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A necessary condition for superconductivity (SC) driven by electron correlations is that electron-
electron (e-e) interactions enhance superconducting pair-pair correlations, relative to the noninter-
acting limit. We report high-precision numerical calculations of the ground state on four different
finite lattices of up to 100 sites within the frustrated two-dimensional (2D) Hubbard Hamiltonian
for a wide range of carrier concentration ρ (0 < ρ < 1). The average long range pair-pair correlation
for each cluster is enhanced by Hubbard U only for ρ ≈ 0.5. At all other fillings e-e interactions
mostly suppress pair correlations. Our work provides a key ingredient to the mechanism of SC in
the 2D organic charge-transfer solids (CTS) and many other unconventional superconductors with
frustrated crystal lattices and ρ ≃ 0.5.

PACS numbers: 71.10.Fd, 71.10.Hf, 74.20.Mn, 74.70.Kn

I. INTRODUCTION

The possibility that e-e interactions drive SC in
correlated-electron systems has been intensely investi-
gated. The minimal requirements for a complete theory
are, (i) superconducting pair correlations are enhanced
by e-e interactions, and (ii) pair correlations are long
range. For moderate to large e-e interactions, pair cor-
relations are perhaps best calculated numerically, which
can be done only for finite clusters. The simplest model
incorporating e-e interactions is the Hubbard model,

H = −
∑

〈ij〉,σ

tijBi,j,σ+U
∑

i

ni,↑ni,↓+
1

2

∑

〈ij〉

Vijninj . (1)

In Eq. 1 Bi,j,σ = (c†i,σcj,σ + H.c.) where c†i,σ creates an
electron of spin σ on site i. U and Vij are onsite and
nearest neighbor (n.n.) Coulomb interactions respec-
tively. Numerical calculations within Eq. 1 have failed
to find enhancement of pair-pair correlations relative to
the noninteracting model without making assumptions
regarding the wavefunction1. Indeed, quantum Monte
Carlo calculations on finite lattices find suppression of
pair correlations by U2–6.
It has been surmised that correlated-electron SC

evolves upon doping a spin-gapped semiconductor, as
in toy models consisting of weakly coupled even-leg
ladders7,8. Finding realistic 2D models with spin gap
(SG) and enhanced pair correlations remains challeng-
ing. Here we demonstrate from explicit numerical calcu-
lations on frustrated 2D lattices enhanced pair correla-
tions evolving from a spin-gapped state at a carrier den-
sity ρ ≃ 0.5, far from the region most heavily investigated
(0.7 < ρ < 1.0). We point out the strong relevance of the
resulting theoretical picture to real materials, in particu-
lar the 2D CTS superconductors, which were discovered
before the high Tc cuprates

9 but are still not understood.
There occurs an effective e-e attraction uniquely at

ρ = 0.5, driven by charge-spin-lattice coupling. Consider

the four-atom dimerized “molecule” of Fig. 1(a), with
two strong intradimer bonds and one electron on each
dimer. In the absence of the interdimer bond, the elec-
tron density is homogeneous. As this bond is switched
on, there is net migration of charge to the two cen-
ter atoms, due to the attractive antiferromagnetic spin-
coupling10. Charge migration is enhanced by electron-
phonon (e-p) interactions10,11. The effective attraction
is stronger than that near ρ ∼ 1, where charge migra-
tion is is not possible, with the neighboring sites already
occupied. The charge-ordering (CO) of Fig. 1(a) in the
spin-singlet state persists in the thermodynamic limit in
one dimension (1D) ρ = 0.5, where for V < Vc(U) e-e
and e-p couplings act cooperatively11 to give the spin-
Peierls states of Fig. 1(b) and (c). The spin-Peierls state
at ρ = 0.5 is a paired-electron crystal (PEC), in which
singlet-coupled n.n. singly occupied sites are separated
by pairs of vacancies. Similar PECs occur in the zigzag
ladder (Fig. 1(d))12 and in the anisotropic triangular lat-
tice (Fig. 1(e))10. We have not found the PEC10 at any
other ρ. This is expected, as only at ρ = 0.5 the PEC is

commensurate.

