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We have analyzed the crucial role a proper form of the Coulomb interaction plays on the even
and odd denominator fractional quantum Hall effects in a two-dimensional electron gas (2DEG)
in the ZnO heterointerface. In this system, the Landau level gaps are much smaller than those in
conventional GaAs systems. The Coulomb interaction is also very large compared to the Landau level
gap even in very high magnetic fields. We therefore consider the influence of higher Landau levels by
considering the screened Coulomb potential in the random phase approximation. Interestingly, our
exact diagonalization studies of the collective modes with this screened potential successfully explain
recent experiments of even and odd denominator fractional quantum Hall effects, in particular, the
unexpected absence of the 5/2 state and the presence of 9/2 state in ZnO. Additionally, our study
also reveals a strong presence of spin-reversed excitations in the 7/2 state in acoordance with the
experimental observation.

Discovery of the odd-denominator fractional quantum
Hall effects (FQHE) in GaAs heterojunctions in 1982 [1]
and its subsequent explanation by Laughlin [2, 3], has
remained the ‘gold standard’ for novel quantum states
of correlated electrons in a strong magnetic field. These
effects also have been observed in ‘Dirac materials’ such
as graphene [4, 5, 9]. and are expected to be present in
other graphene-like materials [6–8] with novel attributes.
The FQHE states in monolayer and bilayer graphene
were investigated theoretically [9–12] and experimentally
[13, 14]. For example, in bilayer graphene the appli-
cation of a bias voltage results in a phase transition
between incompressible FQHE and compressible phases
[11, 12] some Landau levels (LLs). The FQHE in sil-
icene and germanene indicated that because of the strong
spin-orbit interaction present in these materials as com-
pared to graphene, the electron-electron interaction and
the FQHE gap are significantly modified [15]. The puck-
ered structure of phosphorene exhibits a lower symmetry
than graphene. This results in anisotropic energy spectra
and other physical characteristics of phosphorene, both
in momentum and real space in the two-dimensional (2D)
plane [16, 17]. The anisotropic band structure of phos-
phorene causes splitting of the magnetoroton mode into
two branches with two minima. For long wavelengths, we
also found a second mode with upward dispersion that
is clearly separated from the magnetoroton mode and is
entirely due to the anisotropic bands [18].

In 1987, a discovery of the quantum Hall state at
the LL filling factor ν = 5

2 , the first even-denominator
state observed in a single-layer system [19] added to the
mystery of the FQHE. It soon became clear that this
state must be different from the FQHE in predominantly
odd-denominator filling fractions [1]. Understanding this
enigmatic state has remained a major challenge in all
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these years [20, 21]. At this half-filled first excited LL, a
novel state described by a pair wave function involving a
Pfaffian [12, 22], where the low-energy excitations obey
non-Abelian exchange statistics, has been the strongest
candidate.

The field of FQHE has now witnessed a very excit-
ing development with the the observation of the effect
in high-mobility MgZnO/ZnO heterointerfaces [23, 24].
The odd-denominator fractional states such as ν = 4

3 ,
5
3

and 8
3 were observed here with indications of the ν = 2

5
state in the extreme quantum limit. Soon after, the even-
denominator states, such as ν = 3

2 , and
7
2 were also ob-

served [25], but surprisingly, the most prominent even-
denominator state of the GaAs systems, the ν = 5

2 was
found to be conspicuously absent in the ZnO system. The
system of 2DEG in ZnO is unique as compared to that
in GaAs. In the case of GaAs-based 2DEG, the LL gap
is large compared to that for the Coulomb interaction
(e2/ǫℓ, where ǫ is the dielectric constant and ℓ =

√

~/eB
is the magnetic length with a magnectic field B). How-
ever, in a ZnO heterosturcutre [23–25] the LL gap is very
small. The ratio κ between the Coulomb interaction and
the LL gap is the relevant parameter in this context.
In GaAs, κ = 2.5/

√
B, which would be very small in a

strong magnetic field. In the ZnO heterointerface, where
the dielectric constant is 8.5, that ratio is κ = 25.1/

