(X + x) is the Fourier-transform to
real space of the patch function φ(k). As noted by Hettler
et al.8, for a square cluster of size L×L, one has for the
standard coarse-graining

φ(0)(r = X + x) =

2∏
l=1

[
sin[π(xl +Xl)/L]

π(xl +Xl)/L

]
, (5)
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FIG. 2: (Color online) Fourier-transform of the patch

functions φ(0)(k) and φ(2)(k) to real space for L× L clusters
with L = 6 (top) and L = 8 (bottom) plotted versus r = (r, 0).

φ(2)(r) falls off more rapidly with r than φ(0)(r) and remains
close to 0 for r ≥ L.

where xl (Xl) is the lth component of the vector x (X).
Fig. 2 shows the r dependence of φ(0)(r) along the x-
direction r = (r, 0) for an L×L cluster with L = 6 (top)
and 8 (bottom). The sinusoidal dependence of φ(0)(r)
with the 1/r envelope from Eq. (5) can be seen. In
the same figures, we also plot the r-dependence of the
new interlaced patch function φ(2)(r). One sees that
φ(2)(r) falls off more rapidly with r than the standard
patch function φ(0)(r). This may be understood from the
fact that the φ(2) coarse-graining averages over a more
extended momentum region and thus leads to a more
local result. In addition, for distances r > L, φ(2)(r)
stays close to 0, while φ(0)(r) gives a significant negative
contribution to the coarse-grained average. When the
lattice Green’s function G(r) is short-ranged and drops
to zero for r ≥ L/2, only the x = 0 term contributes
to Ḡ(X) in the coarse-graining sum in Eq. (4), and
hence Ḡ(X) = φ(X)G(X). In this case, the standard
φ(0) coarse-graining gives a better approximation, since
φ(0)(r) is closer to 1 for r ≤ L/2 and thus gives a
Ḡ(r) that is closer to the “real” G(r). When G(r)
is longer-ranged, however, the φ(0) coarse-graining is
less controlled, since longer-ranged contributions from

neighboring clusters can contribute with either positive
or negative weights, depending on the range r. This
can even lead to an overestimation of the short-range
correlations within the cluster. The φ(2) coarse-graining,
on the other hand, is always likely to underestimate the
non-local correlations and thus is more controlled. As
the cluster size increases, both approaches will give the
same Ḡ(r) once L/2 is sufficiently large relative to the
length-scale over which G(r) vanishes.

III. APPLICATION TO THE 2D HUBBARD
MODEL

Next we study the effects of these differences in the
coarse-graining on the momentum dependence of the self-
energy. The Hubbard model that we study has a nearest
neighbor hopping t, a next-nearest neighbor hopping t′

and a Coulomb repulsion U , and its Hamiltonian is

H =
∑
ij,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (6)

Here, c
(†)
iσ (creates) destroys an electron with spin σ on

site i and niσ = c†iσciσ is the corresponding number
operator. To solve the effective cluster problem in the
DCA and DCA+ , we use the continuous-time auxiliary-
field QMC algorithm developed by Gull et al.9 with high-
efficiency updates10.

The top panel of Fig. 3 shows DCA results for the
imaginary part of the self-energy, Im Σ(K, iωn), for K =
(π, 0) and (π/2, π/2) obtained for the 16A cluster. Here,
we have set t′ = −0.15t, U = 7t and the site filling 〈n〉 =
0.942 and temperature T = 0.125t. For the standard
coarse-graining φ(0), one observes a large difference in
the low frequency behavior of Im Σ(K, iωn) between
K = (π, 0) and (π/2, π/2), which has been observed in
earlier DCA calculations (see e.g. the work in Ref.7).
The interlaced φ(2) coarse-graining, in contrast, gives a
self-energy with much less momentum dependence. As
expected from the plots in Fig. 2 and their discussion, the
φ(2) patching gives a more local coarse-grained Green’s
function Ḡ(r) and thus a more local self-energy Σc[Ḡ]
with less momentum dependence.

