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Abstract: Light-matter momentum transfer in plasmonic materials is theoretically discussed in 
the framework of plasmonic pressure mechanism taking into account non-equilibrium electron 
dynamics and thermalization process. We show that our approach explains the experimentally 
observed relationship between the plasmon-related electromotive force and absorption and 
allows one to correctly predict the magnitude of the plasmon drag emf in flat metal films. We 
extend our theory to metal films with modulated profiles and show that the simple relationship 
between plasmonic energy and momentum transfer holds at relatively small amplitudes of height 
modulation and an approximation of laminar electron drift. Theoretical groundwork is laid for 
further investigations of shape-controlled plasmon drag in nanostructured metal. 

1. Introduction 
Two different aspects of light-matter interaction in plasmonic metals are commonly considered 
in current literature. Firstly, both electromagnetic field and free electrons are many-body entities, 
which should be viewed in the scope of statistical mechanics. This approach gives rise, in 
particular, to the emerging field of hot-electron plasmonics [1-10], which includes studies of 
plasmon-induced non-equilibrium electron distributions and thermalization processes in metal 
[1-7] and interactions of plasmon-generated hot electrons with materials and molecules outside 
the metal [8-10]. Secondly, quantization of plasmonic oscillators or objects that they interact 
with has become a hot topic known as quantum plasmonics. Several major results in this research 
area have been obtained in recent years including the prediction and demonstration of coherent 
stimulated emission of plasmons [11-12], control over spontaneous emission of single quantum 
emitters by plasmonic nanostructures [13-15], non-classical quantum optics states of plasmons 
[16-17] and influence of quantum wave properties of metal plasma on plasmons [18-19]. Note 
that quantum features of these effects are retained in classical or semi-classical considerations. 

The photon drag effect is an example of light-matter interaction where the momentum of 
absorbed light is imparted upon free electrons, and light-induced electric currents are generated. 
In this respect, the giant enhancement of photon drag effect, known as plasmon drag effect 
(PLDE), observed in plasmonic films [20-21] and nanostructures [22-26], is of fundamental 
importance, since it can bring new insights into the aspects of light-matter interaction in metals. 
From a practical perspective, PLDE opens new avenues for plasmonic-based electronics as it 
may provide opportunities for incorporation of plasmonic circuits into electronic devices, and for 
the fields of optical sensors and detectors since it offers a new operational principle and an 
opportunity to substitute bulky optical detection setups with diffraction limited resolution by 
compact electronics.  

It was conclusively demonstrated that PLDE is closely associated with excitation of surface 
plasmons [20-26]. In flat silver and gold films, the strongest magnitude of optically induced 



currents was observed in the conditions of surface plasmon polariton resonance (SPP) [20-22, 
24]. Strong photoinduced currents were observed as well in rough metal films and nanostructures 
at the direct illumination [25-26] with the maximum of the effect close to the localized surface 
plasmon resonance (LSP) conditions. There were multiple attempts to propose a theoretical 
mechanism of PLDE associated with SPP excitation. However, compared with experimental 
results, these predictions were by orders of magnitude larger [20] or smaller [22, 24]. In the case 
of LSP excitation the two proposed mechanism to-date are the SPIDEr model [23] and the 
“nano-batteries” model [25], in which the origin of the effect is related to intrinsic nonlinearity of 
metal in the conditions of LSPs. 

In this paper we develop our previously proposed “plasmonic pressure” theoretical mechanism 
[23], compare theoretical predictions with experiment, and show that PLDE, has both quantum-
optics and hot-electron aspects, and both of these facets are crucial for the correct description of 
the effect.  

General Theory of Plasmon Drag Effect 
Classically, light-matter interaction is well described by macroscopic Maxwell equations. The 
response of matter is represented by the polarization vector ࡼ ൌ  where ߯ is the susceptibility ,ࡱ߯
of the material, the induced polarization charges ߩ ൌ െ׏ ڄ ࢐ and the currents ࡼ ൌ  .ݐ߲/ࡼ߲
Correspondingly, the Lorentz force density represents the rate of momentum transfer from the 
field to matter per unit volume as ࢌ௅ ൌ െሺ׏ ڄ ࡱሻࡼ ൅ ଵ௖ డࡼడ௧ ൈ  We have shown [23] that while .࡮
the second term, known as Abraham force, is insignificant, the first term can be rewritten as ࢌ௅ ൌ gradሺࡼ௖ ڄ  ሻ, where superscript “c” exempts a vector from differentiation. This can beࡱ
represented in components as ௅݂೔ ൌ ఈ߲ܲ௜ܧఈ, where ݅, ߙ ൌ ,ݔ ,ݕ  is ߙ and summation over ݖ
implied. After averaging over an oscillation period ࢌ௅ has a non-zero rectified component 
signifying the steady transfer of momentum from SPP fields to electrons with the rate per unit 
volume obtained as [23] 