√
B,

i.e., about an order of magnitude larger than that of
GaAs (as observed in Ref. [25], κ = 9.7, 14.5, 16.5 for
ν = 3/2, 7/2, 9/2, respectively). Therefore, considering
the electron system in a single LL may not be appropri-
ate. On the other hand, in graphene the ratio depends
only on the dielectric constant of the substrate [26]. In
the case of boron nitride as the substrate, κ = 0.5 ∼ 0.8,
which is smaller than one. Hence, a perturbative scheme
of the effective Coulomb potential [27], in which higher
LLs are projected onto the lowest Landau level by ex-
panding the Coulomb potential in order of κ can be use-
ful. However, those theories are only useful when κ is
comparable to or smaller than unity. In ZnO, this ratio
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FIG. 1: (Color Online) The collective mode of ν = 1/3 for six
electrons, (a) without and (b) with screening.

is experimentally found to be much larger than 1, even
an order of magnitude higher than unity.

In the experiment of Ref. [25] the FQHE was found to
be missing at 5/2 but survives at 7/2, which suggests that
the electron-hole symmetry must be broken in the N = 1
LL. Hence, the Coulomb interaction in the two cases has
to be different to make the two different spins distinguish-
able. From the arguments above it is amply clear that we
need to introduce an appropriate method to project the
higher empty LLs onto the relevant LL by the virtual pro-
cess between the empty LLs and full (or partly occupied)
LLs. The Coulomb potential is screened by all the elec-
trons below the Fermi level, and consequently depends
on the filling factor. The dielectric constant is then re-
placed by the dielectric function of the momentum. The
screened Coulomb potential is calculated in the random
phase approximation (RPA) [28], and is useful for any κ.
When the LL gap is infinitely large the screened Coulomb
potential returns to the original (unscreened) value. This
form of screened Coulomb interaction was used earlier in
higher LLs [29] and in the case of skyrmions [30] in the
Hartree-Fock approximation. Here we use this screened
Coulomb interaction to study the collective modes of the
FQHE states in the ZnO system using the exact diago-
nalization scheme. Interestingly, in our present scheme,
we are able to satisfactorily explain the unique experi-
mental observations by Falson et al. [25], such as the
missing 5/2 state but the presence of the 9/2 state and
spin-reversed excitations [31–33] of the 7/2 state.

A screened Coulomb interaction but with a simpler
form was also used in bilayer graphene [34] in which the
screening was strong but is still much weaker than that in
ZnO. In our scheme for the screened Coulomb potential
[30], the interaction between electrons in the relevant LL
is renormalized by the polarizability of all the other Lan-
dau levels. We consider here only the static screening so

that only the zero-frequency response function is taken
into consideration. The Coulomb potential in the mo-

mentum space is V (q) = 2πe2

ǫq . The screened Coulomb
potential is then written

Vs (q) =
2πe2

ǫǫs (q) q
,

where ǫs (q) is the screened dielectric function [35],

ǫs (q) = 1− V (q)χR
nn

(

q, ω → 0+
)

,

χR
nn is the retarded density-density response function and

the associated response function χnn is defined as

χnn (q,τ) = − 1

~S
〈Tτδn (q,τ) δn (−q,0)〉 ,

with time ordering operator Tτ , system area S and the
density operator n (q). If we consider only the non-
interacting response function χ0

nn without LL mixing in
the Matsubara frequency Ωn, then

χ0
nn (q,iΩn) =

Ns

~S

∑

σ,n,n′

∣

∣Fn′,n (q)
∣

∣

2 νσ,n − νσ,n′

iΩn + (En − En′) /~
,

where Ns is the LL degeneracy, σ is the spin index, n, n′

are the LL indices, En is the kinetic energy of the LL n,
and the form factor is defined by

Fn,n′ (q) =

√

min (n, n′)!
√

max (n, n′)!
e−q2ℓ2/4L

|n−n′|
min(n,n′)

(

q2ℓ2

2

)

×
[

(

sign (n− n′) qy + iqx
)

ℓ√
2

]|n−n′|

with a Laguerre function L(x). The parameter νσ,n is
the filling factor of the level with spin σ in the LL n. In
our exact diagonalization scheme ν = Ne/Nφ, where Ne

is the electron number of the finite-size system.
In order to study the collective modes for odd- and

even-denominator FQHE states, we follow the standard
procedure of finite-size systems in a periodic rectangu-
lar geometry [3, 36]. The Hamiltonian for the Coulomb
interaction is

HC =
1

2

∑
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where ni is the LL index, ij is the guiding center index,
α, β are spin indices, and c is the electron operator. The
Coulomb interaction elements are given by [37]

V
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where
∑

excludes the term for q = 0, δ′ includes the pe-
riodic boundary condition, and the momentum is discrete

q =
(

2π
L

x

i, 2π
L

y

j
)

with the sample length Lx and width Ly.

