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Öyong@ameslab.gov Epitaxial growth of Ag on Fe(100)  and post-deposition relaxation have been studied in several experiments. We provide a first-principles density functional theory analysis of key adatom interaction energies and diffusion barriers controlling growth and relaxation kinetics for the submonolayer regime, as these have not been assessed previously. A cluster expansion approach is used to obtain an extensive set of conventional lateral interactions between adatoms on four-fold hollow adsorption sites. We find robust oscillatory decay of pair interactions with increasing separation, and of trio interactions with increasing perimeter length. First and second nearest-neighbor pair interactions, as well as compact linear and bent trio interactions, dominate. The adatom terrace diffusion barrier is estimated to be ୢܧ ൎ 0.39 eV. We also provide a limited analysis of unconventional interactions for which one adatom is at the bridge-site transition state for hopping and one or more others are at four-fold hollow sites. Energy barriers for diffusion along island edges can be determined with the aid of both conventional and unconventional interactions. PACS Number(s): 68.35.Md, 68.43.Jk, 68.55.A-, 68.35.bd 

I. INTRODUCTION Epitaxial thin films of Ag on Fe(100) are of particular interest for several reasons. First, there is a near perfect lattice registry for fcc Ag(100) on bcc Fe(100) with a mismatch of less than 1%. This feature ensures the growth of epitaxial films with an unambiguous well-defined interface, i.e., the first adlayer of Ag is located at four-fold hollow (4fh) sites on Fe(100). Knowledge of the interface structure together with the perfect defect-free fcc (100) epitaxial structure of the Ag thin films on Fe(100) has allowed predictive first-principles density functional theory (DFT) analyses of the energetics for the supported film by Chou and coworkers [1,2]. This includes precise determination of the variation of surface energy with increasing film thickness. Second, photoemission spectroscopy studies performed by Chiang and coworkers demonstrated electron confinement in the Ag film and associated quantum well states (QWS) [3–5] with unusually weak electron-phonon coupling [6]. Recently, scanning tunneling microscopy (STM) has also been used to probe the QWS as a function of film thickness [7]. Third, the presence of QWS introduces a strong thickness-dependence of the stability of flat Ag films [8]. This behavior is consistent with the surface energy analysis of Chou et al. [1,2] Low-energy electron microscopy studies by 
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Altman and coworkers [9,10] have characterized morphological evolution of a film initially formed out of equilibrium with an unstable thickness towards a mixture of preferred heights. Despite the substantial interest in the Ag/Fe(100) system, the energetics controlling submonolayer and multilayer thin film growth or post-deposition evolution in this system have not been systematically analyzed.  Here, we will focus on the submonolayer regime and explore energetics associated with island nucleation and growth during deposition, as well as with post-deposition coarsening phenomena. In the traditional picture, the density of islands formed during deposition is controlled by the adatom terrace diffusion barrier, 
Ed, at lower temperatures (ܶ) corresponding to irreversible island formation, and also by the interaction between nearest-neighbor (NN) Ag adatom pairs which determines the onset of reversibility at higher ܶ [11]. However, we will find that both long-range pair interactions, which can impact island formation, and many-body interactions are significant for Ag/Fe(100). The long-range interactions oscillate between attractive and repulsive values, a feature which is usually only prominent usually for certain metal (111) surfaces [12,13]. Growth shapes of individual islands and of coalescing pairs of islands during deposition are controlled by the barriers for diffusion along island edges [11]. Post-deposition coarsening of adlayers with separated islands at lower coverages is likely dominated by Smoluchowski ripening, i.e., island diffusion and coalescence both of which are also controlled by edge diffusion [14,15]. Coarsening of incomplete adlayers with isolated pits at high submonolayer coverages may be controlled by vacancy-mediated Ostwald ripening, and thus dependent on the diffusion barrier and formation energy for isolated advacancies [15].  From the above, it is clear that a comprehensive analysis of adlayer formation and coarsening requires knowledge of both surface thermodynamics (lateral interaction energies and formation energies for adspecies), as well as numerous activation barriers for diffusive hopping of adatoms (including adatom terrace and edge diffusion). Adlayer thermodynamics is determined from conventional lateral adspecies interactions (߱’s) where Ag adatoms are located at 4fh adsorption sites. Previous studies for metal (100) surfaces revealed the possible need to include many-body trio and even quarto interactions, as well as pair interactions, to accurately describe energetics [16–19]. As described in more detail in Sec. IV, activation barriers for diffusion can be determined with the aid of a distinct set of “unconventional” interactions (߶’s) involving one Ag adatom at a bridge-site transition state (TS) for diffusive adatom hopping and the other adatoms are at 4fh sites [18–21]. Validation of this assignment of the TS will also be provided in Sec IV. Given these activation barriers, corresponding adatom hop rates which provide the basic input to kinetic modeling are determined assuming an Arrhenius form with a standard choice of prefactor 5 ≈ ߥ ൈ 10ଵଶ/s . Adatom interactions can be systematically determined from analysis of the energetics for large lateral unit cell configurations with an isolated pairs, trios, etc. of adatoms [13]. First, pair interactions are determined from configurations with an isolated adatom pair given knowledge of the isolated adatom adsorption energies and of the substrate energy. Then, trio interactions are determined by subtracting pair contributions from the total trio interaction energy, etc.  Alternatively, cluster-expansion (CE) techniques can be applied 
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assessing the energies of various adlayer configurations usually with smaller unit cells [17,22,23]. We will mainly utilize the CE approach in this study focusing on a comprehensive determination of conventional ߱-interactions. This approach has been successfully applied for systems with long-range ߱-interactions [12,24,25], but there are significant challenges which we will discuss. Analysis of ߶-interactions is rare and involves additional challenges, as will be described, so a more limited analysis is provided. In Sec. II, we provide the details of our DFT calculations. The comprehensive analysis of conventional ߱-interactions is presented in Sec. III.  A more limited analysis of unconventional ߶-interactions and other related interactions is provided in Sec. IV. Further discussion and application of these results is presented in Sec. V, and conclusions are offered in Sec. VI. 
II. BACKGROUND: SYSTEM PROPERTIES AND DFT ANALYSIS All DFT total energy calculations reported in this paper were performed using the plane-wave VASP code [26–29]. The projector-augmented-wave (PAW) method [30,31] is used for the electron-core interactions, and the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional [32] is used for exchange and correlation, as is typically the case in analysis of metal-on-metal systems yielding considerable success [18-22,24]. The corresponding pseudopotentials were generated and released in 2013 by the VASP group. Due to the strong magnetism of the Fe substrate, spin-polarization effects have been taken into account in all DFT calculations. As noted in Sec. I, fcc Ag(100) has a near-perfect lattice match with bcc Fe(100) given experimental values for surface lattice constants, ܽ, of ܽFୣ ൌ 0.2866 nm [33] and ܽA୥ ൌ 0.2877 nm [34]. To support the validity of our analysis of Ag/Fe(100) thin film properties, we naturally check in Appendix A that DFT reliably reproduces basic bulk and surface properties of Fe. Often quantum size effects (QSE) [35] due to finite slab thickness are quite persistent for metal (100) systems [36], so the common selection of 5–6 atomic layers (referred to below as monolayer or ML) for slabs is not sufficient [37,38]. Given this concern, we perform benchmark analyses of the slab thickness dependence for key quantities such as surface energy and magnetic moment to assess how quickly they converge to bulk values with increasing Fe(100) slab thickness. In fact, this convergence is rather slow (see again Appendix A) prompting the use of a 15-ML slab in our main analyses of surface energetics. Thus, the calculations are demanding, the maximal number of Fe atoms involved in our analysis for a 4 ൈ 4 lateral unit cell being 240, plus any Ag adatom(s). Additional tests of the thickness-dependence of energies of interest are described in Appendix B. Our DFT analysis focuses on the energetics for various Ag adlayer configurations with ݊ ൈ ݉ lateral unit cells on thick slabs representing Fe(100) substrates. The key quantity extracted is the adlayer energy per Ag atom, ܧ௡ൈ௠ఉ , corresponding to the configuration ߚ which has ܯ Ag atoms per unit cell with the adlayer coverage ܯ/ሺ݊݉ሻ. This adlayer energy equals the sum of the total adsorption plus the total lateral interaction energy within the cell divided by ܯ. It is obtained from 
