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While bare diagrammatic series are merely Taylor expansions in powers of interaction strength,
dressed diagrammatic series, built on fully or partially dressed lines and vertices, are usually con-
structed by reordering the bare diagrams, which is an a priori unjustified manipulation, and can even
lead to convergence to an unphysical result [Kozik, Ferrero, and Georges, PRL 114, 156402 (2015)].
Here we show that for a broad class of partially dressed diagrammatic schemes, there exists an
action S(ξ) depending analytically on an auxiliary complex parameter ξ, such that the Taylor ex-
pansion in ξ of correlation functions reproduces the original diagrammatic series. The resulting
applicability conditions are similar to the bare case. For fully dressed skeleton diagrammatics, ana-
lyticity of S(ξ) is not granted, and we formulate a sufficient condition for converging to the correct
result.

PACS numbers: 71.10.Fd, 02.70.Ss

Much of theoretical physics is formulated in the lan-
guage of Feynman diagrams, in various fields such as con-
densed matter, nuclear physics, and QCD. A powerful
feature of the diagrammatic technique, used in each of
the above fields, is the possibility to build diagrams on
partially or fully dressed propagators or vertices, see, e.g.,
Refs.1–5. In quantum many-body physics, notable exam-
ples include dilute gases, whose description is radically
improved if ladder diagrams are summed up so that the
expansion is done in terms of the scattering amplitude
instead of the bare interaction potential, and Coulomb
interactions, which one has to screen to have a meaning-
ful diagrammatic technique.

With the development of Diagrammatic Monte Carlo,
it becomes possible to compute Feynman diagrammatic
expansions to high order for fermionic strongly correlated
quantum many-body problems6–11. The number of dia-
grams grows factorially with the order, even for a fully
irreducible skeleton scheme12. Nevertheless, for fermionic
systems on a lattice at finite temperature, diagrammatic
series (of the form

∑

n an with an the sum of all order-n
diagrams) are typically convergent in a broad range of
parameters, due to a nearly perfect cancellation of con-
tributions of different sign within each order, as proven
mathematically13 and seen numerically6,7,9–11.

One might think that partial or full renormalization of
diagrammatic elements (propagators, interactions, ver-
tices, etc.) always leads to more compact and better be-
having diagrammatic expansion. However, such a dressed
diagrammatic series cannot be used blindly: Even when
it converges, the result is not guaranteed to be correct,
since it is a priori not allowed to reorder the terms of a
series that is not absolutely convergent (the sum of the
absolute values of individual diagrams is typically infinite,

due to factorial scaling of the number of diagrams with
the order). And indeed, for a skeleton series, i.e., a series
built on the fully dressed propagator, convergence to a
wrong result does occur in the case of the Hubbard model
in the strongly correlated regime near half filling14, and
preliminary results suggest that the corresponding self-
consistent skeleton scheme converges to a wrong result
as a function of the maximal self-energy diagram order
N 15. Both of these phenomena are clearly seen in the
exactly solvable zero space-time dimensional case16,17.
In this work, we establish a condition that is neces-

sarily violated in the event of convergence to a wrong
result of the self-consistent skeleton scheme. Further-
more, we show that this convergence issue is absent for
a broad class of partially dressed schemes. In particular,
we propose a simple scheme based on the truncated skele-
ton series. The underlying idea is to construct an action
S(ξ) that depends on an auxiliary complex parameter ξ
such that the Taylor series in ξ of correlation functions
reproduces the dressed diagrammatic series built on a
given partially or fully dressed propagator. This makes
the dressed scheme as mathematically justified as a bare
scheme, provided S(ξ) is analytic with respect to ξ and
S(ξ=1) coincides with the physical action; these condi-
tions hold automatically in the partially dressed case,
while in the fully dressed case they hold under a simple
sufficient condition which we provide. Our construction
applies to a general class of diagrammatic schemes built
on dressed lines and vertices, including two-particle lad-
ders and screened long-ranged potentials.
Partially dressed single-particle propagator. We con-

sider a generic fermionic many-body problem described
by an action

S[ψ, ψ̄] = 〈ψ|G−1
0 |ψ〉+ Sint[ψ, ψ̄] (1)
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where ψ, ψ̄ are Grassmann fields18, and we use bra-ket
notations to suppress space, imaginary time, possible in-
ternal quantum numbers, and integrals/sums over them,
i.e., 〈ψ|G−1