Based on a valence bond (VB) perspective similar to
Anderson’s resonating valence bond13 approach to the
nearly ρ = 1 limit, we posit that SC is achieved in ρ ≃ 0.5
upon destabilization of the PEC, either due to increased
frustration or very weak doping. The PEC wavefunction
is dominated by covalent VB diagrams with periodic ar-
rangement of the n.n. singlet bonds. Close to the PEC
we anticipate the wavefunction to continue to be domi-
nated by VB diagrams with n.n. singlet bonds, except
that the arrangement of the bonds is no longer periodic.
One such diagram is shown in Fig. 1(f)(i). Within Eq. 1,
pairs of VB diagrams with only n.n. bonds are coupled
through the diagrams with next nearest neighbor (n.n.n.)
bonds, as in Figs. 1(f)(ii) and (iii). We collectively re-
fer to diagrams with only n.n. and n.n.n. bonds as those
with short bonds. There will be considerable pair tunnel-
ing in a wavefunction dominated by VB diagrams with
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FIG. 1. (color online) (a) ρ = 0.5 dimers with weak (left)
and moderate (right) interdimer singlet bonding. Sites col-
ored gray, blue and red have charges 0.5, > 0.5 and < 0.5,
respectively. 2kF spin singlet states in the ρ = 0.5 1D chain,
for (b) small to intermediate U and V , and (c) for interme-
diate to large U . In both cases V < Vc(U)11. The PEC in
the (d) ρ = 0.5 zigzag ladder12, (e) 2D triangular lattice10.
The CO has pattern . . .1100. . . in two directions, where ‘1’
(‘0’) denote charge-rich (charge-poor) sites. Double, single
and dotted bonds in (b) – (e) denote bonds with decreasing
strengths, with the double dotted bond weaker than a single
bond but stronger than a single dotted bond. Differences in
bond strengths result from nonzero e-p coupling. (f) Cova-
lent VB diagrams with short bonds in ρ = 0.5, and (g) their
total normalized weights in the ground state wavefunction of
different ρ for the 4×4 lattice, for ty = 1, tx+y = 0.8.

short bonds, and we will refer to such a wavefunction as
a paired electron liquid (PEL).
In the following section we describe the results of finite-

size correlated calculations within Eq. 1 that demonstrate
explicitly the enhancement of SC uniquely for ρ ≃ 0.5.

II. LATTICES, PARAMETERS, AND RESULTS

We consider an anisotropic triangular lattice with tij =
{tx, ty, tx+y}. We express all quantities with dimensions
of energy in units of tx (tx = 1). The bulk of our calcula-
tions are for ty ≃ 1, with tx+y only slightly smaller. This
is because antiferromagnetism (AFM) or CO dominate
at weaker frustrations10. We first calculate the exact
wavefunctions in the lowest total spin S = 0 subspace
for all ρ within the periodic 4×4 triangular lattice. In
Fig. 1(g) we plot the total normalized contribution by
the covalent VB diagrams with short bonds to the exact
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FIG. 2. (color online) Average long range pair-pair correlation
P̄ (U) normalized by its uncorrelated value for (a) 4×4, (b)
6×6, (c) 10×6 and (d) 10×10 anisotropic triangular lattices,
for ty = 0.9 and tx+y = 0.8. 4×4 results are exact; 6×6
and 10×6 results are obtained using the PIRG method; and
10×10 by the CPMC method.

wavefunction as a function of ρ for several Hubbard U
and V . For moderate to large e-e interactions the max-
imum in this contribution occurs at ρ = 0.5, indicating
that VB diagrams with short bonds dominate at ρ = 0.5.
We anticipate Bose condensation of singlet pairs within

the PEL state within the mechanism of SC proposed by
Schafroth14. Since without e-p coupling in Eq. 1 there
is no static SG and PEC, a complete theory of SC will
require explicit inclusions of both e-e and dynamic e-p
interactions. As is however well established from studies
of CDWs and SDWs, the tendency to the dominant insta-
bility in models containing both e-e and e-p interactions
can be determined from correlation functions of the elec-
tronic Hamiltonian alone15. We have performed calcula-
tions within Eq. 1 to determine if the dominance of VB
diagrams with short bonds at ρ ≃ 0.5 implies enhanced
superconducting pair correlations. We demonstrate that
the PEL is a precursor to a correlated superconducting
state.
Our choice of which lattices to consider for calcula-

tions of SC pair-pair correlations is guided by several
considerations. First, the total number of sites should
be less than around 100 in order to obtain accurate re-
sults for the pair-pair correlation functions. Second, the
lattice should have a single-particle level structure such
that quarter-filling (ρ = 0.5) is a non-degenerate state,
and the Lx and Ly dimensions should be an even num-
ber of sites. We took tx slightly different from ty (tx = 1,
ty = 0.9) in order to maximize the number of densi-
ties with non-degenerate single-particle spectra. Within
these constraints, and considering only lattices for which
Ly & Lx/2, the only possible choices are 10×10, 10×6,
and 6×6. In addition we considered the 4×4 lattice,
which although degenerate at ρ = 0.5, is the largest lat-
tice for which the full density range can be calculated
exactly.
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We define the standard singlet pair-creation operators