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௡ൈ௠ఉܧ ൌ ሺܧ୲୭୲ െ ୱ୪ୟୠܧ െ ௡ൈ௠ఉܧ in ߚ A୥ are directly obtained from DFT calculations.  In the following Sections, the superscriptܧ ୱ୪ୟୠ, andܧ ,୲୭୲ܧ  .A୥ is the self-energy of an isolated gas-phase Ag atomܧ ୱ୪ୟୠ is the energy of the Fe slab without Ag adlayer atoms, andܧ ,୲୭୲ is the total energy of Fe slab plus Ag adlayer atomsܧ ሺ1ሻ where                                                       ,ܯ/A୥ሻܧܯ  has the form ݅h݆b, indicating that ݅ Ag atoms are at 4fh sites and ݆ Ag atoms are at bridge sites within each unit cell where ݅ ൅ ݆ ൌ ݆ but ݆b (or ݅h) is omitted when ,ܯ ൌ 0 (or ݅ ൌ 0 ). Also, sometimes the subscript ݊ ൈ ݉ will be augmented to provide additional information on adlayer structure. By way of example, ܧ௡ൈ௡ଵ୦  indicates a pሺ݊ ൈ ݊ሻ structure with ܯ ൌ 1 Ag adatom at a 4fh site, ܧ௡ൈ௡ଵୠ  indicates a pሺ݊ ൈ ݊ሻ structure with ܯ ൌ 1 Ag adatom at a bridge site, ܧୡሺଶൈଶሻଶ୦  indicates a cሺ2 ൈ 2ሻ adlayer with ܯ ൌ 2 Ag atoms at two 4fh sites, ܧସൈସ,୪ୟୠୣ୪ଵ୦ଵୠ  indicates a 4 ൈ 4 adlayer with ܯ ൌ 2 Ag atoms: one at a 4fh site and one at a bridge site (where “label” will identify the specific adlayer motif, see below), etc. When evaluating ߱-interactions using 15-ML Fe(100) slab as the substrate, the bottommost 10 ML of the slab are fixed corresponding to bulk bcc structure with the optimized lattice constant ܽ ൌ 0.2830 nm. The topmost 5-ML Fe(100), as well as any Ag atoms at 4fh sites, are fully relaxed. For evaluation of ߶-interactions, the only difference is that the ݔ or ݕ coordinate of the Ag atom on the bridge site is fixed to avoid its possible movement to a neighboring 4fh site during relaxation of the other degrees of freedom. Negative (positive) values of ߱ and ߶ correspond to attractive (repulsive) interactions.  In these calculations, the energy cutoffs for the plane wave basis are set to be default value 267.882 eV for an Ag-Fe system, and vacuum thickness between two adjacent periodic slabs along the ݖ direction is taken to be 1.5 nm. For accuracy in energy minimization, we take 0.1 eV/nm as the force-convergence criterion. The choice of k mesh (see Appendix B) depends on supercell size with careful tests for reaching energy convergence. Spurious dipole-dipole interactions between slab replicas due to periodic boundary conditions are also checked to be negligibly small and therefore not taken into account in our analysis of the Ag-Fe system. Our analysis will assume that Ag remains on the Fe(100) surface as one or more adatoms rather than exchanging with the substrate. To support this assumption, we assess the thermodynamics of Ag-Fe exchange on the Fe(100) surface. Using a 4 ൈ 4 unit cell with a 15-ML Fe(100) slab, we obtain an energy increase of ∆ܧ ൌ 0.564 eV upon exchanging an Ag adatom at a 4fh site with a surface Fe atom (so that the Fe atom becomes an adatom at a 4fh site). We also used a 5-ML slab with bottommost 1-ML Fe atoms fixed and obtain ∆ܧ ൌ 0.608 eV. These results indicate that such Ag-Fe exchange is strongly disfavored thermodynamically. Thus, such exchange is not considered further in this work. 
III. CONVENTIONAL ࣓-INTERACTIONS: ADLAYER THERMODYNAMICS For ߱-interactions between adatoms at 4fh sites, we will use the notation ߱୮௜ for pair interactions where separation, ݀ ൌ ݀ଵଶ, increases with ݅. Specifically, one has ݀ଵଶ ൌ ܽ, √2ܽ, 2ܽ, √5ܽ, 2√2ܽ, 3ܽ, √10ܽ, √13ܽ, … for ݅ ൌ 1, 2, 3, … respectively. Trio interactions are denoted by ߱୲௜ where the total perimeter length ݀ ൌ ݀ଵଶଷ for the trio-motif increases with ݅. 
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For linear trio configurations, ݀ଵଶଷ is taken as twice their length. Thus, one has ݀ଵଶଷ ൌ൫2 ൅ √2൯ܽ ൎ 3.414ܽ, 4ܽ, ൫1 ൅ √2 ൅ √5൯ܽ ൎ 4.650ܽ, … for ݅ ൌ 1, 2, 3, …, respectively. Quarto interactions are denoted by ߱୯௜ where the perimeter length ݀ ൌ ݀ଵଶଷସ increases with ݅, and ݀ଵଶଷସ ൌ 4ܽ for ݅ ൌ 1 corresponding to a square motif. See Fig. 1. Undoubtedly, the NN pair interaction, ߱୮ଵ, will dominate other interactions. We suggest that the magnitudes of the second NN pair interaction, ߱୮ଶ, the bent trio, ߱୲ଵ, and linear trio, ߱୲ଶ, while well below |߱୮ଵ|, will be significantly above those of other interactions. Our detailed analysis will confirm this picture. Our claim regarding the relative magnitude of interactions implies that the magnitude of the linear trio |߱୲ଶ| exceeds that for the third NN pair |߱୮ଷ|, even though both motifs have the same linear span of 2ܽ. We note that this perhaps unintuitive 

feature was seen in previous DFT analysis for Cu/Cu(100) [16]. 
FIG. 1. (Color online) Conventional pair interactions ߱୮௜, trio interactions ߱୲௜, and quarto interaction ߱୯ଵ, labeled so that the separation ݀ଵଶ or perimeter length ݀ଵଶଷ increase with increasing ݅ ൌ 1, 2, 3, … As indicated in Sec. I, we will primarily rely on the CE approach [17,22,23] to determine the ߱’s. Suppose that adlayer energies are to be described using ܰ ߱’s together with the adsorption energy, ܧସf୦, of an isolated Ag adatom at a 4fh site. The basic procedure selects ܰ ൅ 1 suitable adlayer configurations for which the energy per adatom is obtained directly from DFT calculations. Then, expressing the ܰ ൅ 1 energies in terms of the  ߱’s and ܧସf୦ allows determination of these parameters by solving ܰ ൅ 1 linear equations for ܰ ൅ 1 unknowns. Detailed implementation of this approach might be tailored to the specific application. For example, one could first determine ܧସf୦ independently and directly from a large-unit cell p(݊ ൈ ݊) configuration with negligible interactions between adatoms, and consequently determine the ߱’s from the energies of ܰ other configurations. Then, these effective ߱’s exactly recover the energies of the selected adlayer configurations, but incorporate the effect of neglected longer-range pair or many-body interactions. Alternatively, using smaller unit cells for all ܰ ൅ 1 selected configurations would in general yield an effective value of ܧସf୦ incorporating neglected longer-range interactions. As a result, the effect of these neglected interactions might at least partly cancel in the 
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evaluation of ߱’s, producing estimates that more accurately reflect the true ߱’s. Appendix C gives a simple example of this cancellation effect. We mainly utilize this alternative strategy in our study. For reference, we provide the energies per Ag atom, ܧ௡ൈ௡ଵ୦ , for p(݊ ൈ ݊) configurations with one Ag atom per unit cell at a 4fh site and Ag adlayer coverage of 1/݊ଶ ML on the 15-ML Fe(100) slab: ܧଵൈଵଵ୦ ൌ െ2.853, ܧଶൈଶଶ୦ ൌ െ2.483, ܧଷൈଷଵ୦ ൌ െ2.496, and ܧସൈସଵ୦ ൌ െ2.529 (in eV). With increasing ݊, the value of ܧ௡ൈ௡ଵ୦  approaches the true adsorption energy, ܧସf୦, of an isolated Ag adatom at a 4fh site. Some analysis of the dependence of these energies on Fe(100) slab thickness is provided in Appendix B. It is appropriate to note that various validation procedures are often applied for CE analyses.  We will utilize the so-called leave-݊୴-out cross-validation method [17,39] where one chooses various subsets of ܰ ൅ 1 configurations out of a total of ܰ ൅ 1 ൅ ݊୴ configurations to determine the ܰ ߱’s and ܧସf୦. Comparing results for different choices of the ݊୴ omitted configurations clarifies reliability of the results. We also note that there are various automated procedures attempting optimal selection of both the configurations and the ߱’s [23], but these will not be utilized here. 
