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Organic-inorganic halide CH3NH3PbI3 solar cells have attracted enormous attention in recent
years due to their remarkable power conversion efficiency. When inversion symmetry is broken,
these materials should exhibit interesting spin-dependent properties as well, owing to their strong
spin-orbit coupling. In this work, we consider the spin-dependent optical response of CH3NH3PbI3.
We first use density functional theory to compute the ballistic spin current generated by absorption
of unpolarized light. We then consider diffusive transport of photogenerated charge and spin for
a thin CH3NH3PbI3 layer with a passivated surface and an Ohmic, non-selective contact. The
spin density and spin current are evaluated by solving the drift-diffusion equations for a simplified
3-dimensional Rashba model of the electronic structure of the valence and conduction bands. We
provide analytic expressions for the photon flux required to induce measurable spin densities, and
propose that these spin densities can provide useful information about the role of grain boundaries
in the photovoltaic behavior of these materials. We also discuss the prospects for measuring the
optically generated spin current with the inverse spin Hall effect.

I. INTRODUCTION

Organic-inorganic halide CH3NH3PbI3 solar cells have
attracted enormous attention in recent years due to their
remarkable power conversion efficiency, currently stand-
ing at 20.1 % [1]. Since being first employed as pho-
tovoltaic absorbers in 2009 with an efficiency of 3.8 %
[2], the pace of development of this material is unprece-
dented. The high efficiency is attributed to the optimal
bandgap (≈ 1.5 eV), high absorption coefficient, and ef-
ficient charge transport properties. Long charge carrier
diffusion lengths have been observed: over 1 µm for a
solution-processed mixed perovskite CH3NH3PbI3−xClx
[3, 4], and over 10 µm in samples with improved crys-
talline quality [5]. There are several open questions re-
garding the photovoltaic properties of these materials,
such as the reason for the long carrier lifetime in highly
disordered samples [4, 6], the role of chlorine doping in
the device performance [7, 8], and the origin of hysteresis
in the current-voltage curve under illumination [9–11].

A rather different and, so far, less explored aspect of
these perovskites is their potential use in spintronics ap-
plications [12]. Because of the heavy Pb atom, spin-orbit
coupling plays an important role in the electronic struc-
ture [13, 14]. Additionally, first-principles calculations
indicate that a non-centrosymmetric crystal structure
which hosts ferroelectric order is stable [15–17]. Mea-
surements have revealed ferroelectric domain formation
[18, 19], although the presence of ferroelectricity in these
materials is still under debate [11, 20]. We also note that
even in bulk centrosymmetric materials, interfaces, sur-
faces, and planar defects such as grain boundaries locally
break inversion symmetry. The combination of strong
spin-orbit coupling and breaking of inversion symmetry
immediately leads to interesting spin-dependent prop-
erties. Structural (bulk) inversion symmetry breaking
leads to Rashba [21] (Dresselhaus [22]) spin-orbit cou-
pling; both cases result in a momentum-dependent effec-

tive magnetic field. The Rashba model has been shown to
describe the electronic structure of non-centrosymmetric
CH3NH3PbI3 near the bandgap [23]. Recent work uti-
lizes these effects to propose an implementation of the
the Datta-Das spin field-effect transistor with perovskite
materials [24, 25].

Since CH3NH3PbI3 exhibits both exceptional pho-
tovoltaic characteristics and useful spin properties, it
should be an ideal material to study the optical exci-
tation of spintronic effects. In this work we consider
optical excitation of spin currents and spin densities in
CH3NH3PbI3 by unpolarized light. We consider the gen-
eration of ballistic pure spin current, which is associated
with the non-equilibrium distribution of photo-excited
electron-hole pairs before they undergo momentum re-
laxation. The optical generation of ballistic spin current
has been previously studied theoretically [26–28], and the
induced spin densities have been measured in a variety of
samples [29–31]. We also consider the spin current and
spin densities that result from the diffusion of photo-
excited carriers. The influence of spin-orbit coupling
on diffusive carrier motion has been extensively studied
in the context of 2-d Rashba systems [32–34]. In this
work we present a unified description of both the ballistic
and diffusive spin-dependent response of CH3NH3PbI3.
Our focus on this material is motivated by its excep-
tional properties, but we employ a generic Rashba model
for our analysis so that the results apply to any three-
dimensional Rashba semiconductor, such as GeTe [35, 36]
and BiTeI [37].

