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Native point defects and doping in ZnGeN2

Dmitry Skachkov, Atchara Punya Jaroenjittichai,∗ Ling-yi Huang and Walter R. L. Lambrecht
Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079

A computational study within the framework of density functional theory in the local density
approximation (LDA) is presented for native defects and doping in ZnGeN2. Gap corrections are
taken into account using an LDA+U approach and finite size corrections for charged defects are
evaluated in terms of an effective charge model, introduced in this paper. The donor or acceptor
characteristics of each of the cation and N vacancies and the two cation antisite defects are deter-
mined as well as their energies of formation under different chemical potential conditions. These are
then used to determine defect concentrations and Fermi level pinning self-consistently. The cation
antisite defects are found to have significantly lower formation energy than the cation vacancies. At
a typical growth temperature of 1200K, the charge neutrality condition pins the Fermi level close
to the crossing of the formation energies of the Zn−1

Ge acceptor with the Ge2+
Zn shallow donor. Since

this point lies closer to the valence band maximum (VBM), intrinsic p-type doping would result
at the growth temperature and will persist at room temperature if the defect concentrations are
frozen in. It is the highest and of order 1016 cm−3 for the most Ge-poor condition. On the other
hand, for the most Ge-poor condition, it drops to 1013 cm−3 at 1200K and to almost zero at 300K
because then the Fermi level is too close to the middle of the gap. Oxygen impurities are found to
strongly prefer the ON substitutional site and are found to be shallow donors with a very low energy
of formation. It can only be suppressed by strongly reducing the oxygen partial pressure relative
to that of nitrogen. At high temperatures, however, introduction of oxygen will be accompanied by
compensating Zn−2

Ge acceptors and would lead to negligible net doping. The prospects for Ga base
p-type doping are evaluated. While good solubility is expected, site competition between Zn and
Ge sites is found to lead to a compensation problem similar to that of the two antisites and leads
to p-type doping of the same level of 1016 cm−3.

PACS numbers: 71.55.Ht

I. INTRODUCTION

ZnGeN2 is a heterovalent semiconductor, related to
wurtzite GaN, from which it can conceptually be derived
by replacing Ga (which is a group III element) by equal
amounts of Zn (group-II) and Ge (group-IV). If this is
done in such a fashion that each N is surrounded by ex-
actly two Zn and two Ge, then the octet rule of bonding
is locally satisfied and leads to a band structure and other
properties with great similarity to GaN. It is thus a po-
tential replacement for GaN or at least an addition to the
family of group-III nitrides in various technological appli-
cations, notably light-emitting diodes, lasers, ultraviolet
light sensors, and other opto-electronic devices, as well
as high-electron-mobility transistors, that all rely on the
wide and direct band gap of this material. In a broader
context, moving from binary and pseudobinary isovalent
semiconductors to the class of heterovalent ternary semi-
conductors could offer new avenues for band-structure
and defect engineering. ZnGeN2 is part of a broader
family of II-IV-N2 semiconductors and the best studied
member of the family. Nonetheless very little is currently
known about its defect physics.

Band structures of the Zn-IV-N2 compounds with
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IV=Si, Ge, Sn were studied previously in our group, us-
ing the quasiparticle self-consistent (QS)GW method.1

Lattice dynamical properties of this family of materials
were studied in Refs.2–4. For an overview of the proper-
ties of these materials, their growth methods, including
work by other research groups, we refer the reader to a
review in Ref. 5. The general motivation for the study of
this materials family is that heterovalent ternaries may
enrich the physics of the usual binary semiconductors.
By their lower symmetry they offer new opportunities
for optical applications. Combining them with the fam-
ily of III-nitrides, new flexibilities are added in device
design.

The observed ordering of the Zn and Ge atoms corre-
sponds to a Pna21 space group with orthorhombic sym-
metry and a 16 atom unit cell. The role of the octet
rule and possible origins of disorder in ZnGeN2 were re-
cently studied by Quayle et al.6 One of the central ques-
tions in this family of materials is indeed to what ex-
tent the group II and group IV atoms are ordered or
disordered. Both ordered and disordered phases have
been observed experimentally depending on growth con-
ditions. In Quayle et al.6 it is proposed that the observed
disordered phase properties, such as the Raman spectra,
X-ray diffraction (XRD) spectra and photoluminescence
or band gap insensitivity to disorder could be explained
in terms of a model which strictly observes the octet rule
locally. In other words, instead of a fully random distri-
bution of Zn and Ge over the cation sublattice, a more
restricted distribution was postulated which preserves lo-
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cally that each N is surrounded by exactly two Zn and two
Ge atoms. In other works,7 more precisely on ZnSnN2,
it was proposed that disorder could strongly affect the
band gap. In the above work by Quayle et al.6 it was
argued that this might primarily be due to exchange de-
fects which break the octet rule. As a preliminary to the
studying such exchange defects, which amount to com-
plexes of ZnGe (Zn on a Ge site) with GeZn antisites, a
thorough understanding of simple point defects seems in
order.

The defect physics in a heterovalent semiconductor
such as ZnGeN2 is far more complex than in a binary
compound. For example, there is now the possibility of
cation anti-site disorder, ZnGe and GeZn as well as two
types of cation vacancies, VZn and VGe. Important ques-
tions are: which of these defects are more likely to occur
and how do they influence the position of the Fermi level?
One might expect that deviations from perfect stoichiom-
etry could dope the material since ZnGe is expected to
be an acceptor and GeZn to be a donor. In previous
preliminary considerations about the defect physics, for
example in Ref. 5 we noted that if one would like to
dope the material p-type by introducing Ga on Ge sites
rather than Ga on Zn sites, one would work in Ge-poor
conditions. At the same time this would promote ZnGe

antisites, which are also expected to be acceptors. This
contrasts with the usual notion that in wide-band-gap
semiconductors, introducing acceptor dopants would pro-
mote compensating native donors. Other sources of un-
desirable n-type background doping in GaN, for example
from Si impurities resulting from the quartz tubes used
in metalorganic chemical vapor deposition (MOCVD),
would not be expected to be dopants in ZnGeN2 because
Si is isovalent with Ge. Thus it seems that the heterova-
lent nitrides may have advantages over binary nitrides
for p-type doping. This is important because high lev-
els of p-type doping are still a limiting factor in nitride
devices. The technological achievement of high efficiency
blue LEDs was based in large part on the breakthrough
of achieving p-type doping. So, p-type doping is a central
goal in nitride technology.

Although there thus may possibly be advantages for II-
IV-N2 materials in terms of doping, confirmation of this
proposal requires a thorough investigation of its point
defect physics. As we will show in this paper, the above
mentioned ideas of about Ga doping and doping by sto-
ichiometry variation depend crucially on their energies
of formation and the resulting Fermi-level pinning in the
gap. Secondly, when considering doping by group-III el-
ements such as Ga, we need to evaluate the effects of the
site competition since Ga on the Zn site would be a donor
and Ga on the Ge site would be an acceptor. Finally, the
effects of commonly observed impurities such as oxygen
need to be evaluated.

In this paper we present a comprehensive study of na-
tive defects, including VGe, VZn, VN, ZnGe, GeZn. We also
considered ON, a commonly found impurity and possibly
n-type dopant, as well as GaZn and GaGe prospective

dopants. First, however, we present our computational
method in some detail, in particular the aspects which
related to supercell size effects.