∆†
i =

∑

ν

g(ν)
1√
2
(c†i,↑c

†
i+ ~rν ,↓

− c†i,↓c
†
i+ ~rν ,↑

), (2)

where g(ν) determines the pairing symmetry. The phases
g(ν) determine the pairing symmetry. For dx2−y2 sym-
metry, g(ν) = {1,−1, 1,−1} for ~rν = {x̂, ŷ,−x̂,−ŷ} re-
spectively. For dxy symmetry, g(ν) = {1,−1, 1,−1} for
~rν = {x̂+ ŷ,−x̂+ ŷ,−x̂− ŷ, x̂− ŷ} respectively. We note
that slightly different definitions of Eq. 2 appear in the
literature, in that some definitions do not include the fac-
tor of 1/

√
2. Caution must therefore be used before com-

paring directly the magnitude of pair-pair correlations in
different references. We calculated equal-time pair-pair

correlations Pij = 〈∆†
i∆j〉, using four different numerical

techniques: exact diagonalization in the VB basis16–18,
the Path Integral Renormalization (PIRG) method19,
Constrained Path Monte Carlo (CPMC)20, and Determi-
nantal Quantum Monte Carl (DQMC)21. Further details
on the methods is given in Appendix A.
To facilitate comparison of multiple lattices and to

mitigate finite-size effects, we calculate the distance de-
pendent pair-pair correlations P (r) (r ≡ |~ri − ~rj |) and
show here the average long-range pair-pair correlation
P̄ = N−1

P

∑
|~r|>2 P (r), where NP is the number of terms

in the sum22 (see also Supplemental Material23 Section
S.1).
We have found dx2−y2 and dxy symmetries to dominate

over s-wave symmetries. Further, for each lattice only
one of the two d-wave channels is relevant; dx2−y2 for 4×4
and 10×6, and dxy for 6×6 and 10×1023. The origin of
this lattice dependence is currently not understood; note,
however, that the distinction between dx2−y2 and dxy
symmetries is largely semantic in the strongly frustrated
regime we investigate. It is possible that the actual pair-
ing symmetry is a superposition of dx2−y2 and dxy. We
have not attempted to find this superposition. Rather,
for each lattice and ρ we have calculated the dominant
symmetry P̄ as a function of U (Vij = 0). Plots of P̄ ver-
sus U for each individual ρ on different lattices are given
in the Supplemental Material23. The complete results,
summarized in Figs. 2 and 4, are remarkable: For each
lattice P̄ (U)/P̄ (U = 0) > 1 for a single ρ that is either
exactly 0.5 or one of two closest carrier fillings with closed
shell Fermi level occupancy at U = 0. Pair correlations
are suppressed by U at all other ρ, including the region
0.7 < ρ < 1 that has been extensively investigated1. In
three of four lattices in Fig. 2 enhancement of P̄ (U) oc-
curs for ρ slightly away from 0.5. The magnitude of pair
correlations depend on both the pair binding energy and
the kinetic energy to be gained from pair delocalization;
in finite lattices both quantities depend strongly on the
details of the one-electron energy spectrum. We show
in the Supplemental Material23 that the ρ at which en-
hanced P̄ (U) occurs can be predicted from the known
one-electron levels. Importantly, the deviation from 0.5
of the ρ at which P̄ (U) is enhanced (excluding the 6×6
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FIG. 3. (color online) (a) - (d) P̄ (U) for dxy pairing as a
function of ρ and inverse temperature β for the 6×6 lattice,
calculated using DQMC. P̄ (U) for ρ ≃ 0.5 is gradually en-
hanced with increasing β beginning from β = 8. P̄ (U) is
suppressed by U at all other ρ. P̄ (U) for (e) dx2−y2 pairing
in the 4×4 lattice, and (f) dxy pairing in the 10×6 lattice.

lattice where this deviation is zero) decreases monoton-
ically with size. SC for ρ close to 1, but U significantly
larger than that accessible for our largest lattices (U ≤ 4)
has been claimed within approximate calculations6,24,25.
We discuss ρ close to 1 in the Supplementary Material23

Section S.4, where we show that there exist enough un-
certainties here that further work would be needed before
firm conclusions can be reached.