A. Preliminary simplified modeling with four ࣓’s As noted above, we expect that ߱୮ଵ, ߱୮ଶ, ߱୲ଵ, and ߱୲ଶ will be the dominant interactions for metal (100) surfaces. Thus, a simplified analysis might use a p(݊ ൈ ݊) configuration for some ݊ ൒ 2 to determine ܧସf୦, and then four other configurations  to determine the four ߱’s. Selecting configurations: (i) p(1 ൈ 1) with coverage 1 ML and adlayer energy ܧଵൈଵଵ୦ ൌെ2.853 eV per Ag atom, (ii) c(2 ൈ 2) with coverage 1/2 ML and ܧୡሺଶൈଶሻଵ୦ ൌ െ2.556 eV,                   (iii) p(2 ൈ 1) with coverage 1/2 ML corresponding to single-atom wide rows, ܧଶൈଵଵ୦ ൌെ2.696 eV, and (iv) 3 ൈ 1 with coverage 2/3 ML corresponding to double-atom wide rows and ܧଷൈଵଶ୦ ൌ െ2.754 eV, this approach yields ߱୮ଵ ൌ െ0.173 ሺെ0.127ሻ, ߱୮ଶ ൌ െ0.036 ሺെ0.014ሻ, ߱୲ଵ ൌ ൅0.032 ሺ൅0.009ሻ, and ߱୲ଶ ൌ െ0.040 ሺെ0.040ሻ in eV using ݊ ൌ 2 (݊ ൌ 4) for ܧସf୦. See Appendix C for further details. These values appear reasonable although there is a strong dependence on the selected ܧସf୦. This dependence presumably results from the neglect of multiple longer-range pair interactions and also other trio interactions. This prompts the implementation of a refined analysis retaining a more extensive set of ߱-interactions as presented below in Sec. III B. 

B. Refined CE analysis with sixteen ࣓’s Our more extensive CE modeling of the Ag/Fe(100) system incorporates a larger set of sixteen interactions including 8 pairs, 7 trios, and 1 quarto shown in Fig. 1. We use subsets of 17 configurations selected out of a larger set of 20 configurations with unit cells sizes including 1 ൈ 1, 2 ൈ 1, 3 ൈ 1, 2 ൈ 2, 3 ൈ 2, 4 ൈ 2, 3 ൈ 3, … to determine the sixteen ߱’s and ܧସf୦. See Appendix B for the 20 configurations. We emphasize that ܧସf୦ is determined from these smaller unit cell configurations versus a large unit-cell p(݊ ൈ ݊) configuration with ݊ ൒ 4, and will thus correspond to an effective value. Results from 8 different choices of 17 configurations out of 20 are shown in Fig. 2(a) for pair interactions and in Fig. 2(b) for trio 
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interactions. Often for this type of leave-3-out cross-validation analysis, one assesses the error in energy for neglected configurations for each choice of retained configurations, and then just reports averaged results for various choices with lower errors. However, since our results vary little with the choice of left-out configurations, we report pair and trio interactions for all 8 choices of retained configurations. The value of the quarto interaction ߱୯ଵ varies between െ0.02 and െ0.05 eV with an average value of െ0.039 eV. Average values of ߱-interactions from these 8 choices are presented in Table I. As suggested above, 

߱୮ଵ, ߱୮ଶ, ߱୲ଵ, and ߱୲ଶ are in fact the dominant interactions. 
FIG. 2. (Color online) (a) Conventional pair interactions versus separation ݀ ൌ ݀ଵଶ. (b) Conventional trio interactions versus ݀ ൌ ݀ଵଶଷ. The configurations used for the leave-3-out analyses A–H are indicated in Appendix B. From Fig. 2(a), the robust oscillatory decay of the lateral pair interactions for larger separations in this Ag/Fe(100) system is immediately apparent, specifically these interactions oscillating between attractive and repulsive values. The presence of these significant longer-range pair interactions, as well as several significant values of trio interactions, makes it clear the limitations of the simplified analysis of Sec. III A. In Fig. 2(b), we naturally plot trio interactions as a function of the perimeter ݀ ൌ ݀ଵଶଷ of the trio motif. This choice is motivated by theoretical analysis of the expected variation of interactions 
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with motif size [17,40], and shown to be effective in other DFT analyses of metal-adatom interactions for various surfaces [24,41]. Again one finds systematic oscillatory behavior, although the ߱୲଻ values in Fig. 2(b) for the largest perimeter length ݀ଵଶଷ ൌ 6ܽ ൎ 1.73 nm are not expected to be reliable. TABLE I. Average values of conventional ߱-interactions for the leave-3-out analyses of A–H described in Appendix B. Values is rounded to 3 significant figures after the decimal point. As noted in the text, the value of ߱୲଻ is likely inaccurate. ߱୮ଵ ߱୮ଶ ߱୮ଷ ߱୮ସ ߱୮ହ ߱୮଺ ߱୮଻ ߱୮଼ −0.185 −0.048 +0.018 +0.012 −0.008 +0.004 −0.011 −0.007 ߱୲ଵ ߱୲ଶ ߱୲ଷ ߱୲ସ ߱୲ହ ߱୲଺ ߱୲଻ ߱୯ଵ +0.062 −0.049 −0.010 +0.018 −0.007 −0.001 +0.018 −0.040  We recall that this type of prominent longer-range oscillatory behavior is often seen for adsorbates on various metal (111) surfaces [12,13]. In general, electronic indirect (through surface) interactions can have oscillatory Friedel behavior controlled by the Fermi wave vector. Usually the strength of the pair interactions decays quickly like ݀ିହ, so that oscillations are not apparent. However, in the presence of a metallic surface state, i.e., a surface band that crosses the Fermi level, as is common on the (111) faces of noble metals, the decay can be much slower like ݀ିଶ for pair interactions and like ݀ିଶ/ଷ for trio interactions [17,40]. Long-range oscillatory interactions are typically not prominent on metal (100) surfaces. 
C. Additional analysis and discussion 

True versus effective E4fh: The refined analysis in Sec. III B simultaneously determines ܧସf୦ together with the ߱’s from the energies of mainly small unit-cell configurations. This yields an effective value of ܧସf୦ ൎ െ2.504 eV with small variance of േ0.001 eV. This certainly differs from the true value of ܧସf୦ which should be closer to ܧସൈସଵ୦ ൌ െ2.529 eV. Thus, as discussed above and in Appendix C, the effective ܧସf୦ must incorporate a contribution from the neglected longer-range pair and trio interactions, a feature which may result in more reliable ߱-estimates due to cancellation effects. Indeed, reanalysis of the sixteen ߱’s by setting ܧସf୦ ൌ ସൈସଵ୦ܧ  and selecting sixteen configurations from the 20 used in Sec. III B yields rather different and less satisfactory results than those shown in Fig. 2. For example, pair interactions do not decay smoothly for large ݀ ൌ ݀ଵଶ, but retain significant positive (repulsive) values partly compensating for the more negative value of ܧସf୦. 
More direct analysis of ߱’s: Despite the consistency of results for ߱-interactions from the procedure of Sec. III B, it is instructive to alternatively consider more direct analysis to further support these results. Such more direct analysis can be based on the use of 
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appropriate selected larger unit-cell configurations. Here, we just present two examples. First, a more direct estimate of ߱୮ଷ follows from the relation ߱୮ଷ ൅ ߱୮ହ ൎ ሺܧଶൈଶଵ୦ െ ସൈସଵ୦ܧ ሻ/2 ൌ ൅0.023 eV                                           (2) yielding ߱୮ଷ ൎ 0.02 eV if one sets ߱୮ହ ൎ 0. This estimate is reasonably consistent with the mean estimate ߱୮ଷ ൎ ൅0.018 eV in Table I. Second, a more direct estimate of ߱୮ଶ can be obtained from analysis of the energy per adatom, ܧ௡ൈ௡,୮ଶଶ୦ , of a configuration containing a single isolated second NN adatom dimer in a large ݊ ൈ ݊ unit cell. Using ܧସൈସ,୮ଶଶ୦ ൌ െ2.539 eV, one has that  ߱୮ଶ ൅ 2߱୮଻ ൎ 2൫ܧସൈସ,୮ଶଶ୦ െ ସf୦൯ܧ ൌ െ0.020 eV.                                 (3) Using ܧସf୦ ൎ ସൈସଵ୦ܧ ൌ െ2.529 eV yields an estimate of ߱୮ଶ ൎ െ0.020 eV assuming that ߱୮଻ ൎ 0 (cf. the mean estimate of ߱୮ଶ ൎ െ0.048 eV in Table I from Sec. III B). 
