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Recent applications of Quantum Monte Carlo (QMC) technique to Fe-based superconductors
opened a way to directly verify the applicability of the itinerant scenario for these systems. Fe-based
superconductors undergo various instabilities upon lowering temperature (magnetism, superconduc-
tivity, nematicity/orbital order), and one can check whether the hierarchy of instabilities obtained
within the itinerant approach is the same as in unbiased QMC simulations. In a recent paper
[arXiv:1512:08523] the authors considered the simplest two-band model with interaction tailored to
favor orbital order. The type of the orbital order found in QMC is different from the one found in
earlier itinerant analysis. We report the results of our calculations within the itinerant scenario and
argue that they are in perfect agreement with QMC.

I. INTRODUCTION.

The issue whether Fe-based (FeSCs) can be viewed as
fully itinerant electronic systems, or electrons from some
of the orbitals are localized, has been at the center of the
debates on FeSCs right from their discovery[1–16]. The
itinerant scenario is justified when the interactions are
smaller than the fermionic bandwidth, and it treats vari-
ous instabilities in FeSCs, such as magnetism, supercon-
ductivity (SC), Ising-nematic spin order and spontaneous
orbital order, as low energy instabilities are determined
by carriers located near hole and/or electron Fermi sur-
faces (FSs) (Refs. [3–8]). Localized scenario, on the other
hand, is justified when the density-density (Hubbard) in-
teractions are larger than the bandwidth, and within this
scenario instabilities in FeSCs involve carriers from ev-
erywhere in the Brillouin zone [9–15]. The third, Hund
metal scenario, has also been put forward [16] – it as-
sumes that Hund interaction is large enough, in which
case the system retains a metallic behavior but becomes
a bad metal.

The FeSCs are metals for all dopings and composi-
tions, and this would generally place them in the cate-
gory of itinerant systems. At the same time the values of
the Hubbard and Hund interactions in FeSCs, obtained
from first-principle calculations, are comparable to the
bandwidth, and some measurements of magnetic exci-
tations in parent compounds have been reasonably well
reproduced in calculations based on both itinerant [17]
and localized [18] scenario. Measurements of the spe-
cific heat in strongly hole-doped FeSCs (specifically in
Kx Ba1−x Fe2 As2 for x → 1, Refs. [19]) have been in-
terpreted both within the itinerant scenario [20], and by
assuming that electrons on some of the Fe-orbitals get lo-
calized [14, 15], and mid-infrared optical data have been
interpreted within the Hund metal scenario [21]. Fur-
thermore, weak coupling and strong coupling scenarios
for FeSCs yield the same set of ordered states – mag-
netism, SC, etc. This all makes it difficult to settle on the
approach. It also raises the fundamental issue whether
FeSCs can be viewed as the ”systems in the intermediate

regime”, which can be gradually reached starting from
weak coupling, but some of the features they display are
inherently strong coupling and are completely missed in
weak coupling calculations.

To the best of our knowledge, there are no experi-
mental data for weakly/moderately doped Fe-pnictides,
which could not be reproduced, at least qualitatively,
within the weak coupling scenario. In Fe-selenides, the
situation is a bit more involved as magnetism in FeTe
– the parent compound of FeTe1−xSex family, is quali-
tatively different from that in other parent compounds
of FeSCs (double stripe or plaquette [23] in FeTe vs sin-
gle stripe in other systems [22]) and is only reproduced
within the localized scenario [23]. Still, an orbital order
at x ≈ 1 and SC at x ≥ 0.5 in this material and also in
245 family of FeSCs are all reproduced within the itin-
erant approach [8, 24–27]. This is in line with the idea
that FeSCs, with the exception of FeTe, can be viewed as
itinerant systems, adiabatically extended to intermediate
coupling.