Nonzero Vij affects lattice frustration minimally when
all three components, Vx, Vy, and Vx+y are nonzero. Pair-
correlations for Vx = Vy = Vx+y could be calculated only
for the 4×4 lattice, where the behavior of the pair cor-
relations is qualitatively similar to Vij = 0, although the
magnitude of the enhancement is smaller. We have found
that when Vx = Vy, Vx+y = 0, dxy pair correlations are
enhanced uniquely for ρ ≃ 0.5. Similarly, Vx+y 6= 0, and
any one of Vx, Vy nonzero enhances (suppresses) dx2−y2

(dxy). Overall, there is a broad parameter region over
which the pair correlations remain enhanced at ρ ≃ 0.5
(see Supplemental Material23 Section S.1.1).

The ground state results are further confirmed by fi-
nite temperature DQMC calculations. The sign problem
is severe for large U , but up to U = 2 the results are
reliable even for the largest β (β = tx/kBT ) we have
investigated. Figs. 3(a)-(d) show that with increasing
β there occurs progressive enhancement of P̄ (U) with
increasing U , uniquely at ρ ≃ 0.5, in the 6×6 lattice.
Figs. 3(e) and(f) show similar results for the 4×4 and
10×6 lattices. The excellent agreement between PIRG
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FIG. 4. (color online) P̄ (U) normalized by P̄ (U = 0), for
(a) U = 1 and (b) U = 4 (U = 2 for the 10×10 lattice).
Only results with P̄ (U)/P̄ (U = 0) > 1 are included, for both
dx2−y2 and dxy pairing symmetries. The dominant pairing
symmetry for each lattice is indicated with darker shading.
The width of each bar is 1/N , where N is the number of
lattice sites.

and DQMC indicates that while the DQMC calculations
could be performed at the smallest T only for U ≤ 2,
enhanced pair correlations should be expected at even
larger U . Fig. 4 summarizes the enhancement of pairing
as a function of ρ for all lattices, including in the non-
dominant channels. The dominant pairing symmetry is
enhanced only for ρ ≃ 0.5. Pairing in the non-dominant
channels is enhanced weakly for small U ≈ 1 for some ρ,
but are weakened further as U is increased.

Despite the large amount of data from our calculations,
performing a rigorous finite-size scaling of the pair-pair
correlations is difficult for several reasons. First, for the
different lattices, the enhancement occurs in either the
dx2−y2 or dxy channels. In the thermodynamic limit the
pair symmetry for the highly frustrated lattice we have
considered is most likely a superposition of these two
symmetries. On finite lattices one or the other tends
to dominate. Second, even as the density ρ where en-
hancement occurs tends to ρ ≈ 0.5 as the lattice size
increases, the precise ρ where the enhancement occurs is
different on each lattice. Finally, the CPMC method we
used for the 10×10 calculations is approximate, and its
accuracy for larger lattices and large U is not known. In
our comparison of PIRG and CPMC for the 10×6 lattice
(see Supplemental Material23 Fig. S10), CPMC in some
cases underestimated P̄ for larger U .

Because of these points we cannot make a meaningful
extrapolation from a single pairing symmetry at a fixed
density. Nevertheless, in Fig. 5, we show our attempt
to finite-size scaling of P̄ in two different ways, for rel-
atively weak U = 2. In both panels, we have taken the

density and pairing symmetry where the peak enhance-

ment occurs on each finite lattice. In (a) we plot the
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FIG. 5. (color online) (a) Finite-size scaling of the ρ ≈ 0.5
peak (see text) P̄ (U)/P̄ (U = 0) for each lattice; (b) Similar
scaling plot for P̄ (U) at the same densities as in (a).

peak value of the ratio P̄ (U)/P̄ (U = 0) as a function of

1/
√
N , whereN is the total number of lattice sites. Panel

(b) shows the extrapolation of P̄ (U) itself for the same
densities as in panel (a). If superconducting long-range
order is present, P̄ should tend to a finite value as the
lattice size increases. The data in both panels (a) and (b)
appear to indicate absence of long range order, although
we cannot rule out the possibility of a small magnitude
(P̄ < 0.002) long-range component in Fig. 5(b). Note
also that due to the limitations of CPMC we do not have
reliable data for pair correlations at large U (U > 2) for
the 10×10 lattice, where the enhancement would presum-
ably have been larger. If we ignore the P̄ (U)/P̄ (U = 0)
for the 10×10 lattice, then the ratio does extrapolate to
slightly greater than 1 in Fig. 5(a). This would indicate
that the system is indeed a Paired Electron Liquid state
that is asymptotically close to a superconducting state
with long-range order. We therefore speculate that the
inclusion of e-p interactions will give true superconduct-
ing long-range order.