Comparison with other metal (100) systems: It is instructive to compare the behavior of the dominant ߱-interactions for Ag/Fe(100) with that in other metal (100) systems. Previous analysis for Cu/Cu(100) [16] reveals that ߱୮ଵ ൌ െ0.332, ߱୮ଶ ൌ െ0.043, ߱୲ଵ ൌ ൅0.054, and ߱୲ଶ ൌ െ0.016 (in eV) are the dominant interactions, although ߱୮ଷ ൌ െ0.013 eV is just slightly smaller than ߱୲ଶ for this system. For Ag/Ag(100), one finds that ߱୮ଵ ൌ െ0.283, ߱୮ଶ ൌ െ0.027, ߱୲ଵ ൌ ൅0.032, and ߱୲ଶ ൌ െ0.016 (in eV) [18], the slightly lower magnitudes reflecting the smaller bulk cohesive energy for Ag than for Cu. Thus, the trends in these interactions are similar to those for Ag/Fe(100) for which ߱୮ଵ is relatively weaker. However, for Au/Ag(100), ߱୮ଶ becomes repulsive, and the magnitude of the attractive trio ߱୲ଶ is enhanced relative to other interactions [18,19]. 
Decomposition of ߱’s into electronic and elastic components:  In the above analyses of configuration energies, both the topmost 5-ML Fe atoms of the substrate and the adlayer Ag atoms are relaxed. The ߱-interactions obtained therefrom are the total (electronic + elastic) values. An effective procedure to directly determine just the electronic component is simply to perform the analysis with substrate Fe atoms frozen at their relaxed positions in the absence of Ag adlayer, but Ag atoms of the adlayer still relaxed [12,13,24,41,42].  The elastic component then is given by the difference between the total interaction and the electronic component. We have performed such a comparative analysis by selecting two short-range pairs and one bent trio configuration using a larger unit cell of  5 ൈ 5 which makes computation more expensive.  Nonetheless, we still perform analysis for 4-, 8-, and 12-ML Fe(100) slabs to reliably assess limiting behavior for a semi-infinite slab. For details, see Appendix D. The elastic component remains significant, so the behavior for Ag on Fe(100) surface appears to be intermediate between that for a fcc (111) surface where electronic interactions dominate [12,13,24] and that for a fcc (110) surface where elastic interactions may dominate [41,42]. From this behavior, the strength of the elastic effect also indicates how close the packings of the 3 types of surface lattice are: (111) surface is most close-packed with hexagon lattice, (110) surface is least close-packed with rectangular lattice, while (100) surface is intermediately close-packed with square lattice. In addition, it is appropriate to note that results from the above CE analysis are closer to the values for electronic component from a large-unit-cell calculation than the total 
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interaction. This presumably reflects the feature that the CE analysis makes extensive use of small-unit-cell configurations where relaxation of substrate atoms is actually constrained. 
IV. UNCONVENTIONAL ࣘ-INTERACTIONS AND SURFACE DIFFUSION KINETICS First, we present the result of our analysis of the terrace diffusion barrier, ୢܧ, for isolated Ag adatoms on Fe(100), and also discuss more general surface diffusion processes for non-isolated adatoms. We first estimate the TS energy, ܧୠ୰, for an Ag adatom adsorbed at the bridge site for hopping. Using a pሺ4 ൈ 4ሻ unit cell and 15-ML Fe(100) slab, we obtain ܧୠ୰ ൎ ସൈସଵୠܧ ൌ െ2.141 eV.                                                         (4) Then ୢܧ is simply estimated from ୢܧ ൌ ୠ୰ܧ െ ସf୦ܧ ൎ ସൈସଵୠܧ െ ସൈସଵ୦ܧ ൌ 0.388 eV,                                         (5) where ܧସf୦ ൎ ସൈସଵ୦ܧ ൌ െ2.529 eV.                                                         (6) As noted in Sec. II, the exchange between an Ag adatom and surface Fe atoms is strongly disfavored thermodynamically, so exchange diffusion is not a competitive pathway. Next, consider hopping of Ag adatoms in general local environments, e.g., along the edge of an island, where the pathway is always between neighboring stable 4fh sites through a bridge-site transition state. For an isolated adatom, symmetry suggests that the TS is exactly at the bridge site, and this is confirmed by more detailed analysis, e.g., using a climbing nudged elastic band (cNEB) method [43]. In general, the TS will be slightly shifted from the ideal bridge-site position due to the influence of other nearby adatoms. However, the strong modulation of the adatom binding energy on (100) surfaces, suggests that this shift will be small, contrasting hexagonal close-packed surfaces. We have confirmed this proposal by performing selected cNEB analyses of minimum-energy diffusion paths for various diffusion processes and local environments, e.g., diffusion along close-packed step edges, detachment from such step edges, corner rounding, dimer diffusion, vacancy diffusion in an island, etc. We find that the TS for all these diffusion processes is always at or very close to the bridge site. As an example, we obtain an adatom shift of only ~0.02 nm towards the edge for the diffusion along a straight step edge of double chain using a 4 ൈ 2 unit cell and 4-ML Fe(100) slab, while the adatom shift is ~0.008 nm away from the edge for the detachment perpendicular to a double chain step using a 5 ൈ 2 unit cell. Finally, we describe an approach to precisely determine activation barriers, Eact, for general local environments [18–21]. If Φ୧୬୧୲ denotes total lateral interaction energy in the initial state with the adatom at a 4fh site before hopping, and ΦTS denotes the total interaction energy in the TS, then it follows that ܧୟୡ୲ ൌ ୢܧ ൅ ΦTS െ Φ୧୬୧୲.                                                                 (7) Summing over relevant conventional ߱’s immediately determines the total interaction energy Φ୧୬୧୲. In Sec. I, we have already mentioned unconventional ߶-interactions which involve one Ag adatom at a bridge site which is taken as the TS for diffusive hopping and 
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one or more other adatoms at 4fh sites. By analogy with determination of Φ୧୬୧୲, summing over relevant ߶’s determines the total interaction energy, ΦTS, at the TS. Thus, knowledge of all of ୢܧ, ߱’s, and ߶’s allows precise determination of general ܧୟୡ୲. Given the barrier ܧୟୡ୲, the corresponding rate for hopping is taken to have the Arrhenius form ݄ ൌ 5 ≈ ߥ eିா౗ౙ౪/ሺ௞B்ሻ where ݇B is Boltzmann’s constant, ܶ is the surface temperature, and a common prefactor or attempt frequency  is often selected asߥ ൈ 10ଵଶ/s for all hops [18–21]. It has in fact long been recognized that Eact is determined by distinct interactions at the TS [44]. For metal (100) systems, a study based on semi-empirical potentials offered a reasonable hypothesis for the dominant unconventional pair interaction [45]. Another study was the first to use DFT to directly assess such interactions for Al diffusion on Al(110) in the presence of a single nearby adatom [46]. By extending these ideas further, a systematic formalism to determine general Eact has been provided and implemented [18-21].  We should contrast this approach with the much more common approximate determinations of ܧୟୡ୲ based on ୢܧ and just knowledge of ߱’s. The simplest “initial-value approximation” just sets ܧୟୡ୲ ൌ ୢܧ െ Φ୧୬୧୲, but symmetric versions of Bronsted-Evans-Polyani or Butler-Volmer approximations in addition utilize the total lateral interaction Φf୧୬ୟ୪ at the final state after hopping which is also determined from summing ߱’s [12]. However, these approximate choices fail dramatically to describe edge diffusion processes in metal (100) systems [11,18]. They predict the diffusion barrier along close-packed edges to be equal to or higher than ୢܧ, whereas it is generally much lower. For unconventional pair interactions, we will use the notation ߶୮௜ where separation, ݀ ൌ ݀ଵଶ, increases with ݅, so that ݀ଵଶ ൌ √5ܽ/2 ൎ 1.118ܽ, 3ܽ/2, √13ܽ/2 ൎ 1.803ܽ, … for ݅ ൌ 1, 2, 3, … respectively. Trio interactions are denoted by ߶୲௜ where the total perimeter length ݀ ൌ ݀ଵଶଷ for the trio-motif increases with ݅, so that ݀ଵଶଷ ൌ ൫1 ൅ √5൯ܽ ൎ 3.236ܽ, ൫1 ൅ √5/2 ൅ √13/2൯ܽ ൎ 3.921ܽ, ൫1 ൅ √5/2 ൅ √17/2൯ܽ ൎ 4.180ܽ, … for ݅ ൌ 1, 2, 3, …, respectively. See Fig. 3 for these motifs. Note that ߶୮ଵ and ߶୲ଵ are the strongest interactions, and these will largely control the barrier for diffusion along close-packed 

edges. 
FIG. 3. (Color online) Examples of unconventional pair interactions, ߶୮௜, and trio interactions, ߶୲௜, with one adatom at a bridge site and the others at 4fh sites. 