However, the ability to qualitatively explain the data
may be misleading and one needs another tool to ver-
ify whether the behavior of a given FeSC, particularly
the hierarchy of the instabilities upon lowering temper-
ature or changing parameters, differs in any fundamen-
tal way from that in a weakly coupled metal with the
same topology of the FS as in a FeSC. Recent applica-
tion of Quantum Monte Carlo (QMC) method to FeSCs
(Refs. [28, 29]) provide such a tool as they allow one
to compare the actual behavior in a fermionic system
with comparable strength of kinetic and potential ener-
gies with the one obtained by using weak coupling per-
turbative schemes for various topologies of Fermi surfaces
and structures of multi-band excitations. In Ref. [29],
Dumitrescu et al applied QMC to the simplest toy model
for FeSCs – the two band model with Fe dxz and dyz or-
bitals, first considered by Raghu et al [30]. Although this
model does not reproduce the correct topology of low-
energy electronic states in FeSCs (one of the two hole
FSs is in wrong place in the 1 Fe Brillouin zone), it nev-
ertheless is the simplest toy model with two hole and
two electron Fermi surfaces. Dumitrescu et al further
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tailored 4-fermion interaction to be local and in the form
−g(nxz − nyz)2, where ni = d†idi is fermionic density on
a given orbital, and g > 0. This last condition is difficult
to justify on microscopic grounds because it implies that
intra-orbital Hubbard interaction is attractive, in vari-
ance with first-principle calculations [32]. Nevertheless,
the model considered in [29] and in earlier works [33] is
quite interesting for our purpose to compare QMC and
perturbation theory as it favors an orbital order (a spon-
taneous development of a non-zero < nxz − nyz >). An
orbital order is a threshold phenomenon, i.e., it appears
only when g exceeds a certain critical value gc, which is
generally of order of the bandwidth, W. Weak coupling
analysis is an expansion in g, and there is no a’priori
guarantee that the type of orbital order obtained by using
weak coupling approximation and extending g to critical
gc will be the right one.

Different types of orbital order in the two-pocket model
include ferro-orbital (FO) order (a Pomeranchuk insta-
bility), which can be in s−wave or d−wave channel,
antiferro-orbital (AFO) order with momentum (π, π),
and stripe-type orbital order with momentum (0, π) or
(π, 0). Dumitrescu et al argued that strong coupling anal-
ysis (an expansion in 1/g) favors AFO order, and they
did find the same type of order in QMC. Earlier itiner-
ant calculations, on the other hand found numerically a
different, FO order (Ref. [33]).

A. Summary of our results

In this paper we report the results of our analytical
analysis of the orbital order and SC within the itinerant
scenario.

In the particle-hole channel we found that weak cou-
pling calculation shows that the system chooses to de-
velop AFO order, the same one as found in QMC calcula-
tions. Moreover, we argue that some of the particle-hole
polarization bubbles involved in the renormalizations of
the orbital order parameters are logarithmical at interme-
diate energies and, as a result, the critical coupling g = gc
for the orbital instability is small compared to fermionic
bandwidth, W , and is within the range of applicability
of weak coupling expansion. The smallness of gc/W is
due to small sizes of hole and electron pockets and holds
in 1/ log W

ε0
, where ε0 is of order of Fermi energy. We

found logarithms in both AFO and FO channels, but the
prefactor in the AFO channel is larger, hence the leading
instability is towards AFO order.

In the particle-particle channel we found the leading
instability in s++ channel (ordinary s−wave) and sub-
leading instability in the d−wave channel. The renormal-
izations in both channels contain series of conventional
Cooper-type g

W log W
T terms, but also contain terms of

order g/ε0, due to the presence of two weakly dispers-
ing bands, whose energies remain of order ε0 over a wide

range of momenta. S-wave channel wins over d−wave
both at truly weak coupling, when Tc � ε0 and only the
conventional logarithmical terms matter, while at larger
g, terms of order g/ε0 play the leading role.

We compared critical g for the instabilities in the
particle-hole and particle-particle channels. Within
the ladder approximation, when particle-particle and
particle-hole channels do not couple to each other, the
comparison of the eigenvalues in the AFO and s++ chan-
nels shows that the overall prefactor in the AFO channel
is larger than in s++ channel, but the combination of
polarization operators is larger in the SC channel. We
went beyond the ladder approximation and used renor-
malization group (RG) to include the flow of the intra-
orbital and inter-orbital interactions between high and
low energies due to the actual presence of the couplings
between particle-hole and particle-particle channels. We
found that, due to the flow, the overall prefactor in the
AFO channel is reduced and becomes the same as in s++

channel. Because polarization operator is larger in the
SC channel, the leading instability upon, e,g., increasing
g at a certain non-zero temperature is definitely towards
s++ SC. The AFO order develops, but at a larger g. This
fully agrees with QMC calculations.