The spin-dependent responses of interest in this work
naturally arise from a Rashba model. An intuitive ac-
count of these can be formulated based on the spin tex-
ture of the conduction bands, as shown in Fig. 1(c).
States with momentum +kx and −kx have spins aligned
in opposite directions. If both states are occupied, there
is a vanishing spin density, but a nonzero spin current
(since the spin current is the product of spin and ve-
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locity). A photoexcited distribution of electrons in the
conduction band therefore leads to a nonequilibrium spin
current. If on the other hand there is an imbalance in the
occupation of states at +kx and −kx (which corresponds
to a current-carrying distribution), there is also an im-
balance in spin, resulting in a spin accumulation in the
negative y-direction (the Edelstein effect [38]). The con-
tribution of spin from the outer and inner Fermi circles
partially cancel, but a nonzero net spin remains which is
proportional to the charge current. The results we de-
rive can be understood roughly in terms of this simple
picture.
The paper is organized as follows: In Sec. II we com-

pute the ballistic spin current generation using density
functional theory. We find that the steady state opti-
cally excited ballistic spin current is proportional to the
Rashba spin-orbit parameter, the optical absorption co-
efficient, and the momentum scattering time. In Sec. III
we solve the spin-dependent diffusion equations for a thin
film CH3NH3PbI3 layer with a passivated surface and an
ideal front contact. We provide analytic expressions for
the spin current and spin density, demonstrating how
these quantities scale with material parameters. Finally,
in Sec. IV we discuss the magnitude of the optically ex-
cited spin densities and spin currents, and provide esti-
mates for the photon flux required to induce measurable
spin densities and spin currents. We discuss the possible
uses of spintronic effects in these materials, including us-
ing the optically induced spin density to probe the role
of grain boundaries in the photovoltaic behavior of these
materials.

II. ELECTRONIC STRUCTURE AND

BALLISTIC SPIN CURRENT

In this section we present first-principles results of the
ballistic spin current generated by optical absorption in
CH3NH3PbI3. We begin by discussing the electronic
structure of this material, and demonstrating the applica-
bility of the Rashba model for the conduction and valence
bands. We then evaluate the spin current generation rate
response function, and compare detailed first-principles
results with a simple estimate of this response function
provided by the Rashba model.
We perform first-principles density functional theory

calculations using local density approximation (LDA) in
the form of norm-conserving pseudopotentials as imple-
mented in Quantum-ESPRESSO [39]. We use an energy
cutoff of 80 Ry for the plane wave basis expansion; for
the structural relaxation, a 4 × 4 × 3 grid for the Bril-
louin zone sampling was employed; all atoms in the unit
cell were allowed to move until the force on each is less
than 0.5 eV/nm. The lattice constants are calculated to
be a = 0.875 nm and c = 1.203 nm, in good agreement
with the experimental measurements (a = 0.880 nm and
c = 1.269 nm) [40]. We investigate the tetragonal phase
of space group I4cm. The Pb atoms are displaced along

the +z-direction relative to the octahedral center. This
lattice structure is non-centrosymmetric and exhibits fer-
roelectricity. Using the Berry phase approach, we find an
electrical polarization of 10.7 µC/cm2. The band struc-
ture along high symmetry directions is shown in Fig. 1(a).
To test the influence of the ferroelectric order on the re-
sults, we’ve also studied a crystal with a strongly reduced
ferroelectric polarization of 0.31 µC/cm2.
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FIG. 1: (a) Comparison between Wannier interpolated (solid
line) and Quantum-ESPRESSO (dots) bands. (b) Zoom in of
the conduction bands near the Γ point, along with fitting to
the Rashba Hamiltonian. The fitting parameters are m∗

c =
0.11 me, αc = −0.22 eV · nm. For the valence band (not
shown), the fitting parameters are: m∗

v = 0.14 me, αv =
0.15 eV · nm. (c) Cartoon of constant energy circles for kz =
0, showing the k-dependent spin texture of the conduction
bands. A current-carrying distribution results in more states
occupied in the kx > 0 half of the plane (denoted by a thicker
line), and a net spin accumulation in the -y-direction.

The combination of strong spin-orbit coupling (derived
from the Pb atom) together with bulk inversion asymme-
try leads to conduction and valence band states which
are well described by a 3-dimensional Rashba model [12].
The effective Hamiltonian is:

Heff
c,v =

h̄2k2

2m∗
c,v

+ αc,v [σ · (k× z)] , (1)

where z is the broken symmetry direction, k is the three-
dimensional Bloch wave vector, σ is the vector of Pauli
spin matrices, m∗ is the effective mass, α parameter-
izes the Rashba spin-orbit coupling, and the c, v sub-
scripts correspond to conduction and valence band. The
Rashba parameter αc,v depends on the degree of inver-
sion symmetry breaking, and vanishes for inversion sym-
metric systems. The Rashba spin-orbit term acts as a
k-dependent effective magnetic field along the direction
perpendicular to k and z. Fig. 1(b) shows the fitting of
the conduction band structure to the Rashba Hamilto-
nian. We’ll refer to this effective model to gain an in-
tuitive understanding of the ballistic spin current magni-
tude, and as a starting point for the description of charge
and spin diffusion. All results are presented in terms of
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αc,v and can therefore be applied to cases where inversion
symmetry is more weakly broken (for example, in cubic
systems with aligned CH3NH3 dipoles [41, 42], or in bulk
inversion symmetric systems near interfaces).
We next compute the optically generated spin current.