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A. CE analysis for ࣘ’s and related issues First, we comment on a CE approach to determine the ߶’s. This approach involves calculating the energies of various adlayer configurations with ݊ ൈ ݉ unit cells, each of which includes one atom at a bridge site and any others at 4fh sites. While this approach has not been implemented previously for unconventional interactions, the basic strategy just mimics that for conventional interactions. However, one extra complication is that smaller unit cells when periodically extended result in interacting pairs of adatoms at bridge sites. We denote this distinct type of unconventional pair interactions between such bridge pairs by ߛ୮’s. As a simple example, consider a pሺ2 ൈ 2ሻ configuration with Ag on bridge sites as shown in Fig. 4(a). Here, there are two distinct ߛ୮ interactions both for separation ݀ ൌ 2ܽ. In one (called ߛ୮ଵ), the two bridge sites are separated by two NN 4fh sites and in the other (called ߛ୮ଶ) by two NN top sites. Study of analogous interactions in O-chemisorption systems indicates that ߛ୮ଵ and ߛ୮ଶ could have significantly different values 

[47]. It is possibly also necessary to consider various other unconventional many-body interactions, e.g., with two adatoms at bridge sites with one or two at 4fh sites (i.e., trio ߛ୲’s or quarto ߛ୯’s). Strictly speaking, one even needs to consider trio ߦ୲’s, quarto ߞ୯’s, … interactions with 3, 4, ... Ag atoms at bridge sites. 
FIG. 4. (Color online) (a) Examples of unconventional ߛ-type interactions involving a pair of adatoms at bridge sites in pሺ2 ൈ 2ሻ adlayer structure. (b) pሺ2 ൈ 3ሻ adlayer structure. (c) pሺ3 ൈ 2ሻ adlayer structure. Dashed frames denote the unit cells. The above discussion already indicates significant complications in a CE analysis of ߶-interactions beyond that seen for ߱-interactions. However, in attempting to implement such an analysis, there is an additional challenge which might not be anticipated as we now describe. As a preliminary remark, we first note that it is possible to perform a separate self-contained analysis of unconventional interactions with all adatoms on bridge sites. In principle, this analysis is no more complicated than that of ߱-interactions. We proceed with such an analysis determining the energies ܧଶൈଷଵୠ ൌ െ2.054 eV for pሺ2 ൈ 3ሻ and ܧଷൈଶଵୠ ൌെ2.065 eV for a pሺ3 ൈ 2ሻ configurations with the Ag adatom on a bridge site. See Figs. 4(b) and 4(c) for these two configurations. Then, neglecting ߛ୮’s for separation ݀ ൒ 3ܽ, one obtains that ߛ୮ଵ െ ୮ଶߛ ൌ ൅0.012 eV, i.e., the difference between these two ݀ ൌ 2ܽ interactions is comparable in magnitude to  ߱୮ଷ ൌ ൅0.018 eV also with d = 2a. Using ܧସൈସଵୠ ൌ െ2.141 eV and still neglecting ߛ୮’s for ݀ ൒ 3ܽ, one then obtains ߛ୮ଵ ൌ ൅0.087 eV and ߛ୮ଶ ൌ ൅0.076 eV,                                              (8) 
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both far larger than |߱୮ଷ|. After also determining the energy ܧଶൈଶଵୠ ൌ െ2.058 eV of the pሺ2 ൈ 2ሻ configuration in Fig. 4(a), one finds that the longer-range interaction ߛ୮ଷ for ݀ ൌ 2√2ܽ ൎ 2.828ܽ is െ0.040 eV. Thus, the magnitude of ߛ୮ଷ is far above that of ߱୮ହ ൌ െ0.008 eV for which also ݀ ൌ 2√2ܽ, and is still significantly larger than |߱୮ଷ|. The unusual strength of the ߛ୮’s relative to the ߱୮’s might be associated with the feature that the adatoms are less strongly bound to the substrate, and thus more strongly interacting. In any case, these large longer-range ߛ-interactions naturally lead to significant difficulties in extracting reliable results from a CE approach. Thus, the above neglect of ߛ୮’s for ݀ ൒ 3ܽ may be questionable. 
B. Alternative analysis Given the challenges described above with the CE approach to determine ߶-interactions, we focus on a more direct analysis based on determination of the energetics of selected larger-unit-cell configurations. Our focus will be on determination of ߶୮ଵ, ߶୮ଶ, and ߶୲ଵ, anticipating that these dominate other ߶-interactions.  In the analysis below, we will always use ܧସf୦ ൎ ସൈସଵ୦ܧ ൌ െ2.529 eV and  ܧୠ୰ ൎ ସൈସଵୠܧ ൌ െ2.141 eV. It will be important here to use accurate “true” values of these quantities rather than, e.g., the effective value of ܧସf୦ obtained in Sec. III. 

FIG. 5. (Color online) Configurations for: (a) 3 ൈ 2 and (b) 4 ൈ 4 cells used to assess ߶୮ଶ; (c) 3 ൈ 2 and (d) 4 ൈ 4 cells used to assess ߶୮ଵ; (e) 3 ൈ 2 and (f) 4 ൈ 4 cells used to determine ߶୲ଵ. 
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A fairly simple direct analysis is possible for the weak pair interaction ߶୮ଶ for ݀ ൌ 3ܽ/2 utilizing the 3 ൈ 2 and 4 ൈ 2 configurations including two Ag atoms per unit cell with the energy per Ag atom of ܧଷൈଶ,୮ଶଵ୦ଵୠ ൌ െ2.286 eV and ܧସൈଶ,୮ଶଵ୦ଵୠ ൌ െ2.281 eV, respectively. See Figs. 5(a) and 5(b) for these two configurations. Neglecting ߶୮’s for ݀ ൒ 5ܽ/2, one obtains  ߶୮ଶ ൎ 2ሺܧଷൈଶ,୮ଶଵ୦ଵୠ െ ସൈଶ,୮ଶଵ୦ଵୠܧ ሻ ൌ െ0.010 eV.                                             (9) Next, we consider the estimation of dominant short-range pair interaction, ߶୮ଵ, based on analysis of the energies, ܧ௡ൈ௠,୮ଵଵ୦ଵୠ , of ݊ ൈ ݉ unit cells, each of which contains a single isolated ad-dimer of separation ݀ ൌ √5ܽ/2 with one adatom at a bridge site and other at a 4fh site. Using a 3 ൈ 2 unit cell, see Fig. 5(c), for which ܧଷൈଶ,୮ଵଵ୦ଵୠ ൌ െ2.367 eV together with the relation 2ܧଷൈଶ,୮ଵଵ୦ଵୠ ൌ ସf୦ܧ ൅ ୠ୰ܧ ൅ ߱୮ଷ ൅ ୮ଵߛ ൅ ߶୮ଵ ൅ ୠ୰ as above, we obtain ߶୮ଵܧ ସf୦ andܧ ,୮ଵߛ ,and values for ߱୮ଷ (10)                                ڮ ൎ െ0.171 eV. Here we neglect interactions not indicated explicitly in Eq. (10), the strongest of them being likely ߶୮ଷ for ݀ ൌ √13ܽ/2.  Using instead an ݊ ൈ ݊ unit cell for which ܧ௡ൈ௡,୮ଵଵ୦ଵୠ ൌ െ2.376 ሺെ2.418ሻ eV for ݊ ൌ 3 ሺ4ሻ together with the relation 2ܧ௡ൈ௡,୮ଵଵ୦ଵୠ ൌ ସf୦ܧ ൅ ୠ୰ܧ ൅ ߶୮ଵ ൅ we obtain ߶୮ଵ (11)                                            ڮ ൌ െ0.083 ሺെ0.167ሻ eV for ݊ ൌ 3 ሺ4ሻ, neglecting interactions not listed explicitly in Eq. (11). The ݊ ൌ 3 estimate is likely corrupted by the neglect of significant repulsive ߛ୮’s for ݀ ൌ 3ܽ.  However, the estimates for 3 ൈ 2 and 4 ൈ 4 cells consistently suggest a reasonable value of ߶୮ଵ ൎ െ0.17 eV. The 4 ൈ 4 cell is illustrated in Fig. 5(d). Finally, we consider the estimation of the dominant trio interaction, ߶୲ଵ, based on analysis of the energies, ܧ௡ൈ௠,୲ଵଶ୦ଵୠ , of ݊ ൈ ݉ unit cells containing the corresponding triangular trio motif. For the rather small 3 ൈ 2 unit cell containing this motif shown in Fig. 5(e), one has that ܧଷൈଶ,୲ଵଶ୦ଵୠ ൌ െ2.586 eV which is given by the relation 3ܧଷൈଶ,୲ଵଶ୦ଵୠ ൌ ସf୦ܧ2 ൅ ୠ୰ܧ ൅ 2߱୮ଵ ൅ 2߱୮ଷ ൅ 2߱୲ଶ ൅ 2߶୮ଵ ൅ ୮ଵߛ ൅ ߶୲ଵ ൅ 2߶୲ଶ ൅ This implies that ߶୲ଵ (12)          .ڮ ൎ െ2߶୲ଶ ൅ 0.118 eV                                                                 (13) using ܧସf୦ and ܧୠ୰ from above, ߱୮ଵ, ߱୮ଷ, and ߱୲ଶ from Table I, ߶୮ଵ ൌ െ0.167 eV from Eq. (11), and ߛ୮ଵ from Eq. (8). From a previous study of Ag and Au on Ag(100) [18], we anticipate that ߶୲ଶ is attractive (with a negative value), so that ߶୲ଵ must be a significant repulsive interaction (with a positive value). For isolated triangular motifs in a 4 ൈ 4 unit cell shown in Fig. 5(f), the energy ܧସൈସ,୲ଵଶ୦ଵୠ ൌ െ2.531 eV is given with the relation 3ܧସൈସ,୲ଵଶ୦ଵୠ ൌ ସf୦ܧ2 ൅ ୠ୰ܧ ൅ ߱୮ଵ൅2߶୮ଵ ൅ ߶୲ଵ ൅ ୠ୰ from above, as well as ߱୮ଵ in Table I and ߶୮ଵܧ ସf୦ andܧ Using (14)                                         .ڮ ൌ െ0.167 eV from Eq. (11), Eq. (14) indeed implies strong repulsive ߶୲ଵ ൎ ൅0.125 eV, which together with Eq. (13) implies that ߶୲ଶ ൎ െ0.004 eV. 