Another result of RG is that couplings in both s++

and AFO channels get enhanced by coupling to stripe
magnetic fluctuations. This enhancement is the strongest
around half-filling, when there is nesting between hole
and electron pockets [4]. Accordingly, both s++ SC and
AFO order are the strongest near half-filling. This again
agrees with QMC results.

The structure of the paper is the following. In the
next section we introduce the model. In Sec. III we
consider instabilities in the particle-hole and particle-
particle channels and the interplay between them. In
Sec. III A we analyze instabilities towards FO and AFO
orders within the ladder approximation. In Sec. III B
we analyze the pairing instabilities within the same ap-
proximation. In Sec. III C we compare the instabilities
in the particle-hole and particle-particle channels first in
the ladder approximation and then by adding RG anal-
ysis. We present our conclusions in Sec. IV.

II. THE MODEL

We consider the same two-orbital model as in earlier
works, with hoping between dxz and dyz orbitals at near-
est and next-nearest neighbors. The kinetic energy is

H =
∑
k

Ax,kd
†
xz,kdxz,k +Ay,kd

†
yz,kdyz,k +

Vk

(
d†xz,kdyz,k + d†yz,kdxz,k

)
(1)
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where the summation over spin components is assumed
and

Ax,k = A0 + t1 cos kx + t2 cos ky + t3 cos kx cos ky,
Ay,k = A0 + t2 cos kx + t1 cos ky + t3 cos kx cos ky,
Vk = V sin kx sin ky.

The dispersions Ax,k and Ay,k along different directions
in momentum space are presented in Fig. 1. The two dis-
persions are obviously degenerate at (0, 0) and at (π, π).
The V term does not remove the degeneracy, but it mixes
dxz and dyz orbitals away from these points. The kinetic
energy in the presence of the V term can be easily diag-
onalized. Near (0, 0) and (π, π) there are two low-energy
modes, each with mixed dxz/dyz character. Out of two
low-energy modes near (0, 0), one crosses the chemical
potential and creates a hole pocket, while the other re-
mains above the chemical potential. The same holds near
(π, π), where the second hole pocket develops.

Near k = 0, Ax,k, Ay,k and Vk are approximated by

Ax,k = ε0 − ak2 − c(k2
x − k2

y),
Ay,k = ε0 − ak2 + c(k2

x − k2
y),

Vk = V kxky,

where

ε0 = A0 + t1 + t2 + t3, a = t1 + t2 + 2t3
4 , c = t1 − t2

4 .

The diagonalization near k = 0 yields

H = Ea(k)a†kak + Eb(k)b†kbk,

and the two dispersions are

Ea,b(k) = ε0 − ak2 ∓
√
c2(k2

x − k2
y)2 + V 2k2

xk
2
y.

To simplify the analysis we set V = 2c, in which case
the two dispersions near k = 0 are isotropic: H =
Ea(k)a†kak +Eb(k)b†kbk, where Ea,b(k) = ε0− (a± |c|)k2.
The transformation from dxz/dyz orbital operators to a
and b band operators is a pure rotation [31]

dxz = a cosφ+ b sinφ, dyz = b cosφ− a sinφ, (2)

where φ is the angle between k and x-axis. Like in earlier
works we set ε0 > 0, a > 0, and a ∼ |c|. For these
parameters, Ea crosses zero at k = kF = (ε0/(a+|c|))1/2,
while Eb remains approximately equal to E0 at small k.

