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Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron
spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear
spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as
a function of 29Si concentration using X-band pulsed electron nuclear double resonance (ENDOR).
The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in
both fast (exponential) and slow (non-exponential) spectral diffusion processes. The decay times
span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si.
These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those
reported for ionized donors in natural silicon. The electron spin of the neutral donors ‘protects’ the
donor nuclear spins by suppressing 29Si flip-flops within a ‘frozen core’, as a result of the detuning
of the 29Si spins caused by their hyperfine coupling to the electron spin.

Donors in silicon have been considered for use in quan-
tum information since the early days of the field.1,2

Donors have both electron and nuclear spins which can
be manipulated independently, and both have been con-
sidered for use as potential quantum bits (qubits). While
donor electron spins have received a majority of the
attention,3–6 the nuclear spins are capable of much longer
coherence times.7–9 This characteristic was utilized in
the original Kane proposal for quantum computing1 and
gained attention later for building a quantum memory.7

While exceptionally long T2 times of donor nuclear spins
in silicon have already been demonstrated,7,8 the me-
chanics of nuclear spin decoherence are not yet fully un-
derstood. In this study, we focus on neutral 31P donor
nuclear spin decoherence arising from interactions with
29Si nuclear spins in the silicon host environment.

Spectral diffusion due to spin 1/2 29Si nuclei is a ma-
jor source of decoherence for donor electron spins in
silicon10–13 and is has been predicted to be a major
source of decoherence for donor nuclear spins as well.10

While the predicted coherence time for neutral 31P donor
nuclear spins in natural silicon (containing 4.7% 29Si)
was 0.5 s, several experimental works reported much
shorter times (from hundreds of microseconds to tens of
milliseconds).14–17 Coherence times presented here and
by Wolfowicz et al.18 show that the limit from 29Si spec-
tral diffusion is actually longer than inferred from those
previous experiments. To resolve the role of 29Si spectral
diffusion, we measure neutral 31P nuclear spin coherence
times in silicon crystals with 29Si concentrations ranging
from 1% to 50%.12

We find an inverse linear dependence of 31P nuclear
spin coherence time on 29Si concentration (f), ranging
from 100 ms at 50% 29Si to 3 s at 1% 29Si. The nuclear
spin coherence time is about 1 second in natural silicon
at 1.7 K; close to predictions of central spin stochastic
models.10 However, contrary to the predictions, the ob-

served spin echo decays are non-exponential. The decay
times are two orders of magnitude longer than those mea-
sured for ionized donors in natural silicon16,17 or in NMR
experiments on degenerately doped silicon.14,15 Appar-
ently, the electron bound to a neutral donor protects the
nuclear spin coherence from 29Si flip-flops by detuning
nearby 29Si nuclear spins (a ‘frozen core’).19–21 This pro-
tection might not be required in high purity isotopically
enriched silicon, with a low content of 29Si, where 29Si-
induced spectral diffusion is no longer a dominant source
of decoherence.8,9,22

Four phosphorus-doped silicon crystals with different
concentrations of 29Si isotopes were used in this work
(Table I). In all crystals the donor concentration was
about 1015/cm3 which is low enough to ensure that other
decoherence effects arising from dipolar interactions with
donor electron spins are small compared to the measured
29Si spectral diffusion effects. The pulsed ENDOR ex-
periments were conducted using a Bruker Elexsys E580
spectrometer. Nuclear spin coherence times were mea-
sured using an electron-mediated nuclear spin Hahn echo
experiment.7 The combination of microwave and rf pulses
enable a superposition state to be created on the donor
electron, transferred to the 31P nucleus, manipulated on
the nucleus, and then transferred back to the electron for
readout. For temperatures below 5 K, when the electron
T1 relaxation was longer than 10 s, a light emitting diode
(LED, 1050 nm) was flashed for 20 ms after each pulsed
experiment in order to accelerate electron spin thermal-
ization between repeated measurements. The “tidy” rf
pulse to achieve nuclear spin thermalization was not re-
quired in these nuclear T2 experiments.7,23 Most of the
data shown were measured with a static magnetic field
(∼ 0.35 T) oriented along a [001] crystal axis. Other field
orientations were also examined to test the orientation
dependence of the nuclear spin coherence times.