II. COMPUTATIONAL METHODS

A. General aspects

Our calculations are based on density functional
theory8,9 in the local density approximation (LDA).10 We
use the full-potential linearized muffin-tin orbital method
as implemented in the lm-suite11 and described in Meth-
fessel et al.12 and Kotani et al.13. To test the effects of
the gap underestimate by LDA, we also used the LDA+U
approach, which allows us to open the gap as explained
below. Specific aspects of this method relating to defect
calculations are as follows.

We used a 2× 2× 2 supercell of the 16 atom primitive
cell of ZnGeN2, which thus contains 128 atoms. The
atomic positions were fully relaxed. To accelerate this
process, we found it useful to use a finite temperature
smearing around the Fermi level, which allows us to keep
the k-point mesh minimal. Tests were done for either a
single k-point or a symmetrized 2× 2× 2 mesh and the
final results for the energies of formation were calculated
with the larger mesh.

B. Charged defects

Charged defect states were compensated by a uniform
background charge density. This uniform background
is required to obtain meaningful electrostatic energies.
One may also interpret it as representing the screening
charge density. In the FP-LMTO code, it is fully taken
into account, not just to fix the reference level in the
Madelung potential. For example inside the spheres, a
uniform charge density does not produce a constant po-
tential. While we have used this form of implementing
the background charge density since we started work on
point defects,14 it differs from usual practice. The im-
portance of this was recently pointed out by Bruneval et
al.15

Subsequently, we calculate the band structures and the
local densities of states on the atoms neighboring the de-
fect site so as to inspect their basic electronic proper-
ties. The defect wave functions ψD(r) or rather |ψD(r)|2
were calculated by integrating over a small energy win-
dow bracketing the defect band and visualized as a con-
stant value surface for several states of interest. This
is used to determine whether or not certain states were
localized or more delocalized.
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C. Energies of formation

We calculate the energies of formation using the equa-
tion:

Efor(D, q) = Etot(D, q)− Etot(X)+

+
∑
i

µi∆ni + q(εv + εF + Valign) + Ecorr
(1)

Here Efor(D, q) is the energy of formation of defect D
in charge state q, Etot(D, q) is the corresponding total
energy of the supercell, from which we actually already
subtracted the free atom energies, Etot(X) is the super-
cell total energy of the perfect crystal calculated in the
same size supercell. The chemical potentials µi depend
on the reservoirs to which atoms for a defect are removed
or from which additional atoms are taken and depend on
the growth conditions. The ∆ni represent the changes
in occupation of the various atomic species in the defect
system relative to the perfect crystal. For example for a
ZnGe ∆nGe = +1 and ∆nZn = −1.

D. Chemical potentials of the atoms

The allowed ranges of the chemical potentials are de-
termined by equilibrium with the host material, and var-
ious other binary compounds, i.e. Zn3N2 and Ge3N4,
bulk Ge, bulk Zn and N2 molecules:

µGe + µZn + 2µN = µZnGeN2

3µZn + 2µN ≤ µZn3N2 ,

3µGe + 4µN ≤ µGe3N4 ,

µGe ≤ 0,

µZn ≤ 0,

µN ≤ 0. (2)

Here the chemical potential are defined relative to their
reference values for each element in its state naturally
occurring at room temperature and standard pressure.
In other words, µi = µabs

i − µ0
i The reference values µ0

Ge
correspond to bulk Ge in the diamond structure, µ0

Zn
to bulk metallic Zn and µ0

N to the N2 molecule. The
total energies in Eq. 1 are then similarly defined by
already subtracting the reference state chemical poten-
tials. The values used here are slightly changed from
previous work5 to reflect our updated calculations of the
energy of formation of ZnGeN2.6 The first equation in
Eq. 2 is an equality because we assume definitely equi-
librium with the host material. Thus one of the three
chemical potentials is fixed in terms of the other two
by the equilibrium condition with ZnGeN2. We choose
µGe and µZn as independent variables. The diagonal line
(BC) µGe + µZn = Efor(ZnGeN2) corresponds to the N-
rich condition µabs

N = µ0
N or µN = 0. The region where

ZnGeN2 is stable is delimited by the labels A-D and the
origin. When adding impurities, such as Ga and O, we

FIG. 1: (Color on-line) Chemical potential diagram for
ZnGeN2.

also need to fix their chemical potentials. As usual, this
is done by assuming they have the chemical potential of
their standard reference states, bulk metallic Ga or an O2

molecule. However, if the system is N-rich, we may also
assume that Ga is in equilibrium with GaN. For O we will
study the behavior as function of the partial pressure of
O2 relative to that of N2.

E. Alignment potential

The last two terms in Eq.1 represents the chemical po-
tential of the electrons and the periodic image potential
correction. The Fermi level with respect to the valence
band maximum (VBM) is εF and the VBM one-electron
energy is εv. The latter needs to be calculated with re-
spect to the cell-averaged electrostatic potential. Because
the average electrostatic potential in a periodic system is
not a well-defined quantity, an alignment shift is required
between the potential at an atom far away from the defect
in the supercell containing defect and the corresponding
potential in the perfect crystal. For a neutral system this
is easily determined because it quickly converges but for
a charged system, it varies slowly as q/εd with d the dis-
tance from the defect. We followed the recommendations
of a recent paper by Kumagai et al.16 in this respect of
analyzing and visualizing this dependence in the full 3D
space. This procedure is essentially equivalent to that
proposed by Freysoldt et al. ,17–19 although it differs in
some practical aspects. For example, Freysoldt et al.
typically use a continuous 2D averaged form of the de-
fect model charge potential to determine the alignment
whereas we use a discretized radial distribution. We do
not here include the anisotropic treatment of the point
charge background interaction introduced by Kumagai et
al.16 because the material under study is not expected to
exhibit low-dimensional or strongly anisotropic aspects.

Our procedure is illustrated in Fig. 2 for the case
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FIG. 2: (Color on-line) Electrostatic potential energy of an
electron for the VN defect for the q = 0 (a) and q = +1 (b)
charge states with respect to the potential in the perfect crys-
tal as a function of distance from the defect. The differently
colored symbols correspond to potentials on different sites.
For the q = 1 state, the red dashed curve represents the point
charge potential q/εd and the horizontal red dashed line is its
asymptote which gives the alignment potential.

of the nitrogen vacancy in the neutral and +1 charge
states. First we determine electrostatic potential val-
ues at the muffin-tin radii of all atoms in the supercell
relative to those of the corresponding atom in the host
unit cell. These are shown as differently colored circles
for the different types of atoms. Note that we plot the
electrostatic energy of an electron, so it is lower near a
positively charged defect. We plot them as function of
distance to the defect site to which they are nearest in
the periodic structure. In case of a neutral defect, we
can then easily determine the average over the region
where this alignment potential difference becomes flat,
i.e. beyond a minimum distance from the defect center,

about 4.5 Å in practice. For a charged defect with a
well-localized defect net defect charge, however, there is
still a systematic variation to this potential, which is well
described by Valign + q/εd. Here ε is the static dielectric
constant, for which we use a value of ∼ 10 and we use
atomic units. After we subtract q/εd a region where the
average of these potentials looks flat can again be ob-
tained beyond some distance. So, Valign is determined by
averaging over this region after subtracting q/εd. This
Valign = ∆V0/b + ∆Vq/0 = ∆Vq/b in Freysoldt et al. ’s

notation17 includes both ∆V0/b, which is the difference
in average potential between the neutral defect and bulk
host system which simply arises from the arbitrariness of
the average potential, and ∆Vq/0, which the change be-
tween the charged and neutral average potentials which
results from the periodic arrangement of the net point
charges in the neutralizing background. In some cases,
notably for shallow donor states, we find that potential
is better described by an effective rather than the nom-
inal charge of the defect. A related concept was earlier
introduced by Oba et al.20 by using a net charge even for
neutral shallow defects. It is illustrated here for the case
of Ge2+

Zn . While the nominal charge of the defect is +2,
it is clearly seen in Fig.3 that the potential near the de-
fect is better described using qeff = +1. A way to think
about this is that part of the defect electronic charge is
delocalized and simply reduces the corresponding back-
ground, while part stays localized near the defect because
of the nuclear charge. This model is thus similar to the
model charge distribution consisting of a localized Gaus-
sian of reduced charge plus a fully delocalized remainder
of the charge as used by Komsa et al.21 for delocalized
cases, such as V +2

C . For the region far away from the de-
fect, the potential produced by a localized Gaussian or a
point charge should be the same since the potential out-
side a spherical charge distribution only depends on its
net charge. The important point is that the net charge
is reduced because of the delocalization.