 ݂ҧ௅௜ ൌ 12 Reሼ ఈ߲ܲ௜ܧఈכ ሽ. (1) 

The effective force given by Eq. (1) can be decomposed as 

 ݂ҧ௅௜ ൌ 12 Reχ ڄ Reሼܧఈ߲௜ܧఈכ ሽ െ 12 Imሼ߯ሽ Imሼܧఈ߲௜ܧఈכ ሽ. (2) 

The first term corresponds to the striction force, also known as gradient or ponderomotive force. 
The second term is the electromagnetic pressure force and is solenoidal in nature. Since the first 
term is curl-free, it produces no overall work on electrons travelling through a circuit, but can 
result in rectified polarization and serve as a source for intrinsic nonlinearities in metals [27]. 
Consequently the PLDE electromotive force (emf) driving rectified currents can only stem from 
the pressure force. 

Energy transfer rate (absorption) per unit volume is given by ܳ ൌ డࡼడ௧ ڄ  and for monochromatic ,ࡱ
fields after averaging over the period of oscillations, 

 തܳ ൌ െ 2߱ Imሼ ఈܲܧఈכ ሽ. (3) 



According to Eq. (2), due to high fields and high field gradients in plasmonic conditions, optical 
forces acting on charge carriers can strongly exceed predictions from the traditional radiation 
pressure mechanism [23]. They can be very different depending on local positions, but note that 
for a single-mode field, the time-averaged plasmonic pressure force is related to the time-
averaged power. This has a certain similarity to the momentum transfer from photons however 
with the plasmon wave vector ࢑ௌ௉௉ and plasmon-enhanced absorption. Indeed, comparing the 
pressure force in Eq. (2) with Eq. (3), one can see that the rectified force density is directly 
related to the energy transfer as ࢌത௅ ൌ ԰࢑ௌ௉௉ܳௌ௉௉/ሺ԰߱ௌ௉௉ሻ which can be interpreted from the 
quantum point of view as the number of quanta absorbed from the plasmonic field multiplied by 
their momentum, unambiguously signifying the quantum aspect of the problem. The quantum 
aspect is retained in our classical consideration since the ratio ԰݇ௌ௉௉/԰߱ stays constant in the 
classical limit ԰ ՜ 0. 

2. PLDE in flat metal films in Kretschmann geometry 
Consider the electric field of a SPP wave propagating in metal films as 

,ݔሺࡱ  ሻݖ ൌ  ሻ݁௜ሺ௞ೣ௫ିఠ௧ሻ. (4)ݖ଴ሺࡱ

Following Eq. (2) and taking Eq. (3) into account, the PLDE force density acting in the direction 
along the film can be calculated as 

 ݂ҧ௅ೣሺݖሻ ൌ െ ݇௫2 Imሼ߯ሽ ሻ|૛ݖ଴ሺܧ| ൌ ԰݇௫ തܳ԰߱. (5) 

The momentum transferred from the SPP to electrons can be found as ௧ܲ௥ ൌ ׬ ݂ҧ௅ೣሺݖ, ௏೔೗,௧೛ݐሻܸ݀݀ݐ  
where integration is carried out over the illuminated volume ௜ܸ௟ of the metal film and the 
duration of the pulse ݐ௣. This momentum is distributed over free electrons with the steady-state 
value of 