A similar analysis for k ≈ (π, π) yields the similar form
of H as near k = 0, i.e.,

H = Eã(k)ã†kãk + Eb̃(k)b̃†k b̃k,

where k is counted from (π, π), and

Eã,b̃(k) = ε̃0 − (a± |c|)k2
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FIG. 1: The fermionic dispersion and the Fermi surface of
the two-orbital model. (a) The dispersion along (0, 0)-(0, π)-
(π, π)-(0, 0), measured from µ. The solid red line shows Ea(k);
the thick blue line shows Eb(k); the purple dashed lines show
the dispersions in the absence of hybridization between the
orbitals Ax,k and Ay,k. Along (0, 0)-(0, π) and (0, π)-(π, π)
directions Ax,k coincides with Ea(k) and Ay,k coincides with
Eb(k). Along (π, π) to (0, 0) direction, Ax,k = Ay,k is different
from Ea,b(k). We used t1 = 2.0, t2 = −2.2, t3 = 2.32, V = 2.2
and µ = 1.892. The hopping parameters has been chosen to
make all pockets small. (b) The Fermi surface of the two-
orbital model. The red circles are hole pockets and the blue
ones are electron pockets.

where ε0 = A0 − t1 − t2 + t3. Again, the ã band crosses
the chemical potential and forms a hole pocket, while
the energy of the b̃ band remains approximately equal to
ε̃0. The dispersions near (π, π) become identical to those
near (0, 0) when t1 + t2 = 0. The transformation from
dxz/dyz orbital operators to ã and b̃ band operators is

dxz = b̃ cosφ− ã sinφ, dyz = ã cosφ+ b̃ sinφ, (3)

where φ is again the angle between small k̃ and x-axis.
We emphasize that (3) is not obtained from (2) by rotat-
ing φ by 90o, one needs to invoke an additional reflection
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around, say, x axis.
Near(0, π) ((π, 0)), only Ax,k (Ay,k) becomes soft,

other branch has a larger gap, comparable to the full
bandwidth. The hybridization term Vk vanishes at
(π, 0) and (0, π), hence low-energy excitations near (0, π)
((π, 0)) can be safely approximated as pure dxz (dyz).
These pure excitations form two electron pockets (see
Fig. 1). We label corresponding low-energy fermions as
f1,k (f2,k) with momentum counted from (0, π) ((π, 0)).

We follow Refs. [29, 33] and set the interaction
term to be Hint = −g

∑
r,α(nxz,α(r) − nyzα(r))2,

where nxz,α(r) = d†xz,α(r)dxz,α(r) and nyz,α(r) =
d†yz,α(r)dyz,α(r). This interaction can be cast into more
familiar U − U ′ Hubbard form with intra-pocket and
inter-pocket terms:

H =
∑
r,α,β

U

2 (nxz,α(r)nxz,β(r) + nyz,α(r)nyz,β(r)) +

U ′nxz,α(r)nyz,β(r) (4)

with U = −2g and U ′ = 2g. Like in earlier works, we
set g to be positive, in which case the interaction favors
orbital order with nxz,α(r) 6= nyx,α(r). The model with
a positive g is somewhat artificial as it implies that intra-
orbital Hubbard interaction U is attractive, but, like we
said, this model allows one to compare QMC results with
analytical results at weak and strong coupling.

The interaction (4) is momentum independent in the
orbital basis, but acquires the dependence on cos θ and
sin θ of individual fermions, when re-expressed in the

band basis. Namely, each time dxz or dyz operator is
re-expressed in terms of a, b, ã, or b̃ fermions, the inter-
action term acquires the corresponding coherence factor
from the transformation from orbital to band basis.

III. INSTABILITIES IN THE PARTICLE-HOLE
AND PARTICLE-PARTICLE CHANNELS
WITHIN THE ITINERANT APPROACH

A. Orbital ordering

At large g, the potential energy well exceeds the ki-
netic energy. The −g(nxz − nyz)2 is minimized when all
fermions accumulate in one band, breaking the orbital
symmetry. However, the potential energy is local and
it alone does not specify the momentum of the orbital
order. To understand what kind of orbital ordering de-
velops, one needs to include the leading corrections in
t/g. These terms favor a checkerboard, AFO order with
momentum (π, π) (Ref.[35]). The same AFO order has
been found in QMC analysis [29]. Like we said, our goal
is to understand what kind of orbital order emerges at
weaker couplings, when potential energy can be treated
as a perturbation and the instability comes from low-
energy fermions, located near the Fermi surfaces.