We consider the response of the system to a monochro-
matic electric field of frequency ω

E(t) = E(ω)e−iωt +E
∗(ω)eiωt (2)

and employ the symmetrized spin current operator de-
fined as Q̂ij = 1

2{v̂i, ŝj} [43, 44], where v̂i is the i-

component of the velocity operator, and ŝj is the j-
component of the spin operator. The spin current gen-
eration rate is derived by solving semiconductor optical
Bloch equations perturbatively to first order in the field
intensity [45], and is given by:

Q̇ij = µijlm(ω)El∗(ω)Em(ω), (3)

where

µijlm(ω) =
2πe2

h̄2ω2

1

V

∑

k

∑

cv

(Qij
c −Qij

v )

× vl∗cv(k)v
m
cv(k)δ[ωcv(k)− ω]

(4)

In Eq. 4, vmcv (k) = 〈ψc (k) |v̂m|ψv (k)〉 is the velocity
operator matrix element between conduction and va-
lence band states, Qij

c(v) = 〈ψc(v) (k) |Q̂ij |ψc(v) (k)〉, and
ωcv(k) = (Ec (k)− Ev (k)) /h̄. Roman superscripts in-
dicate Cartesian components and summation over re-
peated indices is implied. To evaluate Eq. 4, we employed
Wannier-function techniques to calculate the band struc-
ture and momentum matrix elements on a very fine grid
in momentum space [46–48]. Fig. 1(a) shows the match-
ing of the plane wave and Wannier function band struc-
tures. We interpolate Eq. 4 to evaluate the pure spin
current on a fine grid of 100× 100× 75 k-points. The ac-
curacy of this method has been verified on a coarse grid
by comparing the pure spin current responses calculated
with the Wannier interpolation technique and plane wave
basis.
In Fig. 2 we show the µxyyy component of spin cur-

rent response pseudotensor, corresponding to the spin
current moving along the x-direction with spin oriented
along the y-direction under the illumination of light lin-
early polarized along y-direction. We find that the spin
current response of electrons and holes has the same
sign. This is the result of the opposing sign of the ef-
fective Rashba parameter in the valence and conduction
bands. We note that other works have identified the sig-
nificance of the relative sign of the conduction and va-
lence band Rashba parameters to the optical response
[16]. Figs. 2(b) and (d) show that there is nearly an iden-
tical spin current response for light polarized along the x
and y-directions. This is due to the approximate equiva-
lence of x and y-directions in the crystal (recall z is the

symmetry-breaking direction). This shows that unpolar-
ized light can effectively generate ballistic spin current in
this material.
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FIG. 2: (a) The total spin current response versus photon
energy (subtracted by the bandgap energy Eg), along with
the separate electron and hole contributions (b) the total spin
current response for electron velocity in the x-direction, and
light polarized in the x-direction. (c) the same as (b), but
with light polarized in the y-direction. (d) the total spin
current response for electron velocity in the y-direction, and
light polarized in the y-direction.

An order of magnitude estimate of µ is provided by
noticing the similarity of Eq. 4 to the imaginary part
of the dielectric response. Considering linearly polarized
light (along the y-direction), and taking the spin current

expectation value to be independent of k, (Qij

c(v) (k) =

Q̄ij), Eq. 3 can be written

Q̇ij (ω) ≈ Q̄ijβ (ω)φ0 ≈ (αc − αv)β (ω)φ0 (5)

where β (ω) is the absorption coefficient, and φ0 is the
incident photon flux (φ0 = ǫcE2/ (2h̄ω)). The second
approximate relation shown in Eq. 5 follows from evalu-
ating the spin current in the Rashba model, which scales
as α. From the ground state electronic structure, we
find αc − αv = −0.37 eV · nm and β = (230 nm)

−1
,

leading to an estimated spin current response µ value
of −8.4 × 10−6 J/

(

V2 · s
)

. The first-principles result
has a different sign, which is traced back to larger
dipole transition matrix elements for states in the inner
Fermi circle relative to the outer Fermi circle (see Fig.
1(c)). The magnitude of the simple estimate is about
10 times smaller found in the first-principles calculation
(see Fig. 2). The discrepancy in magnitude is mostly at-
tributed to the approximation for the spin current value,
but Eq. 5 provides a crude estimate.
We next discuss the role of ferroelectric order in the

spin current response function. To study this, we calcu-
late the spin current response for a lattice structure with
a computed ferroelectric polarization of 0.31 µC/cm2,
or about 30 times smaller than the previous case. The
primary difference between the two crystal structures is
that in the previous, highly polarized case, the CH3NH3
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Purely Ballistic Purely Diffusive Diff. with only ∇Qball source