 ௧ܲ௥ ൌ ݊௘ ௜ܸ௟ ௣߬௠ݐ  ௗ. (6)ݒכ݉

Here ݊௘ is the free electron density, ݉כ is their effective mass, ݒௗ is the resulting drift velocity 
and ߬௠ is the time constant which describes the relaxation of the momentum. We assume that ߬௠ 
is on the order of energy relaxation time, the thermalization time ݐ௧௛௘௥௠. The assumption ߬௠ ൌ  ௧௛௘௥௠ is confirmed by a very good agreement of the theoretical predictions of Eq. (6) forݐ
the PLDE magnitude and its experimental values, as will be shown below. The applicability of 
the thermalization concept to the relaxation of momentum in excited metal plasma indicates that 
PLDE is essentially a hot-electron plasmonics effect. From this we estimate the PLDE current 
density ݆ as 

 ݆ ൌ ݁݊௘ݒௗ ൌ כ݉݁ ௧௛௘௥௠ݐ ݂ҧ௅ೣ, (7) 

This result can be also obtained from considering the effect of the plasmonic pressure on the 
kinetic distribution of electrons, ݂ ൌ ݂ሺݒ௫,  ሻ. For simplicity, here we consider the steady-stateୄݒ
conditions of closed circuit (in which the dc polarization field ܧௗ௖௫ ൎ 0) and homogeneous 



illumination. The distribution function f should depart from the equilibrium distribution ଴݂ and 
satisfy the steady-state Boltzmann equation 

 ݂ҧ௅ೣ݊௘݉כ ௫ݒ݂݀݀ ൌ െ ሺ݂ െ ଴݂ሻݐ௧௛௘௥௠ , (8) 

Note that the action of the optical forces upon open-circuit metal nanostructure leads purely to 
induction of dc polarization electric fields, which corresponds to ݁݊௘ܧௗ௖௫ ൌ ݂ҧ௅ೣ as considered in 
Ref. [23]. In our case the plasmonic pressure induces a strongly non-equilibrium hot-electron 
distribution which can be found analytically as (see Supplemental Material for details [28]) 

 ݂ ൌ න ݁െ0݂ݑ൫ݔݒ ൅ ,݌ݒݑ ∞൅ݑ٣൯݀ݒ
0 ൌ ෍ ௗ௡ݒ ݀௡ ଴݂݀ݒ௫௡

ஶ
௡ୀ଴  (9) 

yielding Eq. (7) for the electric current ࢐ ൌ ׬݁ ݂࢜ሺ࢜ሻ݀ଷݒ. Here ݒௗ ൌ ݂ҧ௅ೣݐ௧௛௘௥௠/ሺ݊௘݉כሻ. The 
corresponding PLDE emf, ܷ, normalized by the incident intensity ܫ, after averaging over the film 
thickness ݄ can be found as 

ܫܷ  ൌ ߪ݆ ܫܮ ൌ ௧௛௘௥௠߬ݐ ௘݊݁ܫ/ܮ 1݄ න݂ҧ௅ೣሺݖሻ݀ݖ௛ ൌ ܫ݁ܮܨ . (10) 

Here ܮ is the diameter of the illuminated spot, ܨ is the effective force acting on each electron. 
We use the experimentally measured conductivity of silver ߪ ൌ 6.3 ڄ 10଻ S/m  and express our 
result using the Drude collision time ߬. [29]. Using Eqs. (5) and (10) ܨ can be expressed as 

ܨ  ൌ ԰݇௫ ௧௛௘௥௠߬ݐ 1݊௘ ݀݊௣௟݀ݐ , (11) 

where ௗ௡೛೗ௗ௧ ൌ ଵ௛ ׬ ொതሺ௭ሻ԰ఠ ௛ݖ݀  is the rate of plasmonic quanta absorption per unit volume. Below we 
use ݐ௧௛௘௥௠ ൌ 1 ps [1] and ߬ ൌ 31 fs [29], requiring approximately 30 collisions for electrons to 
thermalize. 

As a numerical example we consider the PLDE observed in a silver film deposited upon a glass 
prism, as reported in Ref. [21]. The electromagnetic fields are calculated using the analytical 
solution [30], which predicts the surface plasmon resonance (SPR) at the illumination through 
the prism at a certain angle of incidence (Kretschmann geometry, [31, 32], Fig 1(a)). The 
corresponding PLDE pressure force (shown in Fig. 1 (b)) is in the direction of SPP propagation 
and strongest at the back of the film, reaching 3 ڄ 10ିଵଽ NMW/ୡ୫మ per electron. 