We compare two types of orbital orders ∆(r) =∑
q ∆(q)eiqr: uniform FO order ∆(q) = ∆foδ(q) and

staggered anti-FO order ∆(q) = ∆afoδ(q − (π, π)). In
terms of low-energy band fermions,

∆fo =
∑
k

[
< f†1,kf1,k − f†2,kf2,k >

]
(5)

+
∑
k

[(
< a†kak − b

†
kbk >

)
cos 2θk +

(
< a†kbk + b†kak >

)
sin 2θk

]
−
∑
k

[(
< ã†kãk − b̃

†
k b̃k >

)
cos 2θk +

(
< ã†k b̃k + b̃†kãk >

)
sin 2θk

]
and

∆afo =
∑
k

[(
< a†k b̃k + b̃†kak >

)
−
(
< b†kãk + ã†kbk >

)]
, (6)

where the integration over k is confined to the FS and
this reduces the integration over position of k on the FS
specified by θk. In both terms the summation is restricted
to small k. There is no contribution to ∆afo from elec-
tron pockets because out of two fermions from the same
orbital, one has high energy.

To understand when (and if) the system develops an
instability towards any of these orbital orders, we add

to the Hamiltonian infinitesimally small order parame-
ters ∆(0)

fo and ∆(0)
afo and compute the full susceptibilities.

The divergence of a certain susceptibility would signal an
instability towards the corresponding spontaneous order.
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1. Ferro-orbital order

We first do calculations in the ladder approximation
and then include RG renormalizations of U and U ′. In
the ladder approximation (also often called random phase
approximation) one assumes that the dominant contri-
bution to the renormalization of ∆(0)

fo and ∆(0)
afo comes

from series of ladder and bubble diagrams with repeated
insertions of the interactions in the same channel, in
our case particle-hole channel with momentum transfer
either zero or (π, π), while coupling to other channels
(e.h., particle-particle channel) are neglected. Within
this approximation, the fully renormalized order param-
eters ∆fo and ∆afo are expressed via the bare ones as
∆fo = ∆(0)

fo /(1− Ifo) and ∆afo = ∆(0)
afo/(1− Iafo). The

instability in a given channel develops when the corre-
sponding I = 1. To obtain when (and if) this condition
is satisfied, one can neglect the bare values, find eigen-
values of the self-consistent equations for ∆fo and ∆afo

and check when the highest eigenvalue reaches one.
The set of self-consistent equations for ∆fo is presented

in Fig. 2. Because coherence factors depends separately
on cos θ and sin θ, one has to introduce a more generic
q = 0 order parameter with components

∆aa
fo cos2 θ, ∆̄aa

fo sin2 θ, ∆ãã
fo cos2 θ, ∆̄ãã

fo sin2 θ,

∆ab
fo cos θ sin θ, ∆ãb̃

fo cos θ sin θ,

∆f1f1
fo , ∆f2f2

fo ,

(7)

where ∆aa
fo =

∑
k a
†
kak and so on. These 8 order parame-

ters are all coupled in the ladder approximation, however
the 8 × 8 secular equation decouples between s−wave
and two d−wave harmonics. Assume momentarily that
t1 + t2 = 0, i.e., the pockets at (0, 0) and π, π) are iden-
tical. Then in the dx2−y2 channel (the one we need)

∆aa
fo = −∆̄aa

fo = −∆ãã
fo = ∆̄|ããfo = ∆1

∆ab
fo = −∆ãb̃

fo = ∆2,

∆f1f1
fo = −∆f2f2

fo = ∆3 (8)

The three equations on ∆i, i = 1− 3 are identical up to
a factor 2:

∆1 = −U + 2U ′

2 [∆1Πaa + 2∆2Πab + 2∆3Πff ]

∆2 = −U + 2U ′

2 [∆1Πaa + 2∆2Πab + 2∆3Πff ]

∆3 = 2−U + 2U ′

2 [∆1Πaa + 2∆2Πab + 2∆3Πff ](9)

where Πij are polarization operators defined such that
Πij > 0. The solution of (9) is, obviously, ∆1 = ∆2 =
∆3/2 = ∆. Substituting this into (5) we obtain ∆fo =
6∆. The eigenvalue for this solution is λfo = (−U/2 +