F. Image potential corrections

Consistent with this point charge model potential, we
then need to add a point charge correction to the total
energy for the charged defect system. This term rep-
resents the Madelung energy of the point charges em-
bedded in the back ground charge density. However,
when the net charge of the defect is qeff this becomes
EMad = −αq2

eff/(2εL), which converges slowly as 1/L,
with L the size of the system. This correction term was
first considered by Leslie and Gillan.22 In practice, we
calculate the Madelung constant assuming a spherical
model of the supercell, which gives α/(2L) = 9/(10RWS)
with 4πR3

WS/3 = Vcell. We here use the static dielec-
tric constant, consistent with the fact that all atomic
positions are relaxed and thus atomic displacements con-
tribute to the screening. In other words, a correction
energy Ecorr = −EMad is added thereby extrapolating
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FIG. 3: (Color on-line) Electrostatic potential energy of an
electron for the GeZn defect for the q = +2 charge state. The
blue dashed line corresponds to q = +2, and the red dashed
line corresponds to qeff = +1.

to the L → ∞ limit. Note that both this term and the
alignment term are calculated with qeff , but the terms
q(εv + εF ) maintain the nominal charge.

This model works well as long as the defect charge den-
sity is sufficiently well localized within the supercell. For
a shallow defect this is not the case. In fact, while in real-
ity there will then be an effective mass-like or hydrogenic
defect level slightly (of order a few 10 meV) below the
conduction band (for a donor) or slightly above the VBM
(for an acceptor), in the calculations, we find no states in
the gap at all, and instead a filling of the bottom of the
conduction band (or depletion of the top of the valence
band). This situation occurs here for example for GeZn.
In this case, the charge density for the charged or neu-
tral state of the donor is similar because in the charged
state, we add a background charge density, while in the
neutral charge state, the electrons are spread out nearly
uniformly in the conduction band. This is why for the
GeZn case we find that the potential around the defect
looks rather similar in the 0, +1 and +2 states. Segev and
Wei23 noted that if the defect charge density is modeled
as a Gaussian distribution rather than a point charge, the
correction decreases to zero when the width of a Gaus-
sian defect model distribution is increased. However, al-
though the electronic contribution to the defect charge
density is spread out, the net charge density including
electron plus nuclear charge is still quite localized (be-
cause of the nuclear charge discrepancy between defect
and host) and a point charge correction is still needed
for the 2+ charge state. In this case, we calculate it with
qeff . On the other hand for the neutral charge state,
or +1 we can then determine the energy of formation
from the consideration that the transition state 2 + /+
should occur essentially at the shallow level just below
the conduction band minimum (CBM). This approach is
similar to the one proposed by Kumagai et al.24 In agree-
ment with their conclusion, we find that this is equivalent

to adding a point charge correction even for the neutral
charge state.

As was discussed for example by Komsa et al.21 and
Freysoldt et al.18,19, there is then no need any more for
the quadrupole correction term introduced by Makov and
Payne25 because the latter is equivalent to the alignment
term and both vary as 1/L3 with the size of the supercell.

G. LDA+U gap corrections

The local density approximation (LDA) is known to
severely underestimate band gaps and this may affect de-
fect levels. For a shallow donor or acceptor, it is pretty
clear that the defect states will just follow the conduc-
tion or valence band respectively when gap corrections
are applied. However, for a deep level, it is less clear.
Therefore, we need an explicit way to correct the gap.
Ideally, we would use GW calculations if we study the
one-electron levels. However, the GW method is still
very time consuming for large systems. An alternative
is provided by the LSDA+U method.26–29 In its simplest
form,29 in the LSDA+U method, an atomic orbital (or
more generally a localized basis set orbital or partial wave
inside a muffin-tin sphere) i is shifted by

Vi = Ui

(
1

2
− ni

)
(3)

where ni is the occupation number of that orbital. In
other words, if the orbital is completely occupied (ni = 1)
its orbital energy is shifted by −Ui/2 and if the orbital
is empty (ni = 0), its orbital energy is shifted up by
Ui/2. While this method was originally introduced to
deal with partially filled shells of localized orbitals, such
as d or f states in transition metals or rare-earths, we
here apply it to the orbitals that primarily determine
the gap-edge states. This approach was used successfully
previously for defects in ZnO.30,31 The valence band max-
imum is N-p like. However, we found in previous QSGW
calculations1 of ZnGeN2 that the VBM essentially does
not shift. The gap correction is completely carried by
the CBM. Therefore, we instead look at the orbital com-
position of the CBM. It is formed primarily from Ge-s,
Ge-p, Zn-s, and Zn-p states. The CBM at Γ is more
predominantly formed by the s-states but the states in
the rest of the BZ have also strong p contributions. We
found that we obtain an almost rigid shift gap correc-
tion throughout the Brillouin zone by applying both s
and p U -shifts on both Zn and Ge. Specifically with
UGe−s = 3.5 Ryd, UZn−s = 3.5 Ryd, UGe−p = 2.4 Ryd,
UZn−p = 2.4 Ryd, we obtain a direct gap of 3.4 eV and a
more or less rigid shift of the conduction band at other
k-points. In other words, this LSDA+U model provides
good agreement with the QSGW results of Ref. 1 which
was there shown to agree well with experiment. This may
not be a unique solution but it provides a good model to
examine what the effect of the conduction band shift is
on defect levels.
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We caution that it is not a-priori clear that an
LSDA+U model would capture the gap correction and
even if it does so, it is not clear it does so for the right
reasons. We know that the actual GW self-energy Σ is a
non-local operator and in fact probably fairly long range.
So, it is not evident at all that its effect can be mimicked
correctly by a local shift of certain atomic orbitals. The
values we need for Ui may also seem extremely large or
unphysical. This is in part because the occupation num-
bers are not really zero or one. In the bonding, charge
is transferred from Zn and Ge to N, so one expects the
occupation numbers of the Zn and Ge dangling bonds to
be less than 1/2 but they are not zero because the bond-
ing states have some Zn and Ge character. Also, the
conduction band states are not purely the corresponding
atomic orbital basis states. Thus the correction will be
in the right direction but we need a fairly large U to shift
reproduced the actual band gap. What is more impor-
tant is that the potential shifts Vi in Eq. 3 are physically
reasonable. We also do not claim or use the LSDA+U
approach here for other properties of the material, only
as a device to inspect the effect of gap shifts on the one-
electron levels.