Let us compare the theoretical predictions of Eq. (10) for PLDE with the experimental data 
previously obtained in the first PLDE experiments in silver films [21] for two different 
experimental samples, S1 and S2, see Figure 2 (a) and (b), where the peak of the photoinduced 
electric signal was observed at SPR conditions. Our theoretical estimations (shown in red) were 
calculated for the following parameters, corresponding those used in the experiment: film 
thickness ݄ ൌ 42 nm, size of the spot ܮ ൌ 3 mm, refractive index of the prism ݊௣௥ ൌ 1.78. One 
can see a good agreement between theory and experiment in the magnitude of the photoinduced 



voltage. To our knowledge, this agreement between theory and experiment for PLDE is achieved 
for the first time. 

 

Fig. 1. Plasmonic pressure force in metal films. Flat films: (a) schematic of SPP excitation, (b) 
plasmonic pressure force distribution (Eq.2) per electron at SPR resonance at ߣ ൌ 480 ݊݉. 
Films with modulated profile: (c) schematic, (d) plasmonic pressure force distribution at SPR 
resonance with “backward” propagating plasmon at ߣ ൌ 608 ݊݉ ൐ ݀ ൌ 538 ݊݉. 

There are two major differences between the theoretical and experimental data. First, the 
experimental curves at SPR are significantly broader than simulation results, which can be 
expected since the calculations assume perfectly flat films. Nevertheless, the angular position of 
the PLDE peak is reproduced in the theory. Theoretically, the enhanced PLDE emf at SPR is due 
to enhanced fields that enter Eq. (10) via the force given by Eq. (5), which is proportional to the 
enhanced absorption rate density ܳ. Second, the off-resonant signal in the experiment has the 
polarity opposite to the main effect and theoretical predictions, as well as being greater in 
magnitude than the off-resonance signal in calculations. Nevertheless, this experimental result is 
completely in line with the general picture of the plasmon drag in the “plasmonic pressure” 
model. In Figure 2 (c)-(e), we compare the angular profiles of the experimental reflectivity ܴሺߠሻ 
and corresponding profiles of the photoinduced electrical signals ܷ/ܫ for both samples at two 
different wavelengths. As one can see, in all the cases these profiles practically coincide if a 
proper offset and scaling are introduced. 

The close relationship between U and A = 1-R, and the need for an offset B can be explained by 
taking into account the fact that contributions to both absorbance and PLDE emf come from two 
kinds of sources: (i) propagating SPPs excited at the resonance conditions with the wave vector ݇௫ ൌ ݇ௌ௉௉, and (ii) other plasmonic modes excited in the experimental samples due to small 
scale surface roughness, which include plasmons with high values of k. 

Consider the ratio, 



ܥ  ൌ ܷ െ ௥ܷ௢௨௚௛ܣ െ  ௥௢௨௚௛. (12)ܣ

Here we offset the full values of ܣ and ܷ by the contributions ܣ௥௢௨௚௛ and ௥ܷ௢௨௚௛ from the small 
scale roughness. In ideally flat films, ௥ܷ௢௨௚௛ ൌ ௧௛ܤ ൌ ௥௢௨௚௛ܣ ,0 ൌ 0, and PLDE is associated 
only with SPP excited in Kretschmann geometry. The constant C can be found using Eqs. (10)-
(11), ௗ௡೛೗ௗ௧ ൌ ூ௛ ܣ ڄ cos ߠ /԰߱ and ܫ ൌ ௖଼గ ݊௣௥|ܧ଴|ଶ, so that 

ܥ  ൌ ௧௛௘௥௠߬ݐ 1݊௘݁ܿ ௣௥݄݊ܮ sin ߠ cos ߠ ൎ 6 mVMWcmଶ ሺfor our experimental conditionsሻ. (13) 

In the presence of other plasmon excitations, contributions of plasmonic modes to emf are 
proportional to their contributions to absorption ܷ ן ԰௞԰ఠ ڄ  according to Eqs. (2)-(3). Our results ,ܣ
can be fitted as ௦ܷ௣௣ ൎ ௥ܷ௢௨௚௛ and ܣ௦௣௣ ب ௥௢௨௚௛. This is only possible if ݇௥௢௨௚௛ܣ ب ݇௦௣௣, 
which confirms that the offsets come from a small-scale roughness. Note that ܣ௥௢௨௚௛ ൎ 0 is not 
quite true for sample 2 as seen in Fig. 2 (d). This fact correlates with the broader SPR in this 
sample signifying a larger-scale roughness. 