FIG. 2: Diagrams for the renormalization of the components
of ferro-orbital order parameter. Only diagrams for ∆aa

fo are
shown; the diagrams for the renormalization of other order
parameters ∆bb

fo, ∆ab
fo, ∆ãã

fo, ∆b̃b̃
fo, ∆ãb̃

fo, ∆f1f1
fo and ∆f2f2

fo are
obtained in a similar way. Solid lines, dotted lines and dashed
lines label a, ã, f1 respectively; double solid lines, dotted lines
and dashed lines label b, b̃, f2 respectively.

U ′) (Πaa + 2Πff + 2Πab). For a more generic case when
hole pockets are not equivalent, the calculations are a bit
more involved, but the result is the expected one:

λfo = −U + 2U ′

4 [(Πaa + Πãã) + 4Πff + 2 (Πab + Πãb̃)]
(10)

We recall that in our model U = −2g and U ′ = 2g, i.e.
−U +2U ′ = 6g > 0. Then, at some critical g, the system
becomes unstable against FO order.

2. Antiferro-orbital order

We now consider AFO order. The set of self-consistent
equations for ∆afo is presented in Fig. 3.

Like before, we have to introduce more general q =
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FIG. 3: Diagrams for the renormalization of the components
of antiferro-orbital order parameter. Only diagrams for ∆ãb

afo

are shown; the diagrams for the renormalization of ∆ab̃
afo are

obtained in a similar way. The notations are the same as in
Fig. 2.

(π, π) order parameters

∆ab̃
afo cos2 θ, ∆̄ab̃

afo sin2 θ, ∆ãb
afo cos2 θ, ∆̄ãb

afo sin2 θ,

∆aã
afo cos θ sin θ, ∆f1f2

afo .

Again, s−wave and d−wave harmonics decouple. One
can straightforwardly verify that only the first four pa-
rameters contribute to dx2−y2 harmonics, and, moreover,
in this channel

∆ab̃
afo = ∆̄ab̃

afo = ∆1a,

∆ãb
afo = ∆̄ãb

afo = ∆2a.

The coupled equations on ∆1a and ∆2a are

∆1a = [− (U − 2U ′) ∆1a + (U − 2U ′) ∆2a] Πab̃

∆2a = − [− (U − 2U ′) ∆1a + (U − 2U ′) ∆2a] Πab̃

where we used that Πab̃ = Πãb. Like before, we defined
polarization operator such that Πab̃ > 0. For U < 0 and
U ′ > 0 the only positive eigenvalue is

λafo = 2 (−U + 2U ′) Πab̃ (11)

The corresponding eigenfunction has ∆1a = −∆2a = ∆a.
Substituting into (6) we obtain ∆afo = 8∆a. For U =
−2g, U ′ = 2g, λafo = 12gΠab̃

We now compare λfo and λafo. The point for compar-
ison is that for small hole pockets, i.e., for small ratios
Ea,b;0/W = ε0/W and Eã,b̃;0/W = ε̃/W , polarization op-
erators Πab, Πãb̃, and Πab̃ are logarithmically enhanced
as logW/ε0 ∼ logW/ε̃0, because they are made out of
fermions which over wide momentum range have oppo-
site signs of dispersion, i.e., a particle-hole bubble ef-
fectively behaves as a particle-particle bubble, up to an
overall sign. As a result, each of these bubbles behaves
as logW/ε0. At the same time, Πaa and Πff are or-
dinary zero-momentum polarization bubbles, and both

are of order 1/W . Without Πab and other cross-terms,
λafo would vanish, while λfo would be positive, but of
order g/W , i.e., there would be no instability at g �W ,
where weak coupling approach is justified. Because of
cross-terms, the situation is quite different in two aspects.
First, the instability occurs at g ∼ W/ log W