(Γsc = 0, µ̃ 6= 0, βL ≪ 1) (Γsc 6= 0, µ̃ = 0, βL ≪ 1) (Γsc = 0, µ̃ 6= 0, βL > 1)

Spin current:
Qyx

φ0

αβτk
h̄

(≈ 9× 10−4) βΓsc

√

τs
D

Ld tanh

(

L

Ld

)

(≈ 0.04)
αβ2τk

√
Dτs

h̄
(≈ 4.4× 10−5)

Spin Density:
Sx

φ0βτn
0

Γscτs
Ld

(≈ 2.6× 10−4)
αβτsτk
h̄τn

(≈ 2.3× 10−7)

TABLE I: Scaling of the photogenerated spin current and spin density which arises from: the optically generated ballistic
spin current (first column), the diffusion of optically generated carriers (second column), and the diffusion of spins created
from ballistic spin current gradient (third column). The spin current is scaled by the photon flux, while the spin density is
scaled by the generation rate density times the carrier lifetime. The Rashba parameter α should be replaced with αc(v) to
evaluate the electron (hole) contribution. The approximate value of each expression (for electron plus hole contributions) is
denoted in parenthesis, for material parameter values of: τk = 1× 10−15 s, αc = −0.02 eV · nm, αv = 0.06 eV · nm, τn = 10 ns,
D = 0.625 cm2/s, β = (230 nm)−1. Derived parameter values are Γe

sc = 8 m/s, Γh
sc = −152 m/s, τ e

s = 7×10−12 s, τh
s = 10−12 s,

Ld = 790 nm. Recall Γsc ∝ α3τ 2
k , τs ∝

(

α2τk
)

−1
. Rashba parameters are chosen such that the resulting spin lifetimes match

those measured in Ref. [49]

ions are mostly aligned in the z-direction, whereas in the
weakly polarized crystal, the ions are randomly oriented.
For the weakly polarized material, the maximum spin
current response is 3.4× 10−7 J/

(

V2 · s
)

, a bit less than
half of the value found for the highly polarized material
(see Fig. 2(a)). This shows that the spin current response
is not proportional to the ferroelectric polarization. On
the other hand, the value of αc−αv for the weakly polar-
ized material is −0.19 eV · nm, approximately half that of
the highly polarized material. Thus the spin current re-
sponse scales with the magnitude of the effective Rashba
parameter, further validating of Eq. 5. In summary, the
spin current response is determined by α, and α is de-
termined by the degree of inversion symmetry breaking,
which is not necessarily correlated with the ferroelectric
polarization value.

As described in Ref. 30, momentum scattering destroys
the ballistic current generation computed with Eq. 4.
This is due to the misalignment of the spin and the effec-
tive magnetic field after a momentum-changing scatter-
ing event. The misalignment results in the spin precessing

around the new effective magnetic field, and after several
scatterings, there is a partial decoupling of electron mo-
mentum and spin. Here we consider the steady state bal-
listic spin current, which is given by Qij = Q̇ijτk, where
τk is the momentum relaxation time. We assume that τk
is shorter than all other time scales (generally we take
τk ≈ 1 fs), so the ballistic current is equal to its steady
state value while the sample is under illumination, and
vanishes otherwise. In Table I, we show the scaling of the
ballistic current (scaled by φ0) based on the Rashba ap-
proximation described in the previous paragraph. Based
on material parameters of CH3NH3PbI3 given in the cap-
tion of Table I, we estimate a spin current conversion “ef-
ficiency” (or spin flux per photon flux) of approximately
9 × 10−4. In Sec. IV, we discuss the magnitude of this
spin current in terms of measurements and spintronics
applications.

III. DIFFUSIVE SPIN CURRENT

We next consider the diffusive spin response to optical
excitation, which applies for time scales longer than the
momentum relaxation time. We utilize the model devel-
oped in Ref. 32, which describes the diffusion of carriers
subject to the Rashba Hamiltonian of Eq. 1. As carri-
ers diffuse from one impurity to another in momentum-
changing scattering events, their spin precesses around
the instantaneous effective magnetic field (which is per-
pendicular to z and the momentum k). A carrier’s real
space random walk therefore leads to a random walk
in spin space, and ultimately results in Dyakonov-Perel
spin relaxation [50]. Additionally, the Rashba interaction
leads to spin-charge coupling, whereby a diffusive charge
current induces spin accumulation - a diffusive version of
the Edelstein effect [38]. Gradients in this spin accumu-
lation subsequently result in diffusive spin current, which
is distinct from the ballistic spin current calculated in the
previous section.
We consider the limit of kF τkα/h̄ ≪ 1. This cor-

responds to a small spin precession between scattering
events. As discussed in Ref. 32, for diffusion along
the y-direction, the charge and x-component of spin
decouple from the y and z-components of spin. We
therefore restrict our attention to the charge and x-
component of spin Sx. An incident monochromatic
photon flux φ0 and absorption coefficient β lead to
a position-dependent electron-hole pair generation rate
density given by φ0β exp (−βy). The steady state diffu-
sion equations for photogenerated electron number den-
sity n and number density of spin Sx are then given as:

−D∂
2n

∂y2
+

n

τn
+ Γsc

∂Sx

∂y
= φ0β exp (−βy) (6)

−D∂
2Sx

∂y2
+
Sx

τs
+ Γsc

∂n

∂y
=

∂Qyx
ball

∂y
(7)

where τn is the carrier lifetime (or electron-hole pair re-
combination time), D is the diffusivity, τs is the spin
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lifetime, and Γsc parameterizes the charge-spin conver-
sion, which results from the Rashba interaction. In
terms of microscopic parameters, D = v2F τk/3, τs =

3h̄2/
(

2α2k2F τk
)

, and Γsc = − (7π/32)α3k2F τ
2
k/h̄

3, where
vF and kF are the Fermi velocity and wave vector, re-
spectively. Note that the numerical prefactors in these
expressions differ from those in Ref. 32 due to the sys-
tem dimensionality and free electron dispersion along the
z-direction [51].
The source term on the right hand side of Eq. 7 is the

divergence of the ballistic spin current we evaluated in
the previous section. We’ve added this term “by hand”,
motivated by the general form of a continuity equation.
This procedure is not generally valid because spin-orbit
coupling leads to non-conservation of spin. Including the
source term in this way amounts to assuming that the
divergence of the ballistic spin current is transferred en-
tirely to spin density, and none of its angular momentum
is transferred to the lattice [52]. Our analysis therefore
represents an upper bound on the conversion of the bal-
listic spin current to spin accumulation. We use the esti-
mate of the ballistic spin current provided in the previous
section: Qyx

ball = αβτkφ0µ̃ exp (−βy), where µ̃ is a dimen-
sionless parameter we introduce to artificially tune the
strength of the ballistic spin current.
The system geometry is shown in Fig. 3(a). Diffu-

sion occurs along the y-direction, and we assume a non-
selective, Ohmic contact at y = 0, and a perfectly pas-
sivated surface at y = L. The bulk symmetry breaking
direction of the material is the z-direction.
As discussed in the previous section, both conduc-

tion and valence bands are well described by the Rashba
model. We present the analysis for the electrons here;
the behavior of the holes is similar, and is also described
by equations of the form of Eqs. 6-7. The relative sign
for the Rashba parameter for electrons and holes plays
a key role in determining the spin accumulation. In this
case, since electrons and holes have opposite signs of the
Rashba parameter, electrons and holes diffusing in the
same direction lead to a spin accumulation in the same
direction.
The boundary conditions and general solution to Eqs.

6-7 are given in the appendix. Analytical expressions are
available in the limit of βL ≪ 1 (uniform generation),
τs ≪ τn, and vanishing ballistic spin current (µ̃ = 0).
The diffusive electron and spin number currents collected
at y = 0 take the form:

Jc
φ0

= βLd tanh

(

L

Ld

)

(8)

Qyx
diff

φ0
=

Γsc
√

D/τs
βLd tanh

(

L

Ld

)

(9)

where Ld =
√
Dτn is the diffusion length.

The electron carrier and spin densities for this case
are shown in Fig. 3(b) (both carrier and spin are given in
number densities, scaled by φ0βτn). For the spatially uni-
form generation rate density considered here, the diffu-

FIG. 3: (a) shows the system geometry. The gradient in
shading of the sample indicates the length scale of generation
electron-hole pair generation, β−1. The blue arrow on the
contact in the z-direction denotes the direction of symmetry
breaking in the perovskite, and the direction of the current
induced by the inverse spin Hall effect. (b) is the charge and
spin density for βL ≪ 1, µ̃ = 0. Densities are scaled by
φ0βτn. (c) shows the same for βL = 10. (d) shows the charge
and spin density for an unrealistically large value of µ̃ (100
times larger than the expected value), as an illustration of
the effect of a spatially varying ballistic spin current on the
diffusion.

sive electron current varies linearly throughout the device
thickness. This results in a spin accumulation which in-
creases linearly from the back contact. This spin accumu-
lation is a manifestation of the diffusive Edelstein effect
(note that the spin is oriented along the −x̂-direction).
The collecting contact at y = 0 absorbs the nonequilib-
rium spin. The sharp gradient of the spin density near
y = 0 determines the collected spin current; the length
scale of this steep drop is the spin diffusion length

√
Dτs

(≈ 2 nm). The scaling of the collected diffusive spin cur-
rent and nonequilibrium spin density is shown in the sec-
ond column of Table I. For the parameters given in the
caption, we find a much larger conversion efficiency for
the diffusive spin current compared to the ballistic spin
current. (We emphasize that the magnitude of the diffu-
sive spin current depends on the geometry and boundary
conditions.)