0 |ψ〉 denotes the integral/sum over r, τ and
σ of ψ̄σ(r, τ) (G

−1
0,σ ψσ)(r, τ). G−1

0 stands for the in-
verse, in the sense of operators, of the free propaga-
tor. The full propagator G and the self-energy Σ are
related through the Dyson equation G−1 = G−1

0 − Σ.
The bare Feynman diagrammatic expansion corresponds
to perturbation theory in Sint. In order to generate a di-
agrammatic expansion built on a partially dressed single-
particle propagator G̃N , we introduce an auxiliary action
of the form

S
(ξ)
N [ψ, ψ̄] = 〈ψ|G−1

0,N (ξ)|ψ〉 + ξSint[ψ, ψ̄], (2)

where

G−1
0,N (ξ) = G̃−1

N + ξΛ1 + . . .+ ξNΛN , (3)

ξ is an auxiliary complex parameter, and Λ1, . . . ,ΛN are
appropriate operators. G̃N is the single particle prop-

agator for S
(ξ=0)
N . At ξ 6= 0, one can still view G̃N as

the free propagator, provided one includes in the inter-
action terms not only ξSint, but also the quadratic terms
〈ψ|ξnΛn|ψ〉. Accordingly, ξ is interpreted as a coupling
constant, and the ξnΛn acquire the meaning of counter-
terms. These counter-terms can be tuned to cancel out
reducible diagrams, thereby enforcing the dressed char-
acter of the diagrammatic expansion. A natural require-

ment is that S
(ξ=1)
N coincides with the physical action S,

i.e., that

G̃−1
N +

N
∑

n=1

Λn = G−1
0 . (4)

For given G0, this should be viewed as an equation to
be solved for G̃N (it is non-linear if the Λn’s depend on

G̃N ). The unperturbed action for the dressed expansion,

〈ψ|G̃−1
N |ψ〉, is shifted by the Λn’s with respect to the

unperturbed action for the bare expansion, 〈ψ|G−1
0 |ψ〉.

We can then use any action of the generic class (2) for
producing physical answers in the form of Taylor expan-
sion in powers of ξ, provided the propagator G̃N and the
shifts Λn satisfy Eq. (4). More precisely, consider the full

single-particle propagator GN (ξ) of the action S
(ξ)
N , and

the corresponding self-energy

ΣN (ξ) := G−1
0,N (ξ)−G−1

N (ξ). (5)

Note that since S
(ξ=1)
N = S, we have GN (ξ=1) = G and

hence also ΣN (ξ=1) = Σ. We assume for simplicity that
ΣN (ξ) is analytic at ξ = 0, and that its Taylor series
∑∞

n=1 Σ
(n)
N [G̃N ] ξn, converges at ξ = 1. We expect these

assumptions to hold for fermionic lattice models at finite
temperature in a broad parameter regime, given that the

action S
(ξ)
N is analytic in ξ6,7,9–11,13,19. Then, since S

(ξ)
N

is an entire function of ξ, we can conclude that

Σ =

∞
∑

n=1

Σ
(n)
N [G̃N ], (6)

i.e., the physical self-energy is equal to the dressed dia-
grammatic series.
This last step of the reasoning can be justified using

the following presumption: Let D be a connected open

region of the complex plane containing 0. Assume that
S(ξ) is analytic in D, that the corresponding self-energy