If a screened Coulomb interaction is taken into consid-
eration, we just need to add the dielectric function ǫs in
the denominator. The classical interaction term in the
Hamiltonian which is induced by the periodic geometry
is neglected even in the screened case, since the term is
always a constant.

In the present case of ZnO the Zeeman energy
(0.2489B meV) is very close to the LL gap (0.26311B
meV). For example, the level |1, ↑〉 is only a little higher
than |0, ↓〉. For odd denominator FQHE, for simplic-
ity and without loss of generality, we consider only one
LL and compare the collective modes with and without
screening for filling factors ν = k/3, since the spin is
polarized. Our present work focuses isolely on the even
denominator FQHE [25]. In a perpendicular magnetic
field, ν = 3/2 state is not observed as is the case in GaAs
system. Electrons in the half filled level |0, ↓〉 is com-
pressible. In a tilted field there is a crossover of kinetic
energies between LL 1 and LL 0 with different spins. The
exact diagonalization method in a tilted magnetic field is
quite involved [38] and will be reported in a future pub-
lication.

As mentioned above, in the experiment of [25] there is
no indication of the 5

2 state, which has a strong presence
in the GaAs system. There could be several possible rea-
sons for this: (i) the LL mixing may decrease or even
close the gap of the incompressible ground state; (ii) a
spin-mixed charge density wave state may exist between
|0, ↓〉 and |1, ↑〉 , since the gap ∆ between the two levels is
very small (for B = 3.75T, the gap is only ∆ = 0.05329
meV = 0.004167e2/ǫℓ [25]); or (iii) the screened Coulomb
potential which integrates out all other LLs, changes the
ground state. To test the first possibility we performed
an exact diagonalization study including the LL mixing
which includes LL |1, ↑〉 and |2, ↑〉. The results indicate
that the collective modes are just slightly changed and
the ground state is still an incompressible liquid. The
spin remains fully polarized in our numerical calculations
that includes |1, ↑〉 and |1, ↓〉, as in previous theoretical
works [21] and in some of the experimental works [39]. On
the other hand, if the LL mixing or spin mixing changes
the ground state at 5/2, then the incompressible ground
state at 7/2 would also be changed. But the FQHE ex-
periment shows a robust ν = 7/2. To test the second
possibility, we also perfom an exact diagonalization cal-
culation where we class the Hamiltonian by the spin po-
larization [32, 33]. The ground state always has all elec-
trons occupied in |0, ↓〉 when the gap ∆ ≥ 0. Even for a
negative gap ∆C < ∆ < 0, i.e., |1, ↑〉 is a little lower than
|0, ↓〉, the electrons of the ground state are still in |0, ↓〉.
Note that ∆C can not be too negative: if ∆C → −∞,
then all electrons would be flipped to |1, ↑〉.
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FIG. 2: The low-lying excitations in a N
e
= 7 electrons sys-

tem. (a) The collective mode for 5/2: the ground state is
degenerate and compressible. (b) The collective mode for 7/2
indicates an imcompressible ground state.