We next consider a non-uniform generation rate den-
sity with βL = 10 and a vanishing ballistic spin current
generation (µ̃ = 0). The result shown in Fig. 3(c) shows
that, as expected, the charge current is developed near
the front contact where the absorption occurs. The rapid
variation in n near the contact results in a more rapid in-
crease of the nonequilibrium spin. The ratio of the spin
current to electron current is nevertheless similar to the
uniform generation case.

Finally, we add the ballistic spin current generation,
µ̃ 6= 0. For our CH3NH3PbI3 parameters, we find the
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inclusion of the ballistic spin current has a negligible im-
pact on the diffusive system response. This is shown in
the third column of Table I. The expressions for spin cur-
rent and spin density given in the table are derived from
solving Eq. 7, with Γsc = 0 and µ̃ 6= 0. They therefore
capture only the contribution of the ∂Qyx

ball/∂y source
term to the diffusive spin behavior. It’s shown that this
contribution is quite small compared to the purely dif-
fusive contributions. In Fig. 3(d) we artificially increase
the ballistic spin current magnitude by a factor of 100
over its estimated value in order to observe its effect. We
find that there’s still negligible effect on the charge den-
sity, while the spin density and spin current increase in
magnitude by about a factor of 100.

IV. DISCUSSION

An obvious question is whether the spin currents and
densities computed in the last sections are significant
enough to be measured, or even used for practical ap-
plications. We first consider the optical measurement of
the non-equilibrium spin density as a means to probe
the diffusive charge current distribution, and discuss the
usefulness of this information for polycrystalline photo-
voltaics. We next consider measuring the optically gen-
erated spin current via the inverse spin Hall effect of the
contact. In both cases, a primary challenge is to induce
sufficiently large spin responses. We provide an estimate
of the required photon fluxes in terms of microscopic ma-
terial parameters.
Before proceeding we first comment on the magni-

tude of the Rashba parameters obtained from density
functional theory. The diffusive spin treatment of the
last section relates the Dyakonov-Perel spin relaxation
time to the Rashba parameters. The Rashba parame-
ters from density functional theory result in a spin re-
laxation time for electrons (holes) which is 90 (6) times
smaller than that measured in Ref. [49], indicating that
these Rashba parameter are unrealistically large. Reduc-
ing αc and αh by a factor of approximately 9.4 and 2.4,
respectively (corresponding to αc = −0.02 eV · nm, αv =
0.06 eV · nm) leads to spin lifetimes that agree with ex-
periment. In the discussion below, we present numerical
estimates related to the observation of spintronic effects
using these reduced values of Rashba parameters.

A. Spin densities

We first consider the magnitude of the induced spin
density. Kerr measurements on the nonequilibrium spin
density induced by the spin Hall effect in GaAs are able to
detect spin densities on the order of 1013 h̄ cm−3 [53, 54].
The scaling of the spin density induced by diffusion in
a 3-dimensional Rashba material is given in the second
row of Table I. For the parameters given in the cap-
tion, a measurable diffusive spin density is attained for a

photon flux φ0 ≈ 9× 1023 m−2 s−1. This flux is approx-
imately 400 times greater than the incident solar flux of
photons with energy greater than 1.5 eV (the bandgap
of CH3NH3PbI3). The optically generated spin density
is proportional to ∇n; therefore measuring the spatial
distribution of the spin accumulation enables the deter-
mination of the distribution of charge currents in a pho-
tovoltaic device. We discuss the significance of this in
the following.

FIG. 4: Depiction of system geometry used for the detection
of spatially nonuniform charge diffusion due to the presence of
grain boundaries (shown as dashed line). The perovskite ab-
sorber is taken to be p-type and sandwiched between selective
contacts. An electrostatic potential attracts minority carriers
(electrons) to the grain boundary core, where they diffuse to
the electron collecting contact. In the schematic, the elec-
tron velocity is denoted with straight black arrows, and the
resulting spin density is denoted with thick blue arrows. The
detecting photons are used to measure the spin density on
the x− y plane with the magneto-optical Kerr effect, and the
crystal symmetry breaking direction of the grains must both
be in the z-direction. φ0 represents the photon flux which
excites electron-hole pairs in the absorber.