 

Fig. 2 (a) and (b) PLDE emf in flat silver films, theory (red) and experiment in the samples S1 
(blue), S2 (green); (c)-(e) comparison of U* = (U/I-B)/C (blue, green) and A=1-R (red), the 
sample, wavelength and parameters B and C are indicated. 

One can show that in films with a periodically modulated profile, SPPs propagating in the 
direction opposite to excitation can be excited in the case of small periods of modulation, ݀, 
satisfying ߣ ൐ ݀ ൐ ሺ1/ߣ ൅ ݇ௌ௉௉/݇଴ሻ. The opposite polarity of the off-resonance signal observed 
in the experiments (negative values of B) can be ascribed to a predominant contribution of such 
“backward” propagating plasmons generated at the rough surface. 

3. PLDE in metal films of modulated profile 



We would like to extend our model of PLDE to a more complicated geometry including films 
with surface modulation and investigate if the relationship between PLDE and absorption still 
holds for multi-mode fields. Consider a metal film with thickness ݄ whose interfaces are given 
by ݖ ൌ ܽሺݔሻ and ݖ ൌ ܽሺݔሻ െ ݄, and ܽሺݔሻ is a periodic function with period d. Such structures 
support SPP excitations, provided that the excitation wave vector satisfies the quasi-momentum 
conservation ݇௫ ൅ ଶగ௠ௗ ൌ ݇ௌ௉௉, where m is an integer number. Electromagnetic field distribution 
in such structure can be found using the Chandezon’s method [33] which is based on solving 
Maxwell’s equations in a transformed coordinate system with new coordinates ݑ ൌ ݒ and ݔ ൌ ݖ െ ܽሺݔሻ, in which the field interfaces become flat.  

The resulting electric fields in the metal can be represented as [33] 

௟ܧ  ൌ ௝ܾݒ௝௠௟ ݁௜௥ೕ௩݁௜ఈ೘௨ ൌ ௝ܾݒ௝௠௟ ݁௜௥ೕ൫௭ି௔ሺ௫ሻ൯݁௜ఈ೘௫. (14) 

Here index ݈ ൌ ,ݑ ௝௠௟ݒ ,characterizes the projection of the field ݒ  is m-th element of j-th 
eigenvector of the Chandezon’s method with eigenvalue ݎ௝, corresponding to m-th diffraction 
wave with wave number ߙ௠ ൌ ݇௫ ൅ ଶగ௠ௗ . The amplitude of the j-th eigenvector, found from the 
boundary conditions, is ௝ܾ. In Eq. (14) summation over j and m is implied. 

Consider electron drift along a periodically modulated film, characterized by the position-
dependent angle ߠሺݔ,  ሻ between electric current and the x-axis. Using Eqs. (2), (3) and (14), theݕ
work done on electrons by the PLDE pressure force over a period can be found as (see 
Supplemental Material [28]) 

 ௅݂௫ ൅ tan ߠ ڄ ௅݂௭തതതതതതതതതതതതതതതതതതതത ڄ ݀ ൌ ෍ ԰ߙ௠԰߱ ܳ௠തതതത௠ ݀ ൅ ሺtan ߠ െ ܽᇱሻ ௅݂௭തതതതതതതതതതതതതതതതതതത݀ െ 12 Imሼ߯ሽܽᇱᇱImሼܧ௫ܧכ௭ሽതതതതതതതതതതതതതതതത݀, (15) 

where bars denote averaging over a period, film thickness, and time and ܳ௠ is absorption of 
fields in m-th diffraction wave. In order to clarify the physical meaning of Eq. (15), let us 
consider the drift of electrons along trajectories parallel to the film profile ܽሺݔሻ. For such 
electrons the second term on the right-hand side of Eq. (15) vanishes and, if the last term can be 
neglected (at certain conditions discussed below), the momentum transfer from light to electrons 
is fully determined by the energy transfer (the first term on the right-hand side of Eq. (15)). 
Assume that the direction of electric current in the film is parallel to the film profile ܽሺݔሻ, such 
that tan ߠ ൌ ܽԢ and the electrons travel along the film following laminae parallel to each other. 
With the assumption of such laminar electron current, Eq. (15) allows us to extend Eq. (10) for 
the PLDE emf on multi-mode plasmonic fields as 