Σ(ξ) is analytic at ξ = 0, and that Σ(ξ) admits an an-

alytic continuation Σ̃(ξ) in D. Then, Σ and Σ̃ coincide

on D. This presumption is based on the following ar-
gument: Since S(ξ) is analytical, if no phase transition
occurs when varying ξ in D, then Σ(ξ) is analytical on D,
and by the identity theorem for analytic functions, Σ and
Σ̃ coincide on D. If a phase transition would be crossed as
a function of ξ in D, analytic continuation through the
phase transition would not be possible20, contradicting
the above assumption on the existence of Σ̃. Applying

this presumption to Σ̃(ξ) :=
∑∞

n=1 Σ
(n)
N [G̃N ] ξn, which

has a radius of congergence R ≥ 1 (from the Cauchy-
Hadamard theorem), and taking for D the open disc of
radius R, we directly obtain Eq. (6) provided R > 1. If
R=1, we can still derive Eq. (6), using Abel’s theorem
and assuming that ΣN (ξ) is continuous at ξ=1, which,
given that the action in entire in ξ, is generically expected
(except for physical parameters fined-tuned precisely to
a first-order phase transition, where Σ is not uniquely
defined).
Semi-bold scheme. We first focus on the choice

Λn = Σ
(n)
bold[G̃N ] (1 ≤ n ≤ N ), (7)

where Σ
(n)
bold[G] is the sum of all skeleton diagrams of

order n, built with the propagator G and the bare in-
teraction vertex corresponding to Sint, that remain con-
nected when cutting two G lines. This means that G̃N

is the solution of the bold scheme for maximal order N ,
cf. Eq. (4). For a given N , higher-order dressed graphs

can then be built on G̃N . The numerical protocol corre-
sponding to this ‘semi-bold’ scheme consists of two inde-
pendent parts: Part I is the Bold Diagrammatic Monte
Carlo simulation of the truncated order-N skeleton sum
employed to solve iteratively for G̃N satisfying Eqs. (4,7);
Part II is the diagrammatic Monte Carlo simulation of

higher-order terms, Σ
(n)
N [G̃N ], n > N , that uses G̃N as

the bare propagator. Note that here N is fixed (con-
trarily to the conventional skeleton scheme discussed be-
low), and the infinite-order extrapolation is done only in
Part II.
The Feynman rules for this scheme are as follows:

Σ
(n)
N [G̃N ] = Σ

(n)
bold[G̃N ] for n ≤ N ; (8)

while for n ≥ N + 1, Σ
(n)
N [G̃N ] is the sum of all bare

diagrams, built with G̃N as free propagator and the bare
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interaction vertex corresponding to Sint, which do not
contain any insertion of a subdiagram contributing to

Σ
(n)
bold[G̃N ] with n ≤ N . Indeed, each such insertion is

exactly compensated by the corresponding counterterm.
To derive Eq. (8), we will use the relation

ΣN (ξ) =̂
∞
∑

n=1

Σ
(n)
bold[GN (ξ)] ξn (9)

where =̂ stands for equality in the sense of formal power
series in ξ, and we will show the proposition

ΣN (ξ) =̂
k
∑

n=1

Σ
(n)
bold[G̃N ] ξn+O(ξk+1) (Pk)

for any k ∈ {0, . . . ,N + 1}, by recursion over k. (Pk=0)
clearly holds. If (Pk) holds for some k ≤ N , then we

have GN (ξ) =̂ G̃N + O(ξk+1), as follows from Eqs. (5),
(3) and (7). Substitution into Eq. (9) then yields (Pk+1).
Alternatively to the semi-bold scheme Eq. (7), other

choices are possible for the shifts Λ1, . . . ,ΛN and the
dressed propagator G̃N . For example, the shifts can be
based on diagrams containing the original bare propaga-
tor G0 instead of G̃N . In the absence of exact cancella-
tion, all diagrams should be simulated in Part II of the
numerical protocol, and Λn will enter the theory explic-
itly. This flexibility of choosing the form of Λn’s, along
with the obvious option of exploring different N ’s, pro-
vides a tool for controlling systematic errors coming from
truncation of the ξ-series.
Skeleton scheme. We turn to the conventional scheme