ε0
� W ,

where calculations are under control. Second, the pref-
actor for the logarithm is by a factor of two larger in
λafo than in λfo, hence the leading orbital instability
is actually towards the AFO order. That λafo > λfo
is consistent with QMC results [29]. QMC calculations
show that susceptibility in both channels increases as g
increases and, at a critical gc, diverges in the AFO chan-
nel, while the susceptibility in the FO channel remains
finite at gc. The QMC study also found that AFO order
develops only at filling when hole pockets are small but
finite, and disappears at higher and smaller fillings. This
is also consistent with our analysis because at larger elec-
tron filling electron pockets grow, and the range where a
and b̃ dispersions have opposite sign shrinks, hence Πab̃

decreases. At large hole doping, ε0 and ε̄0 increase and
Πab̃ again decreases, this time because logarithmic en-
hancement gets weaker.

We emphasize that our analytical consideration is only
valid when all four pockets are small and λ = 1/ logW/ε0
is a small parameter. In this limit, (i) critical coupling
is small by λ compared to the bandwidth and (ii) non-
ladder renormalizations are also small in λ, i.e., RPA-
type analysis is justified. When pockets are small, ε0 and
W are comparable. In this situation, RPA is not justified
and its outcome is also non-universal and depends on,
e.g., the value of µ (Refs. [29, 33]). We believe that one
should only reply on controllable weak coupling results
in comparing such calculations with QMC.

B. Superconductivity

The same interaction Hamiltonian, Eq. (4), also gives
rise to the SC instability, and it becomes an issue whether
this instability develops before or after AFO order sets
in.

The dominant contribution to SC at weak coupling,
when Tc is small enough, comes from states immedi-
ately close to the Fermi surface, i.e., from a, ã, f1 and
f2 fermions. However, when Tc is higher, one needs to
include the contributions to the pairing from b and b̃
fermions, i.e., particle-particle polarization bubbles Πbb,
Πa,b and other terms of the same type. In the analysis
below we keep all contributions in the SC channel. The
calculations are performed in the same way as before(Fig.
4), by introducing order parameters

∆aa
SC cos2 θ, ∆aa

SC sin2 θ, ∆ab
SC cos θ sin θ (12)

and so on, where ∆aa
SC =

∑
k ak,αakβ(iσyαβ), etc. Like

before, we derive self-consistent equations on ∆ij
SC in the
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FIG. 4: Diagrams for the renormalization of the compo-
nents of pairing order parameter. Only diagrams for ∆aa

SC are
shown; the diagrams for the renormalization of other order
parameters ∆bb

SC , ∆f1f1
SC , ∆f2f2

SC , ∆ãã
SC , ∆b̃b̃

SC , ∆ãb̃
SC and ∆ab

SC

are obtained in a similar way. The notations are the same as
in Fig. 2.

ladder approximation and obtain eigenvalues. Only the
U term contributes to the renormalization of the pairing
vertex, U ′ term doesn’t play a role. In total, there are
16 gap components (if we count ∆ab and ∆ba as separate
variables), i.e., there are 16 coupled equations. By ob-
vious reasons, the equations decouple between s−wave
and d−wave channels. With our choice of variables in
Eq. (12), d−wave component necessary has dx2−y2 sym-
metry. [To analyze the coupling in dxy channel one has
to introduce different set of variables like ∆aa

SC sin θ cos θ,
etc.]

The presence of large number of components normally
implies that there exist non-zero eigenvalues in differ-
ent subsets of s−wave and dx2−y2 channels (e.g., s++

and s+−), and one has to verify which sub-channel wins.
However, we found that in in our case there is no such
competition as eigenvalues are non-zero only in the s++

and dx2−y2 channels. These two non-zero eigenvalues are

λs++ = (13)