The bottom panel of Fig. 3 shows results for
Im Σ(K, iωn) with K = (π, 0) for both the 16A and
the 16B clusters. Even though these clusters have
the same size, the standard φ(0) coarse-graining gives
results that vary significantly between the two clusters,
with qualitatively different behavior in the low frequency
region. In contrast, the φ(2) coarse-graining gives almost
identical results for these two cluster shapes. Again,
this can be understood from the fact that the interlaced
φ(2) coarse-graining gives a more local self-energy with
weaker k dependence, which thus is less affected by the
location and shape of the coarse-graining patches.

As noted, one expects that this difference in the results
from different forms of the coarse-graining will decrease
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FIG. 3: (Color online) Imaginary part of the DCA self-energy

for different patching φ(0) and φ(2) for (a) the 16A cluster for
K = (π, 0) and (π/2, π/2) and (b) the 16A and 16B clusters
for K = (π, 0). The parameters are t′ = −0.15t, U = 7t,
〈n〉 = 0.942 and T = 0.125.
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FIG. 4: (Color online) Imaginary part of the self-energy
for K = (π, 0) and ω0 = πT at half-filling 〈n〉 = 1, U =
8t, T = 0.15t versus the inverse cluster size 1/Nc obtained

with DCA and φ(0) (blue) and φ(2) (red) coarse-graining and
with determinantal QMC calculations of a finite size lattice
(green). With increasing cluster size, the results obtained

from the standard φ(0) and the interlaced φ(2) coarse-graining
converge to the same large cluster DQMC result.

with increasing cluster size. To show this, we plot in
Fig. 4 Im Σ(K, πT ) with K = (π, 0) for the half-filled
〈n〉 = 1 model with t′ = 0 and U = 8t for the φ(0)

and φ(2) patching. Also shown in this figure are large
cluster results obtained on a finite size lattice with the
determinantal QMC (DQMC) algorithm11. One sees
that for small cluster sizes, the standard φ(0) coarse-
graining gives much better results that converge faster to
the exact large Nc limit, while the φ(2) coarse-graining
underestimates the correlations. Again, this is expected
from the differences in real space r behavior of the φ(0)(r)
and φ(2)(r) shown in Fig. 2. With increasing cluster size,
however, both curves converge to the same large cluster
DQMC result.

Next we turn to the effects of the coarse-graining on
the fermion sign problem of the underlying QMC solver.
For the doped 〈n〉 6= 1 Hubbard model in Eq. (6), the
sign problem is found to become exponentially worse
with increasing lattice size, decreasing temperature and
increasing U12. QMC simulations of the doped model
are therefore limited to small lattices, high temperatures
or weak coupling U . QMC simulations within the
framework of the DCA1,2,8 have been found to have a
much less severe sign problem than QMC simulations
of finite size lattices3. Lacking a rigorous mathematical
argument, the DCA improvement of the sign problem
was attributed to the action of the mean-field host on
the cluster3. This has allowed QMC calculations at lower
temperatures and larger U than those accessible by finite
size QMC simulations2. Further progress was made with
the introduction of the DCA+ method5, which was found
to exhibit an additional reduction of the sign problem.
This was ascribed to the removal of artificial long-range
correlations, which arise in the DCA because of the
discontinuities in the self-energy, through a continuous
lattice self-energy in the DCA+ 5.
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FIG. 5: The average QMC sign versus temperature for U/t =
8 and 〈n〉 = 0.9 for the 16A cluster. The use of the DCA+and

the φ(2) patching lead to a significantly larger average sign.

Here we study the effect of the coarse-graining on the
sign problem. Fig. 5 shows the temperature dependence
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of the average QMC sign for the 16A cluster with
t′ = 0, U = 8t and 〈n〉 = 0.9 for both DCA and
DCA+ calculations with φ(0) and φ(2) coarse-graining.
At low temperatures, one sees that the QMC sign falls
rapidly to zero, and as noted, the DCA+ algorithm gives
an improved sign relative to the DCA algorithm. As one
sees, a significant further improvement is achieved with
the interlaced φ(2) coarse-graining. When combined with
the DCA+ algorithm, it has a significantly larger average
sign at low temperatures than the DCA algorithm with
standard φ(0) patching. For example, at T = 0.2t, the
sign in the DCA/φ(0) calculation has fallen to 0.5, while
the sign in the DCA+ /φ(2) calculation remains almost
1. As a consequence, one sees that the DCA+ /φ(2)

combination enables calculations with a sizeable sign at
much lower temperatures than those that are accessible
with just the DCA or the standard coarse-graining.