in which diagrams are built on the fully dressed single-
particle propagator. The corresponding numerical pro-
tocol is identical to Part I of the above one, with the
additional step of extrapolating N to infinity, as done
in8–11,21. Accordingly, we assume that the ‘skeleton se-
quence’ G̃N converges to a limit G̃ when N → ∞. The
crucial question is under what conditions one can be con-
fident that G̃ is the genuine propagator G of the original
model. The answer comes from the properties of the se-
quence of functions

L
(ξ)
N :=

N
∑

n=1

Σ
(n)
bold[G̃N ] ξn. (10)

Let us show that G̃ = G holds under the following suffi-
cient condition:
(i) for any ξ in a disc D = {|ξ| < R} of radius R > 1,

and for all (p, τ), L
(ξ)
N (p, τ) converges for N→∞; more-

over this sequence is uniformly bounded, i.e., there ex-
ists a function C1(p, τ) such that ∀ξ ∈ D, ∀(N ,p, τ),

|L
(ξ)
N (p, τ)| ≤ C1(p, τ); and

(ii) G̃N (p, τ) is uniformly bounded, i.e., there exists a

constant C2 such that for all (N ,p, τ), |G̃N (p, τ)| ≤ C2.
Our derivation is based on the action

S(ξ)
∞ := lim

N→∞
S
(ξ)
N . (11)

Clearly,

S(ξ)
∞ = 〈ψ| G̃−1 + L(ξ) |ψ〉+ ξSint (12)

with

L(ξ)(p, τ) := lim
N→∞

L
(ξ)
N (p, τ). (13)

Since S
(ξ=1)
N = S, we have S

(ξ=1)
∞ = S, and thus

G∞(ξ=1) = G where G∞(ξ) is the full propagator of

the action S
(ξ)
∞ .

We first observe that L(ξ)(p, τ) is an analytic function
of ξ ∈ D for all (p, τ), and that

1

n!

∂n

∂ξn
L(ξ)(p, τ)

∣

∣

∣

∣

ξ=0

= Σ
(n)
bold[G̃](p, τ). (14)

This follows from conditions (i,ii), given that momenta
are bounded for lattice models. Indeed, for any trian-

gle T included in D,
∮

T
dξ L

(ξ)
N (p, τ) = 0. Thanks to

condition (i), the dominated convergence theorem is ap-
plicable, yielding

∮

T
dξ L(ξ)(p, τ) = 0. The analyticity of

ξ 7→ L(ξ)(p, τ) follows by Morera’s theorem. To derive
Eq. (14) we start from

1

n!

∂n

∂ξn
L
(ξ)
N (p, τ)

∣

∣

∣

∣

ξ=0

= Σ
(n)
bold[G̃N ](p, τ). (15)

By Cauchy’s integral formula, the l.h.s. of Eq. (15)

equals 1/(2iπ)
∮

C
dξ L

(ξ)
N (p, τ)/ξn+1 where C is the unit

circle. Using again condition (i) and the domi-
nated convergence theorem, when N→∞, this tends
to 1/(2iπ)

∮

C
dξ L(ξ)(p, τ)/ξn+1, which equals the l.h.s.

of Eq. (14). To show that Σ
(n)
bold[G̃N ](p, τ) tends to

Σ
(n)
bold[G̃](p, τ), we consider each Feynman diagram sepa-

rately; the dominated convergence theorem is applicable
thanks to condition (ii), the boundedness of the integra-
tion domain for internal momenta and imaginary times,
and assuming that interactions decay sufficiently quickly
at large distances for the bare interaction vertex to be
bounded in momentum representation.
Hence

L(ξ) =
∞
∑

n=1

Σ
(n)
bold[G̃] ξ

n. (16)