ܫܷ  ൌ ܫ1 ௧௛௘௥௠߬ݐ ௘݁݊ܮ ௅݂௫ ൅ ܽᇱ ௅݂௭തതതതതതതതതതതതതത ൌ ܫ1 ௧௛௘௥௠߬ݐ ௘݁݊ܮ ෍ ԰ߙ௠԰߱ ܳ௠തതതത௠ ൌ ܫ1 ෍ ܷ௠௠ . (16) 

As an example, we consider a sine-wave gold film (Fig.1 (c)) with the profile ܽሺݔሻ ൌΩ sinሺ2ݔߨ/݀ሻ with the period ݀ ൌ 538 nm and amplitude Ω ൌ 20 nm. Substituting fields (14) 
into Eq. (2) and normalizing per incident intensity we obtain the distribution of the forces inside 
the metal at SPR conditions, as illustrated at Fig. 1 (d).  



 
Fig. 3 PLDE emf in the sine-wave gold film (blue circles – two different measurements on the 
same sample) compared (a) with theory (red trace), (b) with the experimental absorption (green 
circles) scaled by ܥ ൌ 3.5 mV/ሺMW/cmଶሻ. 

Our numerical calculations of the PLDE (Eq. (15)) in this structure confirm the direct 
relationship (16) between the PLDE emf and the energy transfer for both single mode and 
multimode plasmonic fields [34]. This can be expected in the conditions of predominantly 
laminar current flow and a relatively small modulation amplitude, Ω ا ݀, when derivatives of 
the profile ܽሺݔሻ can be omitted and the emf is determined primarily by the first term on the right 
hand side of Eq. (15). However, in a general case, in particular for nanostructured surfaces with a 
steep height profile, the last two terms in Eq. (15) cannot be excluded and the simple relationship 
between momentum and energy transfer does not hold. The strict result given by Eq. (15) would 
allow one to describe or predict PLDE in small-scale, irregular nanostructures, where energy 
absorption is not directly tied to momentum transfer in the same sense as in this paper, paving a 
way for additional shape-dependent control and engineering of PLDE. 

We compare the calculations to the PLDE measurements performed on sine-wave films in Fig. 3 
(a). The experimental data was obtained in a sine-wave gold film with the period of 538 nm and 
the depth of modulation 2Ω ~ 50 nm at the laser light illumination with the wavelength of 630 
nm and pulse duration of 5 ns. Details of the structure fabrication, experiment and calculations 
are presented in [34]. As one can see, similarly to flat films, the theory well describes the 
magnitude and the angular position of the effect. The experimental dependence is broader than 
the theoretical predictions, however, there is the direct correlation of the experimental PLDE emf 
and absorption at SPR in Fig. 3 (b) with the fitting constant ܥ ൌ 3.5 mV/ሺMW/cmଶሻ, which 
coincides with the value for C, needed to fit the theoretical PLDE emf (red curve in Fig. 3 (a)) 
and absorption from the same calculated data, assuming the spot size ܮ ൌ 2 mm, and kinetic 
coefficient for gold, ݐ௧௛௘௥௠/߬ ൌ 30. 

4. Conclusion 
In this paper we demonstrate analytically, numerically and experimentally that rectified drag 
forces created by plasmonic fields and acting upon electrons in metals, i.e. representing 
momentum transfer between plasmons and electrons, are intimately related to absorption of these 
fields, i.e. to respective energy transfer. This relationship follows directly from the quantum 
aspect of energy and momentum transfer between plasmons and electrons, retained in the 
classical limit. Our theoretical framework and experiments demonstrate that plasmon energy 
quanta absorbed by the metal plasma are associated with momentum quanta, which are also 



transferred to electrons upon energy absorption. We demonstrate that in order to correctly predict 
the magnitude of the experimentally measured PLDE signal, one needs to consider the 
momentum relaxation of hot electrons, which should be on the same time-scale as energy 
relaxation. By doing so we, to our knowledge for the first time, are able to explain and predict 
the magnitude of the effect not only qualitatively but in the close quantitative agreement with the 
experiment. We also show that in a generalized form, this consideration can be extended to 
complex multi-mode plasmonic field distributions. 
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