Finally, we illustrate the benefits of the improved sign
problem by calculating the superconducting transition
temperature Tc as a function of cluster size Nc. To
calculate Tc, we determine the eigenvalues λα and
eigenvectors φα(k) of the Bethe-Salpeter equation13

− T

N

∑
k

Γpp(k, k′)G(k′)G(−k′)φα(k′) = λαφα(k) , (7)

where k = (k, iωn) and Γpp(k, k′) is the irreducible
particle-particle vertex on the bulk lattice. In the DCA+ ,
just as the self-energy in Eq. (3), the lattice vertex
Γpp(k, k′) is determined from inverting the equation

Γppc (K,K ′) =
N2
c

N2

∑
K,K′

φK(k)Γpp(k, k′)φK′(k′) (8)

as described in Ref.14. At Tc, the leading eigenvalue
crosses 1 and one finds that the corresponding eigenvector
has dx2−y2 symmetry14.

In Fig. 6, we plot Tc(Nc) for U = 4t, t′ = 0 and
〈n〉 = 0.9 from DCA+ calculations with the standard
φ(0) and the new interlaced φ(2) coarse-graining. In
the region with Nc ≤ 32 the trends are clearly
different: The φ(0) coarse-graining gives a Tc that
decreases with Nc and thus apparently overestimates
the pairing correlations in small clusters, while the
φ(2) coarse-graining gives an increasing Tc(Nc). This
increase can again be traced to the stronger locality of
the φ(2) coarse-graining. The d-wave pairing strength
arises from a pairing interaction Γpp(k, k′) that increases
with momentum transfer k − k′13. In small clusters,
the φ(2) coarse-graining underestimates this momentum
dependence and thus Tc. With increasing cluster size,
this underestimation is reduced, and Tc increases with
Nc. For Nc = 32, both approaches give similar Tc.
While the sign problem of the standard coarse-graining
prevents calculations for Nc > 32, the interlaced coarse-
graining allows simulations of significantly larger clusters.
As one sees from Fig. 2, the φ(2) coarse-graining takes
into account correlations in these larger clusters which
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FIG. 6: (Color online) d-wave superconducting transition
temperature Tc versus cluster size from DCA+ calculations
with the interlaced φ(2) and standard φ(0) coarse-graining for
U = 4t, t′ = 0 and 〈n〉 = 0.9. The improved sign problem

of the φ(2) coarse-graining algorithm enables calculations on
much larger clusters, for which the results converge to the
asymptotic large cluster limit.

are longer-ranged than those taken into account by the
φ(0) coarse-graining in the smaller clusters. This is
particularly useful for the study of phase transitions
where the critical behavior is determined by the long-
range correlations. One sees that the φ(2) coarse-graining
gives results with smooth cluster size dependence in the
Nc ≥ 32 region, which is not accessible by the standard
φ(0) coarse-graining. As previously discussed in Ref.14,
the clusters in this region are large enough so that the
results are consistent with the asymptotic Kosterlitz-
Thouless scaling behavior that is expected to describe
the superconducting transition in a 2D system. From
this, one can determine Tc for the exact infinite cluster
size limit, as shown in Ref.14.