III. DISCUSSION

We have demonstrated a completely new source of ef-
fective electron-electron attraction, that is mediated by
charge-spin coupling (and ultimately also coupling to lat-
tice) at a bandfilling far from ρ=1. The physical argu-
ments are based on the tendency to charge migration to
form nearest neighbor singlets, which is unique to the
ρ=0.5 region. The significance of our results lies in the
following. (i) This is the first time that consistent en-
hancement of pair-pair correlations for non-overlapping
pairs22,26,27 with U is observed. (ii) The enhancement is
uniquely at or near ρ = 0.5, exactly the carrier density
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where the PEC has been found earlier10. (iii) The theory
gives consistent explanations of SC as well as many pe-
culiar features observed in the normal states of 2D CTS,
as we describe below.

It is highly interesting that superconductivity in the
CTS is limited to ρ ≃ 0.5. While conducting charge-
transfer solids exist with many other carrier densities
there is no example of a superconductor whose carrier
density is not exactly or nearly 0.5. Further, our theoret-
ical work is the very first which gives a unified approach
to organic superconductivity, independent of whether the
ambient pressure proximate semiconductor is magnetic or
charge-ordered. We discuss further specific implications
for the CTS superconductors below.

Typical quasi-2D superconducting CTS are the fam-
ilies (BEDT-TTF)2X (hereafter (ET)2X) which occur
with crystal structures labeled α, β, θ, κ, etc.28, and
Z[Pd(dmit)2]2. The number of holes (electrons) ρ per
ET cation (Pd(dmit)2 anion) is 0.5. With the excep-
tion of the κ-phase materials (see below), ET molecules
occupy the sites of triangular lattices28. In many 2D
CTS the unit cell consists of two molecules, formally
leading to a two- rather than one-band model. In our
lattice this would add an additional modulation of the
hopping integrals. With strong e-e interactions29, and
the resultant band narrowing effect, the experimental
consequence of this modulation is small. For example,
due to symmetry the two bands are degenerate in θ-
(ET)2X but non-degenerate in α-(ET)2X

30, but similar
CO patterns and SC are found in both. SC is reached
at constant ρ by application of pressure on a proximate
semiconducting state that often exhibits CO. Materials
exhibiting CO adjacent to SC include α-(ET)2I3

31, θ-
(ET)2I3

32, β-(meso-DMBEDT-TTF)2X (X = PF6 and
AsF6)

33 and EtMe3P[Pd(dmit)2]2
34. In Section S.3 in

Supplemental Material23 we point out that the CO pat-
tern in the traditional Wigner crystal, driven by large V ,
is different from that in the PEC35, where it is driven
by the tendency to form n.n. singlets. Experiments have
established that the CO pattern in each of the above
materials showing CO-to-SC transition corresponds to
the PEC23,33,34,36,37. The pressure-induced transition to
SC in these systems is then likely a bandwidth-driven
PEC-to-SC transition suggested from our calculations.
A strong role of phonons in SC is seen experimentally38.
This is expected, as it is the cooperative effect between
e-e and e-p interactions10,11 that drives the transition to
the PEC.

Our theory is also applicable to the κ-(ET)2X. At
ambient pressure, X=Cu[N(CN)2]Cl (κ-Cl) is AFM,
X=Cu2(CN)3 (κ-CN) is a quantum spin liquid (QSL),
and X=Cu[N(CN)2]Br (κ-Br) and X=Cu(NCS)2 (κ-
NCS) are superconductors39. SC is also observed
in κ-Cl and κ-CN under pressure39. A variety of
experiments40–49 have suggested fluctuating SC and pre-
formed pairs at temperature T∗ significantly above the
superconducting critical temperature Tc in κ-Br (Tc =
11.5 K) and κ-NCS (Tc = 10.4 K). While estimates