As a consequence, the action S
(ξ)
∞ generates the fully

dressed skeleton series built on G̃, i.e., its self-energy

Σ∞(ξ) has the Taylor expansion
∑∞

n=1 Σ
(n)
bold[G̃] ξ

n, and
the Taylor series of G∞(ξ) reduces to the ξ-independent

term G̃. This can be derived in the same way as Eq. (8),
by showing by recursion over k that for any k ≥ 0,

Σ∞(ξ) =
∑k

n=1 Σ
(n)
bold[G̃] ξ

n + O(ξk+1). Furthermore,

having shown above the analiticity of L(ξ), i.e., of S
(ξ)
∞ ,

we again expect that G∞(ξ) is analytic at ξ = 0 (for
fermions on a lattice at finite temperature), and we
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can use again the above presumption to conclude that
G∞(ξ = 1) = G = G̃.
Dressed pair propagator. So far we have discussed

dressing of the single-particle propagator while keeping
the bare interaction vertices. We turn to diagrammatic
schemes built on dressed pair propagators. We restrict
to spin-1/2 fermions with on-site interaction:

Sint[ψ, ψ̄] = U
∑

r

∫ β

0

dτ (ψ̄↑ψ̄↓ψ↓ψ↑)(r, τ), (17)

where U is the bare interaction strength. For simplicity
we discuss dressing of the pair propagator while keep-
ing the bare G0. It is necessary to perform a Hubbard-
Stratonovich transformation in order to construct the ap-
propriate auxiliary action. Introducing a complex scalar
Hubbard-Stratonovich field η leads to the action

S[ψ, ψ̄, η, η̄] = 〈ψ|G−1
0 |ψ〉 − 〈η|Γ−1

0 |η〉 − 〈η|Π0|η〉

+ 〈η|ψ↓ψ↑〉+ 〈ψ↓ψ↑|η〉, (18)

where Π0(r, τ) = −(G0,↑G0,↓)(r, τ) and Γ0 is the sum of

the ladder diagrams, Γ−1
0 (p,Ωn) = U−1−Π0(p,Ωn) with

Ωn the bosonic Matsubara frequencies.
We first consider the diagrammatic scheme built on G0

and Γ0. We denote by Σ
(n)
lad [G0,Γ0] the sum of all self-

energy diagrams of order n, i.e. containing n Γ0-lines.
This diagrammatic series is generated by the shifted ac-
tion

S
(ξ)
lad[ψ, ψ̄, η, η̄] = 〈ψ|G−1

0 |ψ〉 − 〈η|Γ−1
0 |η〉 − ξ2〈η|Π0|η〉

+ ξ
(

〈η|ψ↓ψ↑〉+ 〈ψ↓ψ↑|η〉
)

, (19)

in the sense that self-energy Σlad(ξ) corresponding to this

action has the Taylor series
∑∞

n=1 Σ
(n)
lad [G0,Γ0] ξ

2n. In-
deed, the counter-term ξ2Π0 cancels out the reducible
diagrams contatining G0G0 bubbles. Therefore, if this
diagrammatic series converges, then it yields the physi-
cal self-energy. This follows from the same reasoning as
below Eq. (5). The same applies to the series for the pair
self-energy Π in terms of [G0,Γ0]. Here Π is defined by
Γ−1 = Γ−1

0 − Π, where Γ denotes the fully dressed pair
propagator, used in8,11.
More complex schemes, built on other dressed pair

propagators than Γ0, can be generated by the shifted
action

S
(ξ)
N [ψ, ψ̄, η, η̄] = 〈ψ|G−1

0 |ψ〉−〈η|Γ−1
0,N (ξ)|η〉−ξ2〈η|Π0|η〉

+ ξ
(

〈η|ψ↓ψ↑〉+ 〈ψ↓ψ↑|η〉
)

, (20)

where

Γ−1
0,N (ξ) = Γ̃−1

N + ξ2 Ω1 + . . .+ ξ2N ΩN (21)

and one imposes Γ0,N (ξ = 1) = Γ0. In particular, the
semi-bold scheme is defined by