The Hahn echo decay for phosphorus donor nuclear
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Sample 28Si (%) 29Si (%) 30Si (%) 31P/cm3

29Si-1% 98.1 1.2 0.7 0.67 × 1015

29Si-5% 92.2 4.7 3.1 0.8 × 1015

29Si-10% 87.2 10.3 2.5 2.9 × 1015

29Si-50% 50.2 47.9 1.9 1.2 × 1015

TABLE I. Four 31P-doped silicon samples used in this work.
In each sample the 29Si concentration was determined by
secondary ion mass spectroscopy (SIMS), and donor con-
centration was determined from ESR spin counting and
independently confirmed by instantaneous diffusion slope
measurements.12 All crystals were float-zone with the excep-
tion of 29Si-5% (natural Si) which was Czochralski. All crys-
tals had a volume on the order of a few cubic millimeters.

spins in natural silicon (f = 4.7%) at 1.7 K is shown in
Fig. 1(a). This decay is non-exponential and can be best
fit using:24,25

v(τ) = exp

(
−2τ

T2
−
(

2τ

TSD

)n)
(1)

where τ is the time interval between π/2 and π pulses in
a Hahn echo experiment. This functional form contains
two decoherence terms. T2 can be associated with vari-
ous decoherence processes, including T1-related processes
and a broad variety of spectral diffusion mechanisms in a
fast-motional regime, while TSD is associated with spec-
tral diffusion processes in a slow-motional regime.10,26,27

As we will discuss, fast and slow motional regimes in
our experiments are defined by how the rates of 29Si nu-
clear spin flip-flops compare to the overall rate of deco-
herence. The stretch factor n is in the range between 2
and 3.10,24,25,27

The temperature dependence of the extracted nuclear
spin T2 and TSD for phosphorous donors in natural sili-
con is shown in Fig. 1(b). The TSD term could only be
extracted below 5 K because the linear T2 term domi-
nated the decays at higher temperatures. As seen from
Fig. 1(b), electron T1 controls the nuclear T2 at temper-
atures higher than 6 K. However, electron T1 continues
growing below that temperature, while both T2 and TSD

saturate at around 1 s showing little temperature depen-
dence down to 1.7 K. This weak temperature dependence
is consistent with 29Si-induced spectral diffusion being a
dominant decoherence process for 31P nuclear spins be-
low 5 K.10

The dependence of T2 and TSD on 29Si concentration
provides further evidence that 29Si flip-flops are a major
source of decoherence in our samples. Nuclear spin echo
decays for all four samples from Table I are shown in
Fig. 2 (electron spin echo decay for 31P donors in natural
silicon is also shown for comparison). The extracted T2

and TSD at 1.7 K are plotted against 29Si concentration
in Fig. 3(a) showing a relatively inverse linear depen-
dence for both times. Within the experimental errors,
the parameter n, shown in Fig. 3(b), stays constant at

FIG. 1. (color online) (a) Nuclear spin Hahn echo decays for
neutral 31P donors in natural silicon (f = 4.7%) at 1.7 K
with magnetic field (∼ 0.35 T) oriented along [001]. The
pink curve is a fit of the data using Equation (1). The green
curve is a fit to exp(−(2τ/TSD)n) demonstrating that using
only one exponential term does not provide a good fit. A
detailed comparison of the two fits for all four samples used
in this work is presented in the supplemental material. (b)
Temperature dependencies of 31P nuclear spin T2 and TSD

(black squares and red circles, respectively) and electron spin
T1e times (blue diamonds) for neutral phosphorus donors in
natural silicon. Vertical error bars in (b) are smaller than
their symbols.

about 2.5 for all concentrations from 1% to 50%. T2 and
TSD were also measured with the magnetic field oriented
at different angles with respect to the crystal axis. How-
ever, no noticeable orientation dependence was observed
within experimental errors (10%) in either T2 or TSD.

Three other decoherence mechanisms must be consid-
ered here as potential contributors to nuclear spin deco-
herence at low temperatures. These processes have been
found to be significant in decohering electron spins of
neutral donors. All three mechanisms are related to dipo-
lar interactions with electron spins of other donors. The
first two processes are cases of spectral diffusion aris-
ing (1) from T1-driven flips of electron spins of nearby
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FIG. 2. (color online) 31P nuclear spin Hahn echo decays for
phosphorus donors in silicon with different 29Si concentra-
tions, measured at 1.7 K and magnetic field along [001]. The
29Si concentrations (f) are indicated for each curve. Electron
spin Hahn echo decay for phosphorus donors in natural silicon
is shown for comparison. See supplemental material for the
fits of these decays using Equation (1).

donors,4,27 and (2) from electron spin flip-flops in nearby
donor pairs.4,28 Both cases are much less effective in deco-
hering nuclear spins than electron spins since their effect
scales proportionally with nuclear and electron gyromag-
netic ratios (∼1/1,600 in the case of 31P nuclei). Using
the electron T2 times reported in Ref. [4], assuming donor
densities of 1015/cm3 (as used here) and considering tem-
peratures below 4.8 K, we can then estimate the nuclear
T2 and TSD from spectral diffusion processes (1) and (2)
to be longer than 200 s. Thus, processes (1) and (2) are
too slow to explain our T2 data in Fig. 3(a).