−2U
[

Πaa
pp + Πãã

pp + 2Πff
pp

4 +
Πbb
pp + Πb̃b̃

pp

4

]
λdx2−y2 =

−U

[
Πaa
pp + Πãã

pp + 4Πff
pp

4 +
Πbb
pp + Πb̃b̃

pp

4 +
Πab
pp + Πãb̃

pp

2

]

where Πij
pp are particle-particle susceptibilities made out

of fermions from band i and j with momenta k and
−k, defined such that Πij

pp > 0. Note that cross-terms
∆ab
SC cos θ sin θ only contribute to d−wave channel, and

for this channel ∆ab
SC = −∆ãb̃

SC . We recall that U = −2g

for the model of Eq. (4). Then λs++ and λdx2−y2 are both
positive, i.e., both channels are attractive. For small g,
the pairing instability occurs at small Tc, and the largest
contributions to λ in both channels comes from Πaa

pp , Πãã
pp ,

and Πff
pp , which scale as 1

W log(WT ). Other Πij
pp do not di-

verge at T = 0, however, because b and b̃ bands are flat
over a wide range of momenta, and the band energies in
this flat region are of order ε0 � W , Πbb

pp and Πb̃b̃
pp both

scale as 1
ε0
∼ 1

W
W
ε0
� 1

W . The other two polarization
bubbles Πab

pp and Πãb̃
pp ∼ 1

W , i.e., are much smaller. Keep-
ing only 1

W log(WT ) terms, we find that λs++ > λdx2−y2 ,
i.e., the leading instability in the particle-particle channel
is towards s++ state. The dx2−y2 channel is attractive,
but subleading to s++. This result holds when we in-
clude Πbb

pp and Πb̃b̃
pp, because the prefactor for Πbb

pp and
Πb̃b̃
pp is larger in the s++ channel. Then, the attraction in

the s++ channel is stronger than in dx2−y2 channel, no
matter what is Tc, as long as Tc �W .

C. Interplay between AFO order and s-wave SC,
the role of RG

Comparing λafo and λs++ we find that at the smallest
g the system only develops an instability towards s++ SC
at an exponentially small Tc. If the system is probed by
varying g at a given T ∼ ε0, the selection is less obvious
because the prefactor −2U + 4U ′ in the AFO channel
(Eq. (11)) is larger than −2U for λs++ in (13), while
the combination of the polarization operators is obvi-
ously larger in the SC channel. This uncertainty goes
away once we include the renormalizations neglected in
the ladder approximation. Specifically, if we apply par-
quet RG technique for multi-band superconductors [4],
we find that inter-orbital repulsion U ′ > 0 gets renormal-
ized in the particle-particle channel (but not in particle-
hole channel) and flows to zero under RG. This is similar
to McMillan-Tolmachev renormalization in conventional
phonon superconductor [36]. As the consequence, the
prefactor in λafo becomes the same −2U as in λs++ . The
polarization operators are larger in the SC channel, hence
in the ladder approximation, but with running U and U ′,
s−wave pairing instability has to develop first, i.e., at a
smaller g than AFO order. This is consistent with the
results of QMC analysis. Another result of RG is that U ,
and, hence, the couplings in both s++ and AFO channels
get enhanced by the coupling to (π, 0)/(0, π) magnetic
fluctuations [4, 34]. This enhancement is the strongest
in the doping range when both hole and electron pockets
are small in size. Hence, the instability temperatures are
maximized in this region. This again agrees with QMC
results. We caution, however, that using Eqs. (11) and
(13) with the running couplings is an approximation not
controlled by a small parameter. [25].
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IV. SUMMARY

In this paper we analyzed instablities towards orbital
order and superconductivity within the two-orbital model
for FeSCs, which has been recently studied in detail by
QMC. We used itinerant approach and argued that it
is applicable because critical coupling g for orbital and
superconducting instabilities is parameterically smaller
than the bandwidth. We found that the leading insta-
bility in the orbital channel is towards AFO order with
momentum (π, π), while the one in the pairing channel
is towards s++ SC, while dx2−y2 SC is close second. We
argued that, as g increases at a fixed T , the system first
develops s++ SC order and then, at a larger g, develops
AFO order. The latter is confined to the range of fillings
when hole and electron pockets are small in size. The
same two orders and the same phase diagram has been
recently detected in QMC studies. We view the agree-
ment with unbiased QMC as the indication that orbital
and superconducting orders in FeSCs can be properly ac-
counted for within the itinerant scenario.

We thank R. Fernandes and A. Vishwanath for useful
discussions. This work was supported by the Office of
Basic Energy Sciences U. S. Department of Energy under
award DE-SC0014402 (AVC).
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