Only the third possibility seems to explain the exper-
iment, i.e., the absence of the 5/2 state, but the ap-
pearence of ν = 7/2. For simplicity, we consider only
a single LL with the screened potential. In our work
that follows, the aspect ratio is Lx/Ly = 1. Figure 1
shows the comparison of the unscreened and screened
collective modes at ν = 1/3 for six electrons. The
shape of the characteristic FQHE collective mode does
not change, only the gap is reduced by the screening.
For other odd denominator filling factors, ν = k/3,
(k = 2, 4, 5, 7, 8, 10, 11) , we are also able to observe the
characteristic FQHE collective modes, and the ground
states indicate the incompressible liquid phase. With-
out screening, the collective modes in the exact diag-
onalization are calculated in GaAs in Ref. [21], where
the screening effect is much weaker than for the ZnO
heterojunction. First, we use the system parameters of
GaAs to perform the exact diagonalization with screened
Coulomb potential, and it shows that the FQHE survives
for both 5/2 and 7/2. It clearly shows that our screen-
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FIG. 3: The low-lying excitation spectrum with screening for
a Ne = 5 system at ν = 9/2.

ing calculations are compatible with the GaAs systems.
For the ZnO system, we adopt the experimental parame-
ters of Ref. [25]. The 7/2 and 5/2 are equivalent without
screening due to the electron-hole symmetry in the n = 1
LL. The Coulomb interactions are distinguishable with
screening included: the screening at 7/2 is stronger than
that at 5/2, and there is a step in the dielectric function
ǫs versus qℓ in the 7/2 filling factor. Hence the ground
state and collective modes can be different in the two
cases.

We have tested different system sizes: Ne = 4 . . . 11.
For simplicity, only the case of Ne = 7 is shown in
Fig. 2. Clearly, the FQHE state is absent for 5/2, but
survives at 7/2 , even though the screening of the lat-
ter is stronger. The ground state of 5/2 is a degenerate

compressible state, while the ground state of 7/2 is al-
ways an incompressible state. Note that for odd elec-
trons, the ground states of 7/2 are at q = 0, but for
even electrons, the ground states are always located at
q =

√

2π/Ns (N/2, N/2). So the ground state could be-
come an incompressible liquid state by a global transla-
tion, which was already pointed out in Ref. [21]. The
collective modes at 7/2 seem to have two minimum that
are located at about qℓ = 2.5 and 3.8. The energy gap,
however, is very small compared to other systems. It
is because the screened Coulomb intearction reduces the
gap. Interestingly, the screening of 7/2 is stronger, but
the FQHE is still not destroyed. The energy gap for a
larger system (more electrons) is larger than that of a
smaller system (for example, when Ne = 11, the lowest
gap is 0.0004e2/ǫℓ). So we expect that for a real system,
the energy gap is large enough to be observable.

For higher LLs such as at ν = 9/2, κ is even larger
than that in LL 1 and the screening is stronger. The
Coulomb potential thus be changed more by the screen-
ing induced by other LLs. Our exact diagonalization re-
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FIG. 4: (Color Online) Spin and charge density modes in
the collective excitations of ν = 7/2. Only the lowest lying
excitations are shown.

sults are presented for 5 electrons for the experimental
value of B = 2.1 T. The collective modes clearly show an
incompressible state (Fig. 3). However, the gap is very
small. Incidentally, the experimental signal is also very
weak. Finally, we have studied the spin-reversed exci-
tations [31–33] in the 7/2 state [Fig. 4]. The spin wave
mode is well separated from the density wave mode, and
the spin wave mode is gapped. The spin wave mode is
quite different from that of the FQHE state at ν = 1/3.
The latter can be described by the Laughlin’s wave func-
tion [31]. Here the Goldstone spin mode disappears. It is
not surprising since the nature of the ground state of an
even denominator FQHE is quite different from those of
the odd denominator FQHE. Interestingly, a signature of
the spin state was observed at ν = 7/2 in ZnO by Falson
et al. [25].

To summarize, we have studied the FQHE states in
the ZnO system with screened Coulomb interaction that
incorporates the influence of other landau levels. For the
odd-denominator filling factors, our work agrees with the
present system of ZnO and with earlier GaAs systems as
well. However, for the even-denominator filling factors,
we are able to explain the absence of 3/2, 5/2 FQHE
states, while the presence of 7/2, 9/2 FQHE states, by
introducing screened interaction which integrates out all
the other LLs.
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Huizhong Lu of Calcul Québec for help with compu-
tations. The computation time was provied by Calcul
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[30] W. Luo and R. Côté, Phys. Rev. B 88, 115417 (2013).
[31] T. Chakraborty, P. Pietiläinen, and F.C. Zhang, Phys.
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(1989); V. Halonen, P. Pietiläinen and T. Chakraborty,
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