Nonetheless, the physics we capture with this model, is
that if a defect wave function is conceptually decomposed
into a conduction and valence band like state of the host,
then the defect state will shift in proportion to how much
it is valence or conduction band like and this is captured
by applying shifts to the atomic orbitals that primarily
define these states. In other words, defect states that
are strongly N-like will not shift in our model but states
that have a strong Zn or Ge s or p contribution will shift
up. In other words, our model will be most useful to
check the behavior of donor states. If the defects move up
along with the conduction band, they can be considered
shallow donors. However, if the correction shifts them
less than the conduction band, it would make the donor
level deeper. In some cases it might also change defect
resonances occurring above the CBM in LDA into actual
defect levels in the gap.

III. RESULTS

A. Relaxed structures

We start by discussing the relaxed structures of the
defects. Table I shows the displacements of the nearest
atoms to the defect from their idealized positions in the
perfect crystal for various charge states. Positive (nega-
tive) values mean outward (inward) displacements. Ex-
cept for two cases (OZn and OGe) the displacement of
the defect atom itself (ZnGe, GeZn, ON, GaGe, and GaZn)
with respect to the idealized position is very small. For
OZn and OGe, the displacement of the O atom from the
missing Zn (Ge) atom position is 0.74 (0.43) Å. Displace-
ments of similar magnitude occur for the charged states.
The defects have no symmetry, since the site point group

consists only of the identity. For the cation vacancies,
the atoms move outward but slightly less for the neg-
ative charge state. For the ZnGe the relaxation is also
outward, which is consistent with the larger Zn-N than
Ge-N bond length. The outward relaxation of nearest N
atoms becomes larger for negative charge states in con-
trast to the cation vacancies VZn and VGe. For GeZn an
inward relaxation is observed, again consistent with the
bond lengths. The inward relaxation slightly increases
for the q = +2 state. Following the same trend there
is an inward relaxation near a GaZn but an outward re-
laxation of GaGe. Near the V 0

N, the Ge atoms move in
and the Zn move out. In the q = +1 state the defect
V +1

N pushes back both Zn and Ge atoms and inward re-
laxation of Ge atoms slightly decreases whereas outward
relaxation of Zn slightly increases. For the ON defect
both Zn and Ge atoms have outward relaxation.

TABLE I: Displacement (in Å) of nearest atoms with respect
to the defect site.

Structure Zn Ge N

V0
Ge

0.16; 0.26;
0.22; 0.27

V−2
Ge

0.19; 0.25;
0.22; 0.24

V0
Zn

0.19; 0.20;
0.18; 0.14

V−2
Zn

0.13; 0.18;
0.14; 0.13

V0
N 0.16; 0.07 -0.08; -0.11

V+1
N 0.20; 0.12 -0.02; -0.08

Zn0
Ge

0.09; 0.11;
0.10; 0.11

Zn−2
Ge

0.11; 0.13;
0.11; 0.12

Ge+2
Zn

-0.12; -0.12;
-0.13; -0.13

O+1
N 0.12; 0.09 0.06; 0.06

Ga+1
Zn

-0.06; -0.07;
-0.07; -0.07

Ga0
Ge

0.05; 0.05;
0.05; 0.05

Ga−1
Ge

0.05; 0.05;
0.05; 0.05

B. Qualitative discussion of defect levels

In this section we discuss the qualitative nature of
the defects studied by examining their one-electron band
structure, density of states and defect wave functions.

1. Cation vacancies

We start with the VGe in the neutral charge state. Fig.
4 shows the supercell band structure and partial densities
of states (PDOS) on the nearest neighbor atoms. An
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FIG. 4: (Color on-line) Band structure and PDOS on the
nearest neighbor atoms for VGe in q = 0 state. In this and
subsequent band structure plots, the zero of energy is the
Fermi energy.

empty sphere E is located on the vacancy site itself, so
we can also examine the partial wave projected density
of states on the defect site. We can see that a sharp peak
occurs in the PDOS just above the VBM corresponding
to three localized bands, which are partially occupied.
This can be understood as follows. In ZnGeN2, each N
is surrounded by two Zn and two Ge atoms. Nominally,
the Zn atoms share 1/2 electron per dangling bond with
3/2 electrons from N in a Zn-N bond, while the Ge atoms
share each one electron per bond with one from N in the
Ge-N bond. Thus around a VGe we have four N dangling
bonds with 4 electrons in the neutral charge state. In
a tetrahedral environment, the dangling bonds form an
a1 linear combination, which usually lies below the VBM
and a triply degenerate t2 state in the gap. Thus the t2
state in this case has two electrons and room for up to
four more in the q = −4 charge state. Thus the three
bands we see in the band picture correspond to the t2
state. It is not perfectly degenerate because of the lower
than tetrahedral site symmetry as mentioned earlier. As
we populate these bands with electrons, the level shifts
deeper into the gap and eventually for the q = −4 state,
even the lower a1 symmetry band emerges out of the
VBM.

The three defect levels in the gap have indeed quite lo-
calized defect wave functions. They are shown in Fig. 5.
In the Supplementary Information we provide additional
data files which allow to view this and similar figures in
3D, rotate the models, zoom in, etc. We label the states
as lowest unoccupied molecular orbital (LUMO), highest
occupied molecular orbital (HOMO), and so on. Note
that in the q = −2 state, the LUMO becomes HOMO
and the LUMO+1 becomes LUMO and in the q = −4
state, the LUMO+1 becomes HOMO. This is clearly a
deep acceptor.

Moving on to the VZn we have a similar situation but

FIG. 5: (Color on-line) Defect wavefunctions |ψD|2, for VGe in
q = 0 state, from top to bottom LUMO+1, LUMO, HOMO.
The magenta sphere indicates the VGe site. In this and sub-
sequent defect wave function plots, the small grey spheres are
N, the large grey spheres are Zn and the large purple spheres
are Ge. The figure shows a unit cell containing one defect.
However the calculated structure is periodic, so the charge
densities shown as yellow isosurface should be viewed as pe-
riodically repeating. Thus, some parts of this charge density
near the edge of the cell may be closer to the defect in the
neighboring cell.

now in the neutral charge state, the N-dangling bonds
are already filled with 4 electrons. So, it can maximally
occur in a q = −2 charge state. Its band structure and
PDOS (Fig. 6) show again a sharp peak just above the
VBM. It lies closer to the VBM than in the VGe case,
indicating a shallower defect. In Fig. 7 we show the
defect wave functions |ψD|2 for the lowest unoccupied
molecular orbital (LUMO), and the next two levels be-
low it, HOMO, HOMO-1 for the q = 0 state. We can
see that the LUMO is mostly localized in the plane of
the vacancy and spreads out over first and second near-
est nitrogen neighbors of the VZn in the a direction. The
HOMO and HOMO-1 are more localized and spread in
the b and c direction respectively. All these states are
reasonably well localized, although less than for the VGe.
In particular, the LUMO state which becomes occupied
with electrons in the q = −1 and q = −2 states is rather
spread out. This state could be labeled a shallow ac-
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FIG. 6: (Color on-line) Band structure and projected density
of states on atoms near the VZn in q = 0 state.

FIG. 7: (Color on-line) Defect wavefunctions |ψD|2, for VZn in
q = 0 state, from top to bottom LUMO, HOMO, HOMO-1.
The magenta sphere indicates the VZn site.

ceptor. Both the VGe and VZn are clearly acceptors and
therefore their wave functions are mostly localized on N
atoms of the VBM.
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FIG. 8: (Color on-line) Band structure and projected density
of states on atoms near the VN in q = 0 state.