of T∗ range from 20−50 K, measurements of ESR spin
susceptibility40, static magnetic susceptibility46, and
NMR measurements of spin-lattice relaxation time and
Knight shift41–45 all show a dramatic decrease in mag-
netic fluctuations and the possible occurrence of a spin
gap at T∗. This has been interpreted in terms of incoher-
ent pairs that form at T∗ to give fluctuating SC. STM47

and magnetic torque measurements48,49 have been inter-
preted similarly.
In κ-(ET)2X dimers of ET molecules are arranged

on an anisotropic triangular lattice. The underlying
monomer lattice is also triangular, albeit distorted28.
Considering dimers as effective sites gives an effective
ρ = 1 Hubbard model that yields AFM (QSL) for weak
(strong) frustration39,50. Precise numerical calculations
have however found no SC within the effective ρ = 1 Hub-
bard model for any frustration26,27,51. We have shown
that with increasing frustration, there is a strong ten-
dency to a fluctuating PEC in κ-(ET)2X, in spite of
dimerization10. With increased delocalization, dimeriza-
tion plays a less crucial role and the sites of the lattice
are now the monomer molecules themselves10. Strong
support for this theoretical picture is obtained from the
observations of the PEC in κ-(ET)2Hg(SCN)2Cl

52, and
of a pressure-induced transition from a dimer AFM to
a state with significant intradimer charge fluctuation in
β′-(ET)2-ICl2

53. Taken together with earlier work10, our
present work is then able to explain both the magnetic
behavior and SC: in the localized insulating phase dimer-
ization plays a deciding role and the effective ρ = 1 de-
scription is valid; with pressure-induced larger interdimer
hopping the effective picture breaks down and a more ap-
propriate description is ρ = 0.5. Within our theory the
state below T ∗ is the PEL which is the fluctuating SC
state observed experimentally40–49, and which is super-
conducting once pair coherence is reached. In Fig. 3,
enhanced pair correlation at ρ = 0.5 begins to appear
at β = 8; with average |t| ∼ 0.1 eV, T∗ can be as high
as ∼ 100 K, which is to be compared with experimental
estimates of T∗ ∼ 50 K40–44. Lattice effects in the transi-
tion at T∗ have been found in ultrasound54 and thermal
expansion55 studies. This is expected, since the PEL is
structurally close to the PEC, a density wave of pairs10.

IV. CONCLUSION

To summarize, we have shown that there occurs a cou-
pled charge-spin mediated effective e-e attraction near
ρ = 0.5 because of the strong tendency to form n.n. sin-
glets at this density. Two of us have pointed out the
unusual abundance56 of correlated-electron superconduc-
tors at ρ ≃ 0.5. It is conceivable that the shared features
of ρ = 0.5, lattice frustration, and strong e-e interaction
point to a new paradigm for correlated-electron SC. Re-
cent finding of a CO phase proximate to SC within the
pseudogap phase of the cuprates57–60 has led to theories
of competing or intertwined CO and SC orders. Whether
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or not the PEC to PEL transition found by us has any
bearing here too is an intriguing question.
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Appendix A: Methods

Exact diagonalization using the valence bond basis:

The valence bond method is a well known numerical tech-
nique for studying correlated quantum systems16–18. In
the present work it is used for computing pair-pair corre-
lation functions and relative weights of nearest and next-
nearest neighbor VB diagrams for the 4×4 lattice. In the
VB method16–18, the wavefunction is expanded in terms
of VB diagrams φn〉,

|Ψ〉 =
∑

n

cn|φn〉. (A1)

As the VB basis is non-orthogonal the normalization con-
dition involves the overlap of VB diagrams, 〈φn|φm〉:

〈Ψ|Ψ〉 =
∑

m,n

c⋆ncm〈φn|φm〉 (A2)

In Fig. 1(g) we plot the total relative weight of near-
est and next-nearest neighbor singlet VB diagrams,
W (NNS). This quantity is defined as

W (NNS) =

′∑

m,n

c∗ncm〈φn | φm〉/〈Ψ|Ψ〉. (A3)