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V. APPLICATIONS OF RESULTS FOR ENERGETICS We present four diverse applications of the above analyses of energetics: (i) Adlayer thermodynamics. The formation energy for an adatom, ܧ୤୭୰୫ሺadሻ ൌ ସf୦ܧ െܧଵൈଵଵ୦ ൎ ସൈସଵ୦ܧ െ ଵൈଵଵ୦ܧ  , corresponds to the lateral interaction energy per atom in a large island [37,48]. To provide another perspective,  ܧ୤୭୰୫ሺadሻ also corresponds to the energy cost to move an adatom from an isolated kink site on an otherwise straight close-packed step edge to the terrace. Either formulation implies that ܧ୤୭୰୫ሺadሻ ൌ െ2߱୮ଵ െ 2߱୮ଶ െ 2߱୮ଷ െ 4߱୮ସ െ 2߱୮ହ െ 2߱୮଺ െ 4߱୮଻ െ 4߱୮଼ െ െ4߱୲ଵ  ڮ െ 2߱୲ଶ െ 8߱୲ଷ െ 4߱୲ସ െ 8߱୲ହ െ 2߱୲଺ െ 4߱୲଻ െ ڮ െ ߱୯ଵ െ ڮ ൎ 0.349 eV.  ሺ15ሻ As an aside, it is sometimes instructive to define an effective NN interaction so that the lateral interaction energy per atom in a large island corresponds to 2߱୮ଵୣ୤୤. Thus, it follows that ߱୮ଵୣ୤୤ =  െܧ୤୭୰୫ሺadሻ/2 ൎ െ0.175 eV. The formation energy for an isolated vacancy, ܧ୤୭୰୫ሺvacሻ, corresponds to the energy cost to move an atom from the center of a large island to a kink site on an otherwise close-packed step edge [37,48]. This definition implies that ܧ୤୭୰୫ሺvacሻ ൌ െ2߱୮ଵ െ 2߱୮ଶ െ 2߱୮ଷ െ 4߱୮ସ െ 2߱୮ହ െ 2߱୮଺ െ 4߱୮଻ െ 4߱୮଼ െ െ8߱୲ଵ        ڮ െ 4߱୲ଶ െ 16߱୲ଷ െ 8߱୲ସ െ 16߱୲ହ െ 4߱୲଺ െ 8߱୲଻ െ ڮ െ 3߱୯ଵ െ ڮ ൎ 0.279 eV.  ሺ16ሻ ܧ୤୭୰୫ሺvacሻ differs from ܧ୤୭୰୫ሺadሻ due to the presence of many-body interactions.  (ii) Ostwald ripening. Using the formation energies obtained in Sec. V A, we can describe some consequences for Ostwald ripening [48].  The effective activation energy for Ostwald ripening of “adatom” islands is given by ܧORሺadሻ ൎ ୢܧ ൅ ୤୭୰୫ሺadሻܧ ൌ 0.388 ൅0.349 ൌ 0.737 eV, where we reasonably assume no additional barrier for attachment to ascending steps [48]. However, as noted in Sec. I, we expect Smoluchowski rather than Ostwald ripening to dominate adatom island coarsening. The effective barrier for Ostwald ripening of “vacancy” islands is ܧORሺvacሻ ൌ ሺvacሻୢܧ ൅ ሺvacሻ can be determined from a sufficiently complete set of unconventional ߶-interactions. However, we perform a more direct analysis using a 4ୢܧ ,୤୭୰୫ሺvacሻ. In principle, the diffusion barrier for isolated vacanciesܧ ൈ 4 unit cell to obtain ୢܧሺvacሻ ൎ 0.264 eV. This result implies that ܧORሺvacሻ ൎ 0.264 ൅0.279 ൌ 0.543 eV.  (iii) Island nucleation kinetics. A conventional treatment, in which longer-range interactions are negligible, suggests that the island density, ୧ܰୱ୪, for irreversible island formation at lower ܶ is controlled by ୢܧ via ୧ܰୱ୪ ൎ 0.47ሺߥ/ܨሻଵ/ଷ݁ாౚ/ሺଷ௞B்ሻ per adsorption site, where ܨ is the deposition flux and ߥ is the prefactor for hopping [11]. If ad-dimer diffusion is not significant, then the above conventional treatment also indicates that the critical temperature ୡܶ for the transition to reversible island formation satisfies ሺܨ/ߥሻ݁ିሺாౚାଵ.ହ|ఠ౦భ|ሻ/ሺ௞B ౙ்ሻ ൎ 10 [11]. This implies that ୡܶ ൎ 240 K for Ag/Fe(100) when ܨ ൌ 5 ൈ 10ିଷ ML/s and ߥ ൌ 5 ൈ 10ଵଶ/s. However, there are some caveats to the above analysis. First, it is expected that the repulsive component of the pair interactions will inhibit aggregation (as well as nucleation) leading to an enhancement of island density 
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relative to the above prediction [12,13,49]. Second, we can determine the barrier for ad-dimer diffusion as ୢܧଶ ൌ ୢܧ െ ߱୮ଵ ൅ ߶୮ଵ ൎ 0.41 eV. This barrier is low enough that dimer diffusion should impact the island density. Third, one could argue that, for nucleation studies, interaction parameters from large-unit-cell calculations allowing full relaxation of isolated adatoms and adatom pairs are more appropriate than those from CE analysis.  Using the corresponding ߱୮ଵ from Appendix D instead gives ୡܶ ൎ 140 K and ୢܧଶ ൎ 0.33 eV.  (iv) Periphery diffusion. Using ߱- and ߶-interactions obtained in Secs. III and IV, we consider periphery diffusion focusing on diffusion along close-packed step edges. Using the total interaction energies in the initial state and the TS Φ୧୬୧୲ ൌ ߱୮ଵ ൅ 2߱୮ଶ ൅ ߱୮ଷ ൅ 4߱୮ସ ൅ 2߱୮ହ ൅ ߱୮଺ ൅ 4߱୮଻ ൅ 4߱୮଼ ൅ ൅2߱୲ଵ                                      ڮ ൅ ߱୲ଶ ൅ 6߱୲ଷ ൅ 3߱୲ସ ൅ 4߱୲ହ ൅ 2߱୲଺ ൅ 2߱୲଻ ൅ ڮ ൎ െ0.225 eV,                 ሺ17ሻ and ΦTS ൌ 2߶୮ଵ ൅ ߶୲ଵ ൅ 2߶୲ଶ ൅ 2߶୲ଷ ൅ ሺ18ሻ the values of ߶୮ଵ, ߶୲ଵ, and ߶୲ଶin Sec. IV B, and anticipating a significant attractive trio interaction ߶୲ଷ comparable to ߱୮ଶbased studies of other metal (100) systems [18] suggests a rough estimate of ΦTS                                                         ,ڮ ൎ െ0.22 + 2߶୲ଷ ൎ െ0.32 eV. This result leads to an edge diffusion barrier of ୣܧ ൌ ୢܧ ൅ ΦTS െ Φ୧୬୧୲ ൎ 0.29 eV. We have also performed a more direct DFT calculation of ୣܧ using a 4 ൈ 4 unit cell with a double row of atoms representing the step edge and including a single edge adatom to obtain ୣܧ ൎ 0.251 eV. 