FIG. 9: (Color on-line) Defect wavefunctions |ψD|2, for VN

in q = 0 state, from top to bottom HOMO, HOMO-1. The
magenta sphere indicates the VN site.

2. Nitrogen vacancy

The VN (Fig. 8) shows one defect level about 0.3 eV
below the gap with the Fermi level passing through it
in the neutral charge state. In creating a VN we remove
8 valence states but only 5 electrons per vacancy. Thus
the defect levels should accommodate 3 electrons. We
can also think of these as residing in the Ge and Zn dan-
gling bonds which respectively provide 1 electron and
1/2 electron each. The defect level in the gap contains
clearly just one electron, so there must be two more elec-
trons in a defect state below it. On closer inspection one
indeed can see a sharp peak in PDOS just above or at
the VBM. So, that must be the other defect state. We
can view the lower state as the a1 combination of dan-
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FIG. 10: (Color on-line) Band structure and projected den-
sity of states on atoms near the VN in q = 0 state using the
LSDA+U method.

gling bonds in a tetrahedral model, but inspecting this
defect level wave function, it is found to be rather delo-
calized and spread mostly over N atoms as can be seen
in Fig. 9 for the HOMO-1 state. The level below the
CBM (HOMO in the q = 0 state) on the other hand is
very strongly localized on the two neighboring Ge atoms,
consistent with the fact, that these atoms move inward
toward the vacancy. We can also discern two additional
bands above the CBM, which form resonances in the con-
duction band. Together with the defect level, these could
be viewed as being derived from the t2 tetrahedral linear
combinations of Ge and Zn dangling bonds. In princi-
ple, this defect can support q = +3,+2,+1, 0,−1 states.
Furthermore, the q = 0 and q = 2 states would have an
unpaired spin (S = 1/2) and need to be studied including
spin-polarization. The +2 and +3 states are expected to
only occur if the Fermi level is very close the VBM. The
defect can in principle both capture an electron or release
an electron, so it could be viewed as a deep amphoteric
trap level. However, we will show later that the negative
charge state lies above the CBM, so it behaves rather like
a deep donor.

Because the main defect level has a rather localized
wave function it is not so clear how it will change when
corrections of the gap beyond LDA are included. There-
fore, we need to closely examine how this level behaves
with the LSDA+U method. In Fig. 10 we show the band
structure and PDOS for the V 0

N within the LSDA+U
model described in Sec.II. We can see that the gap is
now close to 3.4 eV, and the defect level for the majority
spin lies a little deeper (0.5 eV) below the CBM than be-
fore. We now treated the system spin-polarized to take
into account its net spin S = 1/2. In fact, the minority
spin state of the defect level is seen to lie just below the
CBM. We can still see two even sharper resonances in
the conduction band and the lower one of these is now
right at the CBM. Thus, the character of the defect did
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FIG. 11: (Color on-line) Band structure and projected density
of states on nearest atoms to the ZnGe antisite in the q = 0
state.

FIG. 12: (Color on-line) Defect wave function |ψD|2 for the
LUMO in the ZnGe antisite in q = 0.

not change by using LSDA+U. This is consistent with
its defect character being very localized on Ge-s and Ge-
p states. In the single positive charge state, the Fermi
level becomes pinned at the lower defect level (the a1

like level) and these states did not move at all because
they are mostly N-p like and in that case, there is also
no net magnetic moment.

3. Antisite defects

Next, we examine the antisite defects. For the ZnGe

case, we show the band structure and PDOS in Fig. 11.
We see a situation very similar to the VZn. This is indeed
expected to be a double acceptor. It can take two extra
electrons in a defect level just above the VBM in the
band picture. Its LUMO wavefunction in the q = 0 state
is shown in Fig. 12 and is seen to be fairly localized.

For GeZn, we find that in the neutral and even in the
q = +1 charge state, the Fermi level lies well inside the
conduction band. No states are seen in the gap. No
changes in bands are discernible but for q = +2 the Fermi
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FIG. 13: (Color on-line) Band structure and projected density
of states on nearest atoms to the GeZn antisite in the q = +1
state.

level shifts to the VBM. This is a signature of a shallow
donor state. One can see a resonance state in the CBM
but not states in the gap. This is because a truly shallow
donor state is spread well beyond the size of our supercell.
Our model does not include the hydrogenic Coulomb tail
q/εr that would extract a shallow bound state below the
CBM. Thus the GeZn is a shallow double donor. We
find that if we apply the LSDA+U method, still no state
occurs in the gap. In other words, the resonance does not
drop out of the CBM by shifting up the CBM. Thus, we
conclude that the shallow donor character of this defect
is robust against gap corrections beyond LDA.

4. Impurities

We now examine various impurities. For oxygen we
performed calculations for OGe, OZn and ON. For the
cation locations of the O we found strong relaxations
including of the defect atom itself. We find that the O
moves close to one of the surrounding N atoms and forms
essentially an NO bond with bond lengths of about 1.2–
1.3 Å. Two defect levels occur in the middle of the gap
with several more close to the VBM. These are a mixture
of O-p and dangling bonds on N or possibly a NO molec-
ular state. In the Ge case, they contain 2 less electrons
than in the Zn case in the neutral state. Both these de-
fects however, have much higher energies of formation of
order 4-7 eV than for the N site and therefore we have
not analyzed these situations in more detail and we do
not show their band structure and PDOS results here be-
cause they are very unlikely to occur. They are however
included in the Supplementary Information.

For the neutral charge state of ON, the Fermi level lies
within the conduction band. No defect states occur in
the gap. In Fig. 14 we show the bands and PDOS for
the q = +1 state when the Fermi level lies at the VBM.
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FIG. 14: (Color on-line) Band structure and projected density
of states on nearest atoms for ON in q = +1 state.

So, this is a shallow donor situation similar to GeZn. We
see again a resonant level slightly above the CBM. When
using LSDA+U, we find a similar band structure. In
other words, the resonance does not drop into the gap.

For Ga impurities, we need to consider both the Zn
and Ge site. In the GaZn case, we find a shallow donor
situation similar to that of GeZn except that it is a sin-
gle donor. For GaGe we find a situation similar to that
of ZnGe but now with single acceptor character. A peak
corresponding to the acceptor defect level is seen in the
band structure very close to or at the VBM. Band struc-
ture and PDOS figures are included in the Supplementary
Information for these cases.

C. Energies of formation

The energies of formation were calculated according to
Eq. 1 using effective charges as explained in Sec. II E.
For the shallow donors (GeZn, ON and GaZn), we place
the formation energy of the defect in the state with the
donor level occupied, at the bottom of the conduction
band neglecting the small binding energy of the shallow
donor. Likewise for the shallow acceptor GaGe we cal-
culate the neutral charge state assuming the 0/− tran-
sition level occurs close the VBM. This is equivalent to
taking into account an effective point charge correction
even for the neutral charge state. For the VN, we found
the +2 and +3 states to occur below the VBM, so they
are not shown. We also include the LSDA+U shifts for
the donors by shifting the +/0 transition of the VN by
the same amount as the one-electron level shifts in the
band calculations. A similar correction shifts the 0/−
state above the CBM. The acceptor transition levels are
not affected by the gap correction and all lie somewhat
deeper than the donors, at a few 0.1 eV above the VBM.