IV. SUMMARY AND CONCLUSIONS

To conclude, we have introduced and studied a new
form of an interlaced coarse-graining for the DCA
and DCA+ algorithms to map the bulk lattice to an
effective cluster problem and compared it with the
standard coarse-graining. This interlaced coarse-graining
averages over a more extended region in momentum
space and thus gives a more localized self-energy with
weaker k-dependence. Non-local correlations are thus
potentially underestimated in small clusters and, in the
absence of the QMC sign problem, the standard coarse-
graining converges faster to the exact infinite cluster size
result. However, the interlaced coarse-graining generally
gives more controlled results with weaker cluster shape
and smoother cluster size dependence that converge
with the results from the standard coarse-graining with
increasing cluster size. Most importantly, we find that
the interlaced coarse-graining significantly reduces the
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sign problem of the underlying QMC solver, thereby
enabling calculations with larger cluster sizes, for which
longer-ranged correlations are taken into account and
the underestimation of shorter-ranged correlations is not
an issue. The new coarse-graining is thus particularly
well suited for large cluster studies of phase transitions
where the critical behavior is determined by the long-
range correlations. We should note that pushing the
interlaced coarse-graining further by averaging over an
even larger momentum region will suppress non-local
correlations even more, which eventually will have a
detrimental effect since larger cluster sizes will be needed
for convergence. It is therefore important to find
a good balance between the benefits of an improved
sign problem and the undesirable effect of suppressing
the non-local correlations. As an example, we have
shown that the interlaced coarse-graining in combination
with the DCA+ algorithm enables calculations of the
superconducting Tc on cluster sizes, for which the
results converge to the asymptotic Kosterlitz-Thouless
scaling curve. Thus, while care should be taken in
interpreting results on small clusters, the new coarse-
graining introduced in this paper gives access to much
larger cluster sizes and thus can enable a finite size scaling
analysis to recover the exact infinite cluster size result.
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Appendix: Setup of interlaced coarse-graining
patches

In this section we describe the algorithm that generates
the interlaced coarse-graining patches for the two
dimensional case. We start from the traditional coarse-
graining patches defined as the Brillouin zones of the
superlattice. We call the edges and corners of these
patches facets and simplexes, respectively. First, each
initial patch is divided into triangles by connecting the
corners of the patch with its center, i.e. the cluster
momentum K. For example, the square shaped initial
patches of the 16A cluster are split into four triangles
while the hexagonal shaped initial patches of the 16B
cluster are divided into six triangles. Each of these
triangles has a unique facet as one edge. The vector
perpendicular to the facet that connects the center to the

facet is defined as the normal vector n of the triangle. We
then recursively subdivide each triangle into four similar
triangles by connecting the midpoints of each side. By
construction, this k-mesh refinement at the same time
divides the initial triangle into stripes of equal width
parallel to its facet (see Fig. 7). The details of the first
three recursion steps are listed in Tab. I for the 16B
cluster.

recursion 0 1 2 3 k

no. triangles 6 24 96 384 6× 4k

no. stripes 1 2 4 8 2k

max. no. periods 0 1 2 4 2k−1

TABLE I: Details of the k-mesh refinement for the 16B cluster
up to three recursion steps. The initial number of triangles for
the hexagonal shaped patch is six. Each recursion step divides
the triangles into four similar, smaller triangles. The number
of stripes is doubled each time. The maximum number of
periods is the number of stripes divided by two.

For each of the smallest triangles we compute the
center of mass kcm and project it onto the normal vector
n of its initial triangle. The interlaced patches of period
p are then obtained by reflecting those triangles across
the facet for which

sin

(
2π p

n · n
kcm · n

)
< 0 . (A.1)

For the 16B cluster this is illustrated in Fig. 7 for one
period (blue-yellow) and three periods (blue-green).
First note that by construction stripes always get
reflected as a whole. As its name indicates, p is just the
number of periods of the sine along the normal vector n.
For the stripes not to cross a node of the sine, their total
number in the initial triangle should be an even multiple
of the number of periods p. Consequently, p determines
the minimum number of recursion steps required.

One advantage of this new approach of generating
the coarse-graining patches is its recursive nature. The
larger the recursion depth, the more the patches become
interlaced. But at the same time the only geometric
structures occurring are triangles, which are easy to
integrate over. The traditional coarse-graining is a
special case and corresponds to zero recursion steps.
Last but not least, this new coarse-graining approach
can easily be generalized to three dimensions, in which
triangles become tetrahedrons.
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facet
simplex

FIG. 7: (Color online) Construction of the patches for
the 16B cluster. Successive recursion steps of the k-mesh
refinement are shown: 0 (plain blue), 1 (blue-yellow), 2 (blue-
purple) and 3 (blue-green). Stripes are reflected with the
maximum number of periods possible: 0, 1, 2 and 4. The
sine, that determines whether a stripe is reflected, is sketched
for p = 1 and p = 4 in recursion step 1 and 3, respectively.
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