The third dipolar-related process to be considered is a
“direct” flip-flop process.29 This involves a spin flip-flop
between an electron of a “central” donor and an electron
of a neighboring donor (this is in contrast to “indirect”
flip-flops described in (2) above). Unlike other dipolar-
related mechanisms, the effect of direct flip-flops does
not scale with gyromagnectic ratio, decohering nuclear
spins as fast rapidly as electron spins. Direct flip-flops
have been reported to limit electron spin coherence to
0.6 s for donors at 1014/cm3 in isotopically-purified 28Si
crystals (45 ppm of 29Si).4 However, the inhomogeneous
broadening in our samples (Table I) is 100-900 µT which
is 20-200 times broader than the 5 µT found in the afore-
mentioned 45 ppm crystals.4,12 Taking into account the
donor density in our samples we estimate that the direct
flip-flop contribution to 31P nuclear decoherence is about
3 s in our 29Si-1% sample and is even longer (>10 s) in
the other three samples.

The effect of 29Si spectral diffusion on nuclear spin
coherence of neutral 31P donors in silicon has been ex-

FIG. 3. (color online) 29Si concentration dependence of (a)
spectral diffusion times T2 and TSD, and (b) stretch factor, n,
for 31P nuclear spins of phosphorus donors in silicon at 1.7 K.
Some error bars in (a) are smaller than their symbols.

amined theoretically in the framework of a central spin
problem while modeling 29Si spin flip-flops as a classi-
cal stochastic process.10 For natural silicon a 31P nu-
clear spin coherence time of 0.5 s was predicted with
the field oriented along [001]. This prediction is very
close to what was measured at that orientation in this
work. Simulations of nuclear spin coherence showed an
approximately inverse dependence on f , which also cor-
relates with our results. However, the theory predicted
exponential T2 decays with n = 1, while our experiment
shows non-exponential decays. The predicted orientation
dependence was also not observed in our experiment.

It is instructive to compare the decoherence of 31P
donor electron and nuclear spins caused by 29Si flip-flops.
The electron and nuclear spin echo decays differ in two
ways: (i) the nuclear spin echo decays are over 3 orders
of magnitude longer than electron spin echo decays, and
(ii) the nuclear spin echo decays contain both exponen-
tial and non-exponential components, unlike the electron
spin echo decays that are dominated by only the non-
exponential term.12 Both electrons and 31P nuclei see
the same bath of 29Si nuclear spins, with the bath’s dy-
namics suppressed in the “frozen core” where the nuclear
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spins are detuned by the donor electron.19–21 The main
difference between electron and 31P nuclear spins is the
strength of their interactions to with the 29Si spin bath.
Contact hyperfine interactions for an electron spin are
much stronger than dipolar interactions for a 31P nuclear
spin, therefore the same 29Si bath decoheres the electron
spin faster than the nuclear spin. This difference in the
coherence timescale explains (i) and is also the key to
understanding (ii).

29Si flip-flops can cause fast or slow motional effects
depending on whether the flip-flop rate is fast or slow
compared to the strength of the pair’s interaction with
the central spin.10,24,27,30 Equivalently, the fast and slow
regimes can be descriminated by comparing the flip-flop
period to the overall coherence timescale (2τ) of the cen-
tral spin.27 There is a broad distribution of 29Si flip-flop
rates, with the fastest rates being ∼ 100 Hz and 10 Hz in
nearest and next-nearest neighbor pairs, and much slower
rates in more distant pairs. All these rates correspond to
times much longer than 2τ (∼ 600 µs) when measuring
electron spin echoes. In this case all flip-flops are in a slow
motional regime, causing slow spectral diffusion with
non-exponential echo decays as seen in experiment12 and
understood theoretically.10,25,31 For nuclear spins, on the
other hand, the timescale of the experiments lies within
the broad distribution of 29Si flip-flop times. Thus, there
are fast and slow flip-flopping pairs that contribute to
the decoherence, and consistently both exponential and
non-exponential components are present in the decays.

The 31P nuclear spin coherence time in natural sili-
con presented here is longer than measured earlier for
ionized donors or donors in degenerately doped silicon.

NMR measurements of 31P nuclear spin decoherence in
degenerately doped silicon have found times about two
orders of magnitude shorter.14,15 Ionized donors mea-
sured with EDMR had a coherence time of 18 ms,16 and
single donors measured with an SET had a coherence
time of 60 ms.17 These measurements of ionized donors
are in agreement with cluster correlation expansion sim-
ulations by Witzel et al. (∼30 ms).31 The longer coher-
ence time for our isolated neutral 31P donors supports
the “frozen core” picture19–21 where most 29Si pairs near
a central spin are too detuned by the donor electron spin
to flip-flop.

In conclusion, we have experimentally studied the ef-
fect of environmental 29Si nuclear spins on neutral donor
nuclear spins decoherence in silicon. Two contributors
have been resolved arising from fast and slow flip-flopping
29Si nuclear spin pairs. We find that both contribu-
tions exhibit a linear dependence on 29Si concentration.
Our results demonstrate long coherence times for neu-
tral donor nuclear spins, ranging from 100 ms in crystals
containing 50% 29Si to 3 s in crystals containing 1% 29Si,
and are in agreement with the picture that an electron
bound to a donor protects the donor nuclear spins from
29Si flip-flops.
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