For Zn−1
Ge we find the electrostatic potential near the

defect to look very similar to that for q = 0 and both
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are very flat. This can be related to the nature of the
LUMO defect wave function in Fig. 11. While it is fairly
localized on the ZnGe site itself and its nearest neighbor
N atoms, there is also a tail in this distribution spread
almost to the edge of the cell, at least in some direc-
tions. Thus the holes are in part compensating the nu-
clear charge deficit of Zn but in part also spread out.
When we switch to the q = −1 state, we replace this de-
localized hole charge by a background charge of the same
sign, so nothing much changes. That is why the qeff for
this case is quite small. We estimate it as qeff = 0.3.

The deeper acceptor levels are consistent with a hy-
drogenic model because of the much higher valence band
effective mass. We can make a simple estimate using the
hydrogenic model. Averaging the inverse effective masses
in the three directions, the top valence band gives an ef-
fective mass of 0.5 and this gives a binding energy of 70
meV for a single acceptor, 140 meV for a double accep-
tor and about 0.3 eV for a quadruple acceptor. These are
probably underestimates because of the need for a cen-
tral cell correction and the degeneracy of the VBM. For
the donor states, only one charge state occurs as lowest
energy in the gap, the +1 state for GaZn, and ON and the
+2 charge state for GeZn. Their +/0 or 2+/+ transition
levels are expected to occur within a few 10 meV below
the CBM in a hydrogenic model but in our calculation
we place it at the CBM itself. These donor levels were
all found to follow the CBM when the gap is corrected
using the LSDA+U method.

TABLE II: Formation energy (in eV) for various defects in
different charge states at εF = 0.

Defect q qeff Efor(εF =0)
A B C D

VGe 0 0 9.52 8.82 9.09 10.21
-1 -0.7 9.94 9.24 9.51 10.63
-2 -1.5 11.75 11.05 11.32 12.44
-3 -2 13.49 12.79 13.07 14.19

VZn 0 0 5.37 5.02 4.74 5.30
-1 -0.5 5.53 5.18 4.90 5.46
-2 -1.5 7.14 6.79 6.52 7.08

VN 0 0 4.53 5.05 5.05 4.21
1 1 1.94 2.47 2.47 1.63

ZnGe 0 0 2.61 2.26 2.82 3.38
-1 -0.3 2.69 2.34 2.89 3.45
-2 -1 4.09 3.74 4.29 4.85

GeZn 2 1 -0.73 -0.38 -0.94 -1.50
ON 1 1 -3.30 -2.78 -2.78 -3.62
OGe 0 0 7.03 6.33 6.61 7.73

-1 -1 8.96 8.26 8.54 9.66
-2 -2 11.87 11.17 11.45 12.57

OZn 0 0 6.03 5.68 5.41 5.97
1 1 4.58 4.23 3.96 4.52
-1 -1 6.69 6.34 6.07 6.63
-2 -2 9.20 8.85 8.57 9.13

GaZn 1 0.7 -1.69 -2.04 -2.32 -1.76
GaGe -1 -0.5 0.59 -0.11 0.17 1.29

In Figs. 15, 16 we allow the Fermi level εF to vary

from the VBM at 0 energy to the actual experimental
conduction band minimum of 3.4 eV. In these figures
we show only the energy of formation of the charge state
with lowest energy at any given Fermi level position. The
discontinuities in slope then indicate the transition lev-
els. The figures show these energies for four different
choices of chemical potential, as labeled in Fig. 1. Fig.
15 corresponds to the native defects and Fig. 16 to the
impurities. The energies of formation at εF = 0 for var-
ious charge states which are used in drawing this figure
are summarized in Table II. The transition levels are in-
dependent of chemical potentials and are summarized in
Table III.

We note that the effective charges were determined by
visual inspection of the fit of the electrostatic potentials
by a point charge model beyond a certain range. How-
ever, the precise value depends somewhat on the range
chosen where the fit should apply. Thus these values and
correspondingly the energies of formation and transition
levels have an uncertainty of at least 0.1 eV. For example
for ZnGe using the nominal charge we would have found
the acceptor level at 0.48 eV, significantly deeper. The
latter is most likely an overestimate, while the values ob-
tained with qeff = 0.3 may be a slight underestimate.

The +/0 level of VN appears to be deeper below the
CBM than the band structure plots indicated. However,
this is because in the dilute limit the one-electron lev-
els also need a finite size correction to the Madelung
potential.24 This would shift the levels by

δV = −αq/(Lε). (4)

This correction shifts acceptor levels up and donor levels
down. For example for VN , we found the one-electron
band in our 128 atom supercell about 0.5 eV below the
CBM, adding this correction, it shifts down by about
0.36 eV and is then in good agreement with the +/0
transition level which lies 0.84 eV below the CBM. Thus
the one-electron levels and transition levels are in good
agreement with each other as required by the generalized
Koopman’s theorem. This also applies to the VGe accep-
tor levels, which are fairly deep. For the VZn and ZnGe

on the other hand the correction is small because these
are shallow acceptors.

Among the native defects, we see that the cation anti-
sites have significantly lower energy than the vacancies.
A similar conclusions was obtained for ZnSnN2 by Chen
et al.32 and also for ZnSnP2 by Kumagai et al.16 but not
for ZnGeP2.14,33–35 We thus expect the dominant native
defects to be the cation antisites.

In particular the VGe is found to have a very high en-
ergy of formation even for the most Ge-poor conditions
B and C. For example for chemical potential condition A
we find that the energy of formation of the VGe 9.52 eV,
is larger than the sum of the energies of formation of VZn

and ZnGe which is 7.98 eV. This indicates an intrinsic
thermodynamic instability or at least only metastability
of the VGe. The neighboring Zn could hop to the VGe

site forming a defect complex and then the two defects
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FIG. 15: Formation energies for different growing conditions (points A, B, C, and D on the diagram Fig. 1) for native defects
VGe, VZn, VN, ZnGe, and GeZn.

would repel each other. A similar situation was found
for ZnGeP2.14 We have not checked yet if there exists a
barrier toward this defect reaction. Although this defect
has high energy of formation in equilibrium, vacancies
are easily created by radiation damage and may still be
important.

Among the impurities, we see that O has indeed a defi-
nite site preference for the N position and the ON is a very
low energy defect. This is similar to ON in GaN.36 Ga has
a low energy of formation on the Zn-site for Fermi levels
close the VBM but Ga on the Ge site has a low energy
formation for Fermi levels close to the conduction band.
The energies of formation of the Ga impurity are smaller
than the corresponding antisite native defects. This is
to be expected because they constitute a smaller pertur-
bation. This indicates a good solubility of Ga is to be
expected but with a site competition between both sites.
Because this defect from the band structures appears to
be a truly shallow hydrogenic type defect, our calcula-
tions do not predict the neutral charge state, in which
the Fermi level lies below the VBM, well. Thus, we use
the approach for hydrogenic defect levels, or perturbed
host states, as they are sometimes called and determine
its neutral charge state formation energy assuming an

acceptor level at the VBM.

TABLE III: Transition levels of various defects in ZnGeN2.