Many perovskite photovoltaics are polycrystalline; the
material is permeated by grain boundaries, which are
generally detrimental to charge carrier collection and
photovoltaic performance due to their high defect den-
sity. (In this discussion we assume the grain boundaries
are oriented perpendicular to the charge collecting con-
tacts, see Fig. 4.) The high carrier collection which per-
sists in spite of grain boundaries raises the prospect that
grain boundaries could in fact play a beneficial role in
photovoltaic performance [55, 56]. This echoes similar
scenarios put forth to explain the high photovoltaic con-
version efficiency of other polycrystalline materials such
as CdTe and copper indium gallium selenide (CIGS) [57–
62]. Although the overall role of grain boundaries in these
materials remains an open question [55, 63, 64], it’s gen-
erally accepted that charged grain boundaries which in-
duce band bending sufficient to cause type inversion at
the grain boundary core act as an efficient charge col-
lectors rather than as recombination centers [64] (under
short circuit conditions). In this case, the electrostatic
field near a grain boundary separates electrons and holes,
and the carrier which is attracted to the defective grain
boundary core avoids recombination because of the type
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inversion which occurs there. There is substantial minor-
ity carrier diffusion toward grain boundaries, and along

the grain boundary cores towards the contacts [65]. The
diffusion induces spin accumulation with spin direction
perpendicular to the diffusion current direction. Obtain-
ing the spatial distribution of charge diffusion via the
spin density offers a route to testing this generally ac-
cepted picture of efficient polycrystalline photovoltaics.
We emphasize that this proposal requires the grains’ crys-
tal symmetry breaking direction is perpendicular to the
sample surface (see Fig. 4).

B. Spin currents

We next consider the magnitude of the optically gen-
erated spin current. Spin currents are measured only
indirectly. One way to detect spin currents is to observe
their influence on ferromagnetic dynamics. A dramatic
example is current-induced magnetic switching: a suffi-
ciently large flux of spin current into a thin ferromag-
netic layer induces irreversible switching between easy
axis orientations through an effect known as spin trans-
fer torque [66–68]. To induce magnetic switching, the
spin flux must exceed the magnetic damping rate per
area. For typical ferromagnet thin films, the required
spin flux (≈ 1029 h̄ m−2 s−1 for a 1 nm film thickness)
likely exceeds that which can be obtained through opti-
cal excitation of spin current. This is due to higher order
recombination processes (such as radiative and Auger re-
combination) which occur for large photogenerated car-
rier densities (typically greater than 1018 cm−3 [69]).
These processes dramatically reduce carrier lifetimes and
suppress the net generation rate for the large photon
fluxes needed for magnetic switching. In colloquial terms,
current-induced magnetic switching can push metals to
their conduction limits, and is therefore likely untenable
for optically excited semiconductors.
An alternative route to detecting spin currents is

through the inverse spin Hall effect. In this case a spin
current with real space motion along the v̂-direction and
spin along the ŝ-direction induces a charge current along
the v̂ × ŝ direction. This effect is parameterized by the
spin Hall angle θsh: Jc = θshJs (as before, we take Jc and
Js to be number current densities). Heavy metals like Pt
exhibit relatively large spin Hall values, on the order of
0.05 [70–72]. A nonzero spin Hall angle in the collecting
contact of Fig. 3(a) results in an induced charge current
in the contact along the z-direction.
To estimate the size of this effect, it’s important to

account for the attenuation of the spin current which
occurs at the perovskite-contact interface. This attenu-
ation, known as spin memory loss, results from interface
disorder (present over an effective interface thickness tI)
and the reduced spin diffusion length at the interface (de-
noted ℓsfI ) due to the disorder [73]. Spin diffusion models
with spin memory loss yield the following expression for
the 2-dimensional charge current Jc induced in the con-

tact due to the inverse spin Hall effect [72]:

Jc = θshQ
yxℓsfN

(

rsI
rsI cosh (δ) + rsN sinh (δ)

)

(10)

where δ = tI/ℓ
sf
I , ℓ

sf
N is the spin diffusion length in the

contact, rsI = rb/δ, with rb the interfacial resistance,
and rsN = ρ× ℓsfN , with ρ the bulk resistivity of the con-
tact. The term in parenthesis in Eq. 10 represents the
suppression of transmitted spin current due to spin mem-
ory loss. We estimate the interfacial resistance via the

Sharvin relation: rb =
(

2e2/h× πk2F
)−1

, where kF is de-
termined by the photogenerated carrier density. We take
a photon flux of φ0 = 1025 m−2 · s−1, ρ = 10−7 Ω ·m,
and ℓsfN = 3 nm. The value of δ depends on the quality
of the interface, which is difficult to anticipate. Taking
δ = 2, we find a spin memory loss attenuation of 0.25
and a resultant 2-d current density of 3×10−5 A/m. For
a contact layer thickness of 10 nm and sample length of
4 mm in the z-direction, this corresponds to an induced
voltage of approximately 0.1 µV. We reiterate that the
symmetry breaking direction of the crystal must be uni-
form over the sample length. This should be possible
given recently developed growth techniques which yield
millimeter-sized single crystal grains [5, 74].