In Eq. A3, the ′ over the sum indicates that only VB
diagrams with either nearest or next-nearest neighbor
singlet bonds are included (as shown for example in
Fig. 1(f)).
The main advantages of the the VB method are that

it allows, first, visualization of wavefunctions in terms of
the dominant VB diagrams, and second, conservation of
total spin S. We have used this method to calculate cor-
relation functions for the 4×4 lattice within the lowest
S = 0 state for all values of tx+y; for number of electrons
4, 8 and 12 the single-particle wavefunctions are degen-
erate, and for these cases calculations targeting specific
total S states would be difficult for methods conserving
only Sz.
Path Integral Renormalization Group: PIRG was used

to calculate zero-temperature expectation values of the

pair-pair correlations. PIRG was used because con-
ventional Monte Carlo methods (see below) are lim-
ited by the fermion sign problem to either small Hub-
bard U and/or high temperatures for frustrated lat-
tices. The PIRG method is described in Reference 19.
Within PIRG, the wavefunction is expanded as a sum
over L Slater determinants, and the projector operator
exp(−τH) is used to project out the ground state from a
random starting determinant19. The method is exact at
U = 0 and for each L PIRG calculations are variational.
For the calculations presented here, we first minimized
the variational energy for L = 1, followed by optimizing
the variational state at L = 8. We then continued calcu-
lations to larger L, doubling (L =16, 32, . . .) L at each
step. We used maximum L’s of up to 768. The finite
basis bias is then removed by extrapolating quantities as
a function of the energy variance ∆E19. For the results
presented here, we typically used a linear extrapolation
in ∆E for the three largest L used, i.e. L={256, 512,
768}.
Several additional techniques are essential to improve

the accuracy of the PIRG. First, we incorporated lat-
tice and spin symmetries using projection operators of
the QP-PIRG method of Reference 61. The use of lat-
tice and spin symmetries has been shown to drastically
reduce the L required to obtain accurate results with
PIRG61. Here we used the more accurate method of
incorporating symmetries during projection (QP-PIRG)
as opposed to afterwards (PIRG-QP)61. For the lattice
symmetry we used the full space group of the lattice
(translations and point symmetries). For spin, we pro-
jected using the spin parity operator, which separates
even and odd values of total spin S. All results here
are for the even spin parity subspace. Second, it has
been observed that in certain cases the PIRG method
can be trapped in excited states62. To help prevent this,
in addition to the PIRG projection operator, we used
a random simulated annealing-like modification of the
Slater determinants27,62. Furthermore, several starting
states were chosen for the projection, and their final en-
ergy compared.

PIRG has been extensively benchmarked against other
methods. We previously compared the pair-pair correla-
tions from PIRG and exact diagonalization on a 4×4 frus-
trated lattice and found essentially perfect agreement27.
For larger lattices, PIRG has further been checked
against conventional quantum Monte Carlo for systems
where there is no sign problem, such as the half-filled
square lattice Hubbard model61. Our comparisons of
PIRG and DQMC (see Supplemental Material Section
S.123) further gives us confidence in the accuracy of the
method.

Constrained Path Monte Carlo: CPMC is a ground-
state projector QMC method20. Like PIRG, CPMC
works in the space of Slater determinants. This space
is overcomplete, which results in contributions to the
ground state wavefunction that are both positive and
negative. The Monte Carlo sampling is confined to the
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region where the overlap between each random walker
|φ〉 and a trial wavefunction |ΨT 〉 is positive20. This
eliminates the loss of precision known as the fermion
sign problem, but introduces an approximation into the
method. The results presented here used the free-electron
wavefunction for |ΨT 〉. This trial function produces ex-
act CPMC results at U = 0 and also for nonzero U in
the one-dimensional limit20. While this choice has been
shown to be accurate for many lattices, particularly for
closed-shell fillings20, we restrict the use of CPMC to
small U (0 < U . 2). Our CPMC code results used an
imaginary time discretization of ∆τ = 0.1 with a second-
order Trotter approximation; the additional systematic
error due to this approximation is negligible.

Determinantal Quantum Monte Carlo The DQMC
method integrates out the fermion degrees of freedom,
replacing the Hubbard interaction with an auxiliary
Hubbard-Stratonovich field21; for a review see Reference
63. Our results here used the finite-temperature variant
of this algorithm. This method suffers from sign problem
when used for fermion systems. As shown in Fig. 3, in
the 6×6 lattice an inverse temperature of at least β ≈ 8
is required to see the enhancement of pairing at ρ ≃ 0.5.
At these lower temperatures, the sign problem limits us
to U ≈ 2. Our results used a Trotter discretization in
imaginary time of ∆τ = 0.1; for U = 2 the systematic
error due to this approximation is smaller than the point
size on our plots and can be neglected.
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