VI. CONCLUSIONS We assess the energetics relevant for submonolayer epitaxial films of Ag on Fe(100). Our most detailed analysis is for the conventional ߱-interactions (between Ag adatoms at 4fh sites) which control adlayer thermodynamics. As expected based on analysis of other metal (100) systems, short-range pair interactions ߱୮ଵ and ߱୮ଶ, as well as compact trio interactions, ߱୲ଵ and ߱୲ଶ, dominate over longer-range pair and other trio interactions. However, utilizing an extensive CE analysis, we find unexpectedly robust oscillatory decay of longer-range pair ߱-interactions with increasing separation, and show that these interactions must be included for a reliable analysis of adlayer energetics. This robust oscillatory decay also applies to trio ߱-interactions with increasing perimeter length of the trio motif. For analysis of the kinetics of adlayer formation during deposition and of post-deposition coarsening, it is also necessary to assess surface diffusion barriers which for general local environments of the adatom. These barriers can be determined with the aid of a separate set of unconventional ߶-interactions involving one adatom at the bridge site which is the TS for hopping and the others at 4fh sites. We describe the additional challenges associated with a CE analysis of these ߶-interactions, and present a targeted analysis of the two shortest-range pair ߶-interactions and of the most compact trio ߶-interaction which are expected to dominate other ߶-interactions. This extensive knowledge of lateral interactions, together with our analysis of the terrace diffusion barrier for isolated Ag adatoms, allows characterization of the nucleation and growth of two-dimensional Ag adatom islands on Fe(100), and of the post-deposition 
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coarsening and sintering of such islands and of vacancy pits. The key energetic parameters controlling these various phenomena are also presented. 
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APPENDIX A: BENCHMARK DFT ANALYSES Our DFT analysis for a bulk bcc Fe crystal chooses the primitive cell as the supercell with one Fe atom. The k mesh is taken to be 51ൈ51ൈ51, which is large enough for energy convergence. The energy cutoff is set to be the VASP default value 267.882 eV. A test increasing the energy cutoff to 400.000 eV causes a negligible energy change of only about 2 meV per Fe atom. Using the PAW PBE GGA functional as described in Sec. II, we find that the total energy ܧT is lowest when the lattice constants ܽ ൌ 0.2830 nm (cf. the experimental value 0.2866 nm at room temperature [33]) and the magnetic moment per atom, ߤ ൌ ୡܧ B is the Bohr magneton. The cohesive energyߤ where ,(B at 0 K [50]ߤcf. the experimental value 2.216) Bߤ2.1985 ൌ Fୣܧ െ Tܧ ൌ 4.860 eV (cf. the experimental value 4.28 eV at 0 K [51]), where ܧFୣ is the energy of one Fe atom in gas phase. 
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FIG. 6. (Color online) (a) Surface free energy ߛ௅ and (b) megnetic moment, ߤ௅, per Fe atom from our DFT calculations versus thickness ܮ for fixed and relaxed Fe(100) films. Our surface-energy calculation for a Fe(100) slab with a thickness of ܮ (in units of ML) uses a 1×1 lateral supercell. The vacuum thickness is not less than 1.5 nm, and the k mesh is always 51ൈ51ൈ1. The surface energy is calculated as [36,38,52] ߛ௅ ൌ ୲୭୲ܧ െ ௅ܰߪୠ୳୪୩2ܣ ,                                                             ሺ19ሻ where ܧ୲୭୲ is the DFT total energy of the slab in the supercell, ௅ܰ  is the total number of atoms in the slab with a thickness ߪ ,ܮୠ୳୪୩ ൌ ܣ T is the DFT energy per Fe atom in bulk bcc Fe, andܧ ൌ ܽଶ is the area of a free face of the 1ൈ1 slab. Figure 6(a) shows the obtained surface energies ߛ௅ for both “fixed” and “relaxed” slabs. The oscillations in ߛ௅ versus ܮ, as shown in Fig. 6(a), are generally attributed to QSE on metal films [35,36,38]. With increasing ܮ, the value of ߛ௅ approaches “bulk” surface energy. From Fig. 6(a), ߛ௅ୀଷଵ ൌ2.493 and 2.511 J/m2 for the “relaxed” and “fixed” Fe(100) film, respectively. These values reasonably match the experimental estimate of 2.417 J/m2 at the melting point of Fe [53], versus a previous DFT value 2.222 J/m2 for Fe(100) film [54]. Figure 6(b) shows the magnetic moments ߤ௅ calculated for both “fixed” and “relaxed” slabs. We find that ߤ௅ versus ܮ displays slightly oscillatory decay for ܮ ൏ 13, and then smooth decay for larger ܮ toward the bulk value of 2.1985ߤB, see Fig. 6(b). We also perform analysis for a bulk fcc Ag crystal. Using the k mesh of 61ൈ61ൈ61, and the VASP default energy cutoff of 249.844 eV for Ag, we obtain the lattice constant of 0.4152 nm (cf. the experimental value 0.4069 nm at 0 K [34]), corresponding to a surface lattice constant of 0.4152/√2 ൌ 0.2936 nm, which has a mismatch of only 3.7% relative to the above DFT lattice constant 0.2830 nm for bcc Fe crystal. The cohesive energy is 2.520 eV (cf. the experimental value 2.95 eV at 0 K [51]). 
APPENDIX B: REFINED CE ANALYSIS WITH SIXTEEN ࣓’s Our extensive CE modeling in Sec. III B incorporating sixteen ߱-interactions including 8 pairs and 7 trios, and 1 square quartet uses subsets of 17 configurations selected out of a larger set of 20 configurations to determine these ߱’s and ܧସf୦. See Table II. The 20 configurations are shown in Fig. 7, and the corresponding DFT adlayer energies per Ag atom are listed in Table III. In addition, we assess the dependence of adlayer energy per Ag atom on Fe(100) slab thickness. Table III shows results for selected configurations for 8-, 10-, and 15-ML slabs. In these calculations for total energies of slabs, we always relax topmost 5 ML of an Fe(100) slab, and keep other underlying ML fixed.   
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FIG. 7. (Color online) The 20 configurations, numbered from 1 to 20, used to determine ߱-interactions and ܧସf୦. The corresponding adlayer energies per atom are listed in Table III.
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Table II Eight choices (A–H) of the 3 configurations omitted out of 20 in the leave-3-out cross-validation method for determining ܧସf୦ and sixteen ߱’s. These configurations are shown in Fig. 7. 