V. SUMMARY

In summary, we report on the spin-dependent response
of the organic-inorganic hybrid perovskite CH3NH3PbI3
to unpolarized light. We focused on the effect of Rashba
spin-orbit coupling in the electronic structure, which
leads to the generation of ballistic spin currents, and to
the diffusive generation and transport of spin. By consid-
ering a simple geometry, we provide analytic expressions
which show the scaling of the spin-dependent response
with material parameters, and can provide estimates for
the photon flux required to generate measurable and po-
tentially useful spin currents and densities. We propose
that the spin density can be used to infer the charge
current distribution within the material, which would
elucidate the role of grain boundaries in charge trans-
port. It is worth noting that the CH3NH3PbI3 we in-
vestigated herein is just one of the large family of the
organic-inorganic hybrid materials ABX3 (A: CH3NH3,
HC(NH2)2; B: Pb, Sn; X: Cl, Br, I). It is expected that
other hybrid perovskites can also exhibit the spin re-
sponses we considered here, depending on the spin-orbit
coupling and the degree of inversion symmetry breaking.
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Appendix: Solution to Charge and Spin Diffusion

Equations

Here we discuss the solution to the charge and spin
diffusion equations. As described in the main text, we

assume that the gradient of the ballistic spin current is of
the form: µ̃αβ2τkφ0 exp (−βy). The coupled charge-spin
diffusion equations in 1 dimension (along the y-direction)
are then:

−D∂
2n

∂y2
+

n

τn
+ Γsc

∂Sx

∂y
= φ0β exp (−βy) (A.1)

−D∂
2Sx

∂y2
+
Sx

τs
+ Γsc

∂n

∂y
= −µ̃αβ2τkφ0 exp (−βy) (A.2)

The general solution to Eqs. (A.1-A.2) is:

n (y) =

5
∑

j=1

cjnj exp (ikjy) (A.3)

s (y) =

5
∑

j=1

cjsj exp (ikjy) , (A.4)

where the wave vectors (decay constants) are given by

k1,2 = ±
√

−1− λ2 − Γ2 − f

2L2
d

(A.5)

k3,4 = ±
√

−1− λ2 − Γ2 + f

2L2
d

(A.6)

k5 = iβ, (A.7)

where λ2 = τn/τs, Γ = Γsc

√

τn/D, Ld =
√
Dτn. The charge and spin density basis functions are given by:

n1,2 = ±
φ0βτn

(

1− λ2 + Γ2 + f ∓ αµ̃βτkΓ
√

2 (−1− λ2 − Γ2 − f)
)

id+
(A.8)

n3,4 = ±
φ0βτn

(

−1 + λ2 − Γ2 + f ± iαµ̃βτkΓ
√

2 (−1− λ2 − Γ2 + f)
)

id−
(A.9)

s1,2 = −
φ0βτn

(

Γ
√

2 (−1− λ2 − Γ2 − f)± iαµ̃βτk
(

−1 + λ2 + Γ2 + f
)

)

id+
(A.10)

s3,4 = +
φ0βτn

(

Γ
√

2 (−1− λ2 − Γ2 + f)± iαµ̃βτk
(

−1 + λ2 + Γ2 − f
)

)

id−
(A.11)

n5 =
iφ0βτn

(

λ2 − β2 (1 + αµ̃Γ)
)

d5
(A.12)

s5 =
iφ0β

2τn
(

Γ + αµ̃
(

β2 − 1
))

d5
(A.13)
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written in terms of the following defined quantities:

f =

√

−4λ2 + (1 + λ2 + Γ2)2 (A.14)

d± = f
√

8 (−1− λ2 − Γ2 ∓ f) (A.15)

d5 = (λ− β) (λ+ β)
(

1− β2
)

− β2Γ2 (A.16)

The boundary conditions for the problem described in the main text are given below:

∂n(0)

∂y
= 0 (A.17)

∂Sx(0)

∂y
= 0 (A.18)

n(L) = 0 (A.19)

Sx(L) = 0 (A.20)

These 4 equations fix the coefficients cj of the general solution.
For realistic values of the parameters, the spin lifetime is very short compared to the charge lifetime, and the

resulting spin densities are small compared to the charge densities. For this reason, Eq. A.1 can be easily solved
by neglecting the spin source term. The solution for the spin density is then found by solving Eq. A.2, using the
approximate charge density source term.
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