Defect Transition levels
+1/0 0/-1 -1/-2 -2/-3

VZn 0.16 1.62
VN 2.58

ZnGe 0.07 1.40
OGe 1.94 2.91

0/-1 -1/-3
VGe 0.42 1.78

+1/-1 -1/-2
OZn 1.06 2.50

D. Defect concentrations, Fermi level pinning and
doping

Assuming no other native defects are present, we can
self-consistently determine the defect concentrations and
Fermi level for a given set of chemical potentials. The
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FIG. 16: Formation energies for different growing conditions (points A, B, C, and D on the diagram Fig. 1) for OGe, OZn, ON,
GaZn, and GaGe along with the two most important (lowest energy) native defects GeZn, ZnGe.

defect concentrations are given by

C[Dq, µ, T ] = N [Dq]e−Efor(D
q,µ)/kT (5)

Here, N [Dq] is the number of available sites per unit
volume for a given defect times a degeneracy factor de-
pending on the charge state. For example, if the defect
has a singly occupied defect level, in which it can occur
in two spin states, its degeneracy factor is 2 but if it is
full occupied or empty, its degeneracy factor is 1. The
energy of formation depends on the chemical potential of
the electrons µ. C[Dq, µ, T ] is the equilibrium concen-
tration of defect D in charge state q and is a function of
the Fermi level µ and temperature. The Fermi level is
determined by the overall charge neutrality requirement:

−n(µ, T ) + p(µ, T ) +
∑
i

qiC[Dq
i , µ, T ] = 0 (6)

Here n(µ, T ) is the concentration of electrons in the con-
duction band and p(µ, T ) is the concentration of holes in

the valence band, which are given by

n(µ, T ) =

∫ ∞
εc

D(ε)f(ε, µ, T )dε,

p(µ, T ) =

∫ εv

−∞
D(ε)[1− f(ε, µ, T )]dε (7)

with

f(ε, µ, T ) =
1

e
ε−µ
kT + 1

(8)

the Fermi function. Since realistically only the bottom
of the conduction band and the top of the valence band
contain electrons or holes, respectively, we calculate the
electron and hole concentrations assuming a parabolic
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TABLE IV: Equilibrium electron chemical potential (in eV), electron and hole concentrations, and defect concentrations, all
per cm3. The values at 300K assume the total defect concentration is quenched from 1200K. Open slots in the table correspond
to negligible concentrations less than 105.

A B C D
T (K)→ 1200 300 1200 300 1200 300 1200 300
µ (eV) 1.15 0.15 0.95 0.17 1.27 0.27 1.58 1.44
n 6.0× 109 8.2× 108 1.9× 1010 3.8× 1011

p 6.0× 1015 5.3× 1015 4.4× 1016 4.3× 1016 1.9× 1015 8.0× 1014 9.6× 1013

Ge+2
Zn 5.5× 1015 5.5× 1015 9.8× 1015 9.8× 1015 3.7× 1015 3.7× 1015 2.1× 1015 2.1× 1015

Zn0
Ge 2.3× 1011 2.2× 1013 6.8× 1012 6.9× 1014 3.3× 1010 1.7× 1012 1.5× 108

Zn−1
Ge 1.6× 1016 1.6× 1016 6.3× 1016 6.3× 1016 7.1× 1015 8.2× 1015 6.3× 1014 7.2× 1014

Zn−2
Ge 7.30× 1014 4.0× 1014 1.1× 1015 1.9× 1015 1.8× 1015

V +1
N 4.3× 109 4.3× 109 2.0× 108 2.0× 108 8.4× 106 8.4× 106 1.4× 109 1.4× 109

V −1
Zn 2.6× 107 2.6× 107 2.3× 106 3.1× 106

approximation to the band dispersions, which leads to:

n(µ, T ) = −2

(
mnkT

π~2

)3/2

Li3/2

(
−e(µ−εc)/kT

)
≈ −2

(
mnkT

π~2

)3/2

e−(εc−µ)/kT ,

p(µ, T ) = −2

(
mpkT

π~2

)3/2

Li3/2

(
−e(µ−εv)/kT

)
≈ −2

(
mpkT

π~2

)3/2

e−(µ−εv)/kT , (9)

where Li3/2(x) is the Polylogarithm (also known as the
Jonquière) function, and εc is the one-electron energy
of the CBM. The approximate forms with a Boltzmann
type factor are valid when εc−µ� kT and µ− εv � kT
and hold except very close to the band edges. The ef-
fective masses mn and mp here are so-called density of
states masses. For ZnGeN2, which has an orthorhom-
bic crystal structures, as discussed in Punya et al.1,

m
3/2
n = (mambmc)

3/2 with ma, mb, mc the effective con-
duction band masses along the a, b, c directions. The
valence band in this material is split in three levels, and
expressions of the above type are applied separately for
each level with the appropriate effective masses given in
Table VII of Ref. 1.

First, we only consider native defects. The concentra-
tions of defects are evaluated at a typical growth temper-
ature of 1200K. Using the above analytical expressions,
it is then straightforward to find the µ for which the
charge neutrality is obeyed. From the energy of forma-
tions, it is easy to see that the Boltzmann factors will
suppress all but the lowest energy of formation defects.
This implies in this case that the Fermi level µ is essen-
tially determined by the competition between the Ge2+

Zn

and Zn−1
Ge defects and the free electrons and holes. We

checked, that using only these two defects or all of the
defects, made almost no difference in the resulting Fermi
level, which for chemical potential condition B is 0.95 eV
above the VBM, slightly above the crossing of the ener-
gies of formation of these two defects. Since this Fermi

level position is closer to the VBM than to the CBM,
the net resulting doping is p-type with a concentration
of holes p ≈ 4.4× 1016 cm−3 at 1200K.

We also consider the electron and hole concentration at
room temperature (300K) assuming that the total con-
centration in all possible charge states stay the same as
at 1200K, but their charge state can adjust to a new
neutrality condition at 300K. In other words, the defect
concentrations are quenched but the electrons and holes
adjust to the Fermi function at 300K and so do the charge
states of the defect according to their relative Boltzmann
factors. This leads to a Fermi level position much closer
to the VBM, µ = 0.17 eV and a slightly lower hole con-
centration of p ≈ 4.3× 1016 cm−3. Clearly at lower tem-
perature, in order to keep the same carrier concentration
of holes to compensate the Zn−1

Ge , the Fermi level will
need to move closer to the VBM. Meanwhile both the
concentration of Ge2+

Zn and of electrons in the conduction
band are fairly low because for low Fermi energy, the en-
ergy of formation of Ge2+

Zn is higher and so fewer of these
defects are generated.

In Fig. 15 we indicate the equilibrium Fermi level at
1200 K and at 300 K with their corresponding p-type hole
concentration. In Table IV we give the equilibrium con-
centrations of the different defects as well as the Fermi
level position and net electron and hole concentrations at
1200K and after quenching to 300K for each of the chem-
ical potential conditions A-D. We can see that our cal-
culations predict the materials to be native p-type with
a significant hole concentration up to 1016 cm−3 if the
chemical conditions are chosen optimally as in case B.

There have thus far been very few reports on the car-
rier type in ZnGeN2. Larson et al.37 reported their sam-
ples to be n-type with a carrier concentration n ≈ 1018–
1019 cm−3, while Kikkawa and Morisaka38 reported their
samples to be insulating. The first group used a vapor
growth method which involves ZnCl2 and GeCl4 as in-
termediate products. Cl is likely to be an n-type dopant
if present in the samples. Kikkawa and Morisaka38 used
a sputter growth technique. Very recently Dyck et al.39

used Seebeck coefficient measurements and reported n-
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type behavior. The n-type behavior apparently cannot
be explained by the native defects considered here. Al-
though Ge2+

Zn is a shallow donor and has fairly low energy
of formation for εF = εv, the charge balance dictates a
Fermi level closer to the VBM by competition with the
Zn−1

Ge acceptors. Being closer to the VBM, we then obtain
more holes than electrons.