Choice Three omitted configurations A 6 8 18 B 6 18 19 C 6 8 19 D 6 7 8 E 8 18 19 F 7 8 19 G 7 8 14 H 5 8 19 
Table III Adlayer energies (in eV) per Ag atom for 20 configurations numbered as in Fig. 7 and described by notations in the second column. All these energies are obtained from Eq. (1). The third column is the k mesh used in the DFT total-energy calculations for 8-, 10-, and 15-ML Fe(100) slabs.  No. Notation k mesh 8-ML slab 10-ML slab 15-ML slab 1 ܧଵൈଵଵ୦  21 ൈ ୡሺଶൈଶሻଶ୦ܧ 2 2.853– 2.854– 2.855– 21  11 ൈ ଶൈଶଶ୦ܧ 3 2.556– 2.566– 2.566– 11  11 ൈ ଶൈଵଵ୦ܧ 4 2.483– 2.497– 2.492– 11  11 ൈ ଶൈଶ,୮ସଶ୦ܧ 5 2.696– 2.702– 2.722– 21  11 ൈ ଷൈଵଶ୦ܧ 6 2.476–   11  7 ൈ ସൈଵ,୮ଵଶ୦ܧ 7 2.754– 2.756– 2.756– 21  5 ൈ ଷൈଶ,୮ଶଶ୦ܧ 8 2.750–   21  7 ൈ ଷൈଷ,୮ଶଶ୦ܧ 9 2.522–   11  7 ൈ ସൈସ,୮ଶଶ୦ܧ 10 2.511–   7  5 ൈ ଷൈଶ,୮ଵଶ୦ܧ 11 2.539–   5  7 ൈ ସൈଶ,୮ଵଶ୦ܧ 12 2.571–   11  5 ൈ ଷൈଷ,୮ଵଶ୦ܧ 13 2.585–   11  7 ൈ ଷൈଷ,୯ଵସ୦ܧ 14 2.579–   7  7 ൈ ଷൈଷ,୲଺ଷ୦ܧ 15 2.640–   7  7 ൈ ଷൈଶ,୲ଷଷ୦ܧ 16 2.528–   7  7 ൈ ଷൈଶ,୲ଵଷ୦ܧ 17 2.597–   11  7 ൈ ସൈଶ,୲ଵଷ୦ܧ 18 2.684–   11  5 ൈ ଷൈଷ,୲ଵଷ୦ܧ 19 2.679–   11  7 ൈ ସൈସ,୮ସଶ୦ܧ 20 2.602–   7  5 ൈ ସൈସଵ୦ܧ  2.498–   5  5 ൈ ସൈସଵୠܧ  2.529– 2.541– 2.549– 5  5 ൈ 5 –2.160 –2.155 –2.141 
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APPENDIX C: ADDITIONAL COMMENTS ON CLUSTER EXPANSION ANALYSIS In Sec. III, we noted that selecting configurations only with smaller unit cells to determine ܧସf୦ and ߱’s may yield an effective value of ܧ෨ସf୦ (due to incorporation of neglected longer-range interactions) and more accurate estimates of ߱’s (due to cancellation of the effects of such interactions). For a simple example of this effect, consider a system which is described exactly by three pair interactions, ߱୮ଵ, ߱୮ଶ, and ߱୮ଷ, plus a bent trio interaction ߱୲ଵ, in addition to an adsorption energy, ܧସf୦. Suppose, however, that we try to describe the system with only three interactions ෥߱୮ଵ, ෥߱୮ଶ, and ෥߱୲ଵ effectively ignoring the presence of the “longer-range” interaction ߱୮ଷ. Consider determination of these three ෥߱’s as well as the effective adsorption energy ܧ෨ସf୦ from the energies ܧଵൈଵଵ୦ ୡሺଶൈଶሻଶ୦ܧ , ଶൈଵଵ୦ܧ , , and ܧଶൈଶଵ୦  for pሺ1 ൈ 1ሻ, cሺ2 ൈ 2ሻ, pሺ2 ൈ 1ሻ, and pሺ2 ൈ 2ሻ configurations, respectively. Solution of the corresponding linear relations reveals that 
۔ۖەۖ
෨ସf୦ܧۓ ൌ ସf୦ܧ ൅ 2߱୮ଷ,෥߱୮ଵ ൌ ߱୮ଵ,                ෥߱୮ଶ ൌ ߱୮ଶ,                ෥߱୲ଵ ൌ ߱୲ଵ,                                                                                         ሺ20ሻ 

i.e., the effective ܧ෨ସf୦ incorporates the fully neglected pair interaction ߱୮ଷ and thus the ෥߱’s recover exactly the corresponding true ߱’s. The same exact recovery is achieved in an extended model also including the linear trio ߱୲ଶ.  In this case, one determining the four ෥߱’s as well as ܧ෨ସf୦ from the energies ܧଵൈଵଵ୦ ୡሺଶൈଶሻଶ୦ܧ , ଶൈଵଵ୦ܧ , ଶൈଶଵ୦ܧ ,  , and ܧଶൈଶଷ୦  for pሺ1 ൈ 1ሻ, cሺ2 ൈ 2ሻ, pሺ2 ൈ 1ሻ, pሺ2 ൈ 2ሻ , and pሺ2 ൈ 2ሻ configurations, respectively. Solution of the corresponding linear relations is that 

۔ۖەۖ
෨ସf୦ܧۓ ൌ ସf୦ܧ ൅ 2߱୮ଷ,෥߱୮ଵ ൌ ߱୮ଵ,               ෥߱୮ଶ ൌ ߱୮ଶ,               ෥߱୲ଵ ൌ ߱୲ଵ,                ෥߱୲ଶ ൌ ߱୲ଶ.                                                                                        ሺ21ሻ 

However, for more general models, ܧ෨ସf୦ will only partly incorporate the effect of neglected long range ߱’s and the ෥߱ will not exactly equal the corresponding true ߱. In Sec. III A, we presented a preliminary analysis of conventional interactions just retaining ߱୮ଵ, ߱୮ଶ, ߱୲ଵ, and ߱୲ଶ as the expected dominant interactions, and determining ܧସf୦ separately and directly either from the energy of a pሺ2 ൈ 2ሻ or pሺ4 ൈ 4ሻ configuration. Here, the four ߱’s were determined from the equations 

۔ۖەۖ
ଵൈଵଵ୦ܧۓ ൌ ସf୦ܧ ൅ 2߱୮ଵ ൅ 2߱୮ଶ ൅ 4߱୲ଵ ൅ 2߱୲ଶ,ܧୡሺଶൈଶሻଶ୦ ൌ ସf୦ܧ ൅ 2߱୮ଶ,                                        ܧଶൈଵଵ୦ ൌ ସf୦ܧ ൅ ߱୮ଵ ൅ ߱୲ଶ,                                  ܧଷൈଵଶ୦ ൌ ସf୦ܧ ൅ 32 ߱୮ଵ ൅ ߱୮ଶ ൅ 2߱୲ଵ ൅ ߱୲ଶ,                                               ሺ22ሻ 
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for the energies per adatom in pሺ1 ൈ 1ሻ, cሺ2 ൈ 2ሻ, pሺ2 ൈ 1ሻ, and pሺ3 ൈ 1ሻ configurations. 
APPENDIX D: ELECTRONIC AND ELASTIC COMPONENTS OF INTERACTIONS As indicated in Sec. III. C, it is instructive to compare results for lateral interactions using a relaxed substrate to obtain the total interaction and a frozen substrate to obtain the corresponding electronic component of the interaction. The difference between the total interaction and its electronic component gives the elastic component.  We have performed such a comparative analysis for first and second NN pairs, as well as one bent trio configuration, using a 5 ൈ 5 unit cell which is larger than those used in the above CE analysis, for 4-, 8-, and 12-ML Fe(100) slabs. From this sequence of calculations, limiting behavior for a semi-infinite slab is evident, see Table IV. As noted in Sec. III C, the elastic component of the interactions remains significant in this limit. We comment here further on the feature that these results for just the electronic component of the interactions are closer to the results of our CE analysis in Table I. These CE results were obtained with a relaxed substrate, and thus by default might be regarded as corresponding to total interactions.  However, a general feature of CE analyses is that energies are obtained from adlayer configurations with small-unit-cell periodicities including a pሺ1 ൈ 1ሻ configuration. Such small unit cells limit lateral relaxation of substrate atoms near the adsorbed atoms, relative to the more substantial relaxation which can occur for isolated adatoms or small clusters of adatoms in large-unit-cell analysis.  The optimal selection of (generally effective) interactions of adlayer atoms depends on the application of interest. For nucleation studies focused on diffusion of isolated adatoms and formation of small clusters, the values from larger-unit-cell calculations are more appropriate. For analysis of phenomena involving higher-coverage configurations, such as cluster diffusion and sintering, results from CE analysis or refinements thereof are more appropriate. 

Table IV Decomposition into the electronic and elastic components of the adsorption energy and ߱-interactions (in eV) for Ag on 4-, 8-, and 12-ML Fe(100) slabs. ܧସf୦, ߱୮ଵ, ߱୮ଶ, and ߱୲ଵ are obtained from DFT total energies of configurations with one adatom, one first NN pair, one second NN pair, and one bent trio, respectively, on the slab using a 5 ൈ 5 unit cell. The ࢑ mesh for the 5 ൈ 5-unit-cell calculations is taken to be 5 ൈ 5. In the 8- and 12-ML slab calculations, we relax topmost 5 ML of Fe(100) slab, and keep the underlying layers fixed. For the 4-ML slab calculations, we relax topmost 3 ML and keep the bottom layer fixed. Slab thickness  Electronic Elastic Total 4 ML ܧସf୦ –2.511 –0.094 –2.606  ߱୮ଵ –0.166 +0.077 –0.088  ߱୮ଶ –0.049 +0.049 –0.000  ߱୲ଵ +0.050 –0.050 –0.000 8 ML ܧସf୦ –2.485 –0.074 –2.559  ߱୮ଵ –0.171 +0.057 –0.114  ߱୮ଶ –0.043 +0.036 –0.008  ߱୲ଵ +0.045 –0.018 +0.027 
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12 ML ܧସf୦ –2.482 –0.080 –2.562  ߱୮ଵ –0.175 +0.062 –0.113  ߱୮ଶ –0.042 +0.038 –0.004  ߱୲ଵ +0.047 –0.020 +0.027 
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