Ωn = Π
(n)
bold[Γ̃N ], (22)

where Π
(n)
bold[γ] is the sum of all skeleton diagrams of

order n built with the pair-propagator γ that remain

connected when cutting two γ-lines. As usual, Π
(1)
bold =

−GG + G0G0. This scheme was introduced previously
for N=122.
Finally, we consider the skeleton scheme built on G0

and Γ. Assuming that the skeleton sequence Γ̃N con-
verges to some Γ̃, one can show analogously to the above
reasoning that Γ̃ is equal to the exact Γ under the fol-
lowing sufficient condition:
(i) for any ξ in a disc D = {|ξ| < R} of radius R > 1, and

for all (p,Ωn),M
(ξ)
N (p,Ωn) :=

∑N
n=1 Π

(n)
bold[Γ̃N ](p,Ωn) ξ

n

converges for N→∞; moreover this sequence is uni-
formly bounded, i.e., there exists C(p,Ωn) such that

∀ξ ∈ D, ∀(N ,p,Ωn), |M
(ξ)
N (p,Ωn)| ≤ C(p,Ωn); and

(ii) Γ̃N (p,Ωn) is uniformly bounded.
Screened interaction potential. Finally, we briefly ad-

dress the procedure of dressing the interaction line, which
is particularly important for long-range interaction po-
tentials. Restricting for simplicity to a spin-independent
interaction potential V (r), the interaction part of the ac-
tion writes

1

2

∑

σ,σ′

∑

r,r′

∫ β

0

dτ (ψ̄σψσ)(r, τ)V (r− r
′) (ψ̄σ′ψσ′)(r′, τ).

(23)
We again keep the bare G0 for simplicity and consider
dressing of V only. Introducing a real scalar Hubbard-
Stratonovich field χ leads to the action

S[ψ, ψ̄, χ] = 〈ψ|G−1
0 |ψ〉+

1

2
〈χ|V −1 |χ〉 + i

∑

σ

〈χ|ψ̄σψσ〉.

(24)
Here we assume that the Fourier transform V (q) of the
interaction potential is positive, so that the quadratic

form 〈χ|V −1 |χ〉 = (2π)−d
∫ β

0 dτ
∫

ddq |χ(q, τ)|2/V (q) is
positive definite. The auxiliary action takes the form

S
(ξ)
N [ψ, ψ̄, χ] = 〈ψ|G−1

0 |ψ〉

+
1

2
〈χ|Ṽ −1

N +ξ2Ω1+ . . .+ξ
2NΩN |χ〉+ iξ

∑

σ

〈χ|ψ̄σψσ〉.

(25)

The semi-bold scheme corresponds to Ωn = Π
(n)
bold[ṼN ]

where Π now stands for the polarization. In particular,
Ṽ1 is the RPA screened interaction.
Summarizing, we have revealed an analytic structure

behind dressed-line diagrammatics. More precisely, we
have exhibited the function which analytically continues
a dressed diagrammatic series. This function originates
from an action that depends on an auxiliary parame-
ter ξ. When the action is a polynomial in ξ, the situ-
ation reduces to the one of a bare expansion. Within
this category, a particular case well suited for numerical
implementation is the semi-bold scheme for which the
bare propagator is taken from the truncated bold self-
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consistent equation. For the fully bold scheme, we con-
struct an appropriate auxiliary action, but only under
a certain condition. If this condition is verified numeri-
cally, it is safe to use the fully bold scheme. If not, the
semi-bold scheme remains applicable.
Furthermore we have demonstrated the generality of

the shifted-action construction by treating the case of
a dressed pair propagator and of a screened long-range
interaction. Further extensions left for future work are
dressing of three-point vertices, as well as justifying re-
summation of divergent diagrammatic series by consid-

ering non disc-shaped analyticity domains D.
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