On the other hand, we see from Fig. 16 that sub-
stitutional ON is a very low energy defect and since it
is a donor, it might lead to n-type doping. To be more
precise about the incorporation of O, we need to consider
the chemical potentials of O and N at finite temperature.
In other words, we need to consider their free energies
including entropic contributions. The most important
contribution here is the pressure term

µN = µN(N2) + kT ln (pN2) (10)

with a similar expression for oxygen. We ignore the
smaller vibrational and rotation free energy terms since
they are similar in both molecules. In the ON energy of
formation, we need µN − µO so, what enters is the ra-
tio pN2/pO2 . In other words, the concentration of ON is
given by

C[O+
N] = 2

(
pO2

pN2

)(
8

Vcell

)
e−(Efor(ON,µ=0)+µ)/kT . (11)

We recalculate the Fermi level position and the corre-
sponding defect concentrations and effective doping from
the neutrality condition including the O+1

N defect for var-
ious ratios of the partial pressure ratios p(N2)/p(O2) for
the case of chemical potentials B. At low pN2

/pO2
= 10

we find a very large oxygen concentration, of order 1024

cm−3, leading essentially to an oxynitride. However,
there is then also a high concentration of ZnGe in both −1
and −2 charge states, compensating the positive charge,
so we end up with a Fermi level near 2 eV and a low net
n-type doping of 1013 cm−3. In this sense ZnGeN2 differs
strongly from GaN. In GaN, the only native acceptor is a
V −3

Ga and this defect has high energy and thus crosses the

O+1
N only very close to the VBM. In contrast, ZnGeN2

has a low energy antisite acceptor ZnGe.
At 300 K, keeping the defect concentrations fixed, the

Fermi level drops to 1.58 eV, the electrons are less easily
excited to the CBM and thus play even less a role in com-
pensating the O+1

N and we find insulating behavior. This
means that oxygen should be strongly suppressed during
growth to keep the concentration of both O+1

N and Zn2−
Ge

down. At 1200K we need to increase the pN2/pO2 ratio
to about 106 to switch from n-type to p-type. The p-type
concentration is then of order only 1012 cm−3 at 1200K
but the concentration of ZnGe and ON is still of order
1021. Only for a partial pressure ratio as high as 1015,
the ON and ZnGe at the growth temperature could be
suppressed to the 1015 cm−3 level, to recover the native
p-type concentration level of 1016 cm−3 at 300K.

Thus, the question arises if oxygen could still explain
the unintentional n-type doping. If the sample is ex-
posed to air after cooling down, oxygen could still enter

the sample because it has a very low energy of formation.
However, diffusion will be limited at these temperatures
and thus, we can probably not assume equilibrium any
more. Nonetheless, it appears plausible that the regions
near the surface or in small particles of polycrystalline
material, some oxygen uptake could take place even if it
was avoided during growth. In this case, we no longer
expect ZnGe antisites to be able to form and hence it
would then lead to residual n-type doping. Another pos-
sible source for n-type dopants would be interstitials. We
thus plan to study interstitials in a future study.

Finally, we examine the effects of Ga doping. The op-
timal condition for introducing Ga preferentially on the
Ge rather than the Zn site is the Ge poorest situation
B. We choose this condition as we are aiming for p-type
doping. In that case, because the system is rich in N, we
assume the µGa = µ0

Ga + Efor(GaN). We find the Fermi
level now becomes pinned close to the intersection of the
Ga+1

Zn and Ga−1
Ge energies of formation, with the Fermi

energy at about 1.00 eV above the VBM. This leads to
a p-type doping of order 2.5× 1016 cm−3 at 1200 K. We
find the concentrations [Ga+1

Zn ] = 4.592× 1019 cm−3 and

[Ga−1
Ge ] = 4.583 × 1019 cm−3. We can see that there is

compensation of these two defects to 1 part in a 100 with
slightly more donors than acceptors. However, there also
is a sizable concentration of Zn−1

Ge of 1.1 × 1017 cm−3

which help to tip the balance in favor of p-type behav-
ior. The net hole type concentration however is actually
slightly lower than we found earlier for the native mate-
rial under growth condition B. If we now quench to 300
K, the Fermi level drops to 0.20 eV but the hole concen-
tration drops only slightly to 1.2 × 1016 cm−3. So, Ga
acts indeed as a p-type dopant but is not more effective
than the intrinsic doping by ZnGe, which assists it.

IV. CONCLUSIONS

In summary, we have presented a study of the main ex-
pected native defects and a few dopants in ZnGeN2. The
main findings of the paper are as follows. Cation anti-
sites are the dominant native defects. The Ge+2

Zn shallow

donor and Zn−1
Ge shallow acceptor states pin the Fermi-

level at a position closer to the VBM than the CBM and
hence should lead to native p-type doping. The level of
this doping depends on the chemical potential conditions
and is also still somewhat uncertain due to the uncertain-
ties in our calculation of the energies of formation related
to finite size corrections. Upon quenching to room tem-
perature, the Fermi level moves closer to the VBM but
still could retain a fairly significant level of p-type doping
level. The n-type doping one has found so far in ZnGeN2

is tentatively ascribed to ON. Although the latter has
a low energy of formation, it would be compensated by
formation of native antisite acceptors Zn2−

Ge at the growth
temperature. This is different from GaN where no low
energy compensating acceptors exist. This actually pre-
dicts very little residual n-type doping at room temper-
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ature when defect concentrations are frozen. To explain
residual background n-type doping by oxygen we then
need to assume that during the cooling down of the sam-
ple, more oxygen is introduced then compensating anti-
sites formed. Alternatives such as interstitials need fur-
ther study.

In terms of methodology we discussed the various fi-
nite size effects and proposed to model the defect electro-
static potentials with a point charge model which how-
ever, could have a different effective charge from the nom-
inal charge of the defect. This tends to reduce the ener-
gies of formation and the transition levels of the acceptor
for relatively shallow acceptors. Unfortunately, the effec-
tive charge has still some remaining uncertainty. The lat-
ter could presumably be further reduced by using larger

supercells.

Acknowledgments

Atchara Punya and Ling-yi Huang were supported
by the National Science Foundation (NSF) under grant
No. DMR-1104595 in early stages of the work, Dmitry
Skachkov was supported by the U.S. Department of En-
ergy Basic Energy Sciences (DOE-BES) under grant No.
ER-46874-SC0008933. Walter Lambrecht was supported
by both grants and in the final stages of the work by NSF-
DMR-1533957. Calculations were performed at the Ohio
Supercomputer Center under project No. PDS0145.

1 A. Punya, W. R. L. Lambrecht, and M. van Schilfgaarde,
Phys. Rev. B 84, 165204 (2011), URL http://link.aps.

org/doi/10.1103/PhysRevB.84.165204.
2 T. J. Peshek, T. R. Paudel, K. Kash, and W. R. L. Lam-

brecht, Phys. Rev. B 77, 235213 (pages 9) (2008), URL
http://link.aps.org/abstract/PRB/v77/e235213.

3 T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 78,
115204 (pages 12) (2008), URL http://link.aps.org/

abstract/PRB/v78/e115204.
4 T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 79,

245205 (2009).
5 W. R. L. Lambrecht and A. Punya, in III-Nitride Semi-
conductors and their Modern Devices, edited by B. Gill
(Oxford University Press, 2013), pp. 519–585.

6 P. C. Quayle, E. W. Blanton, A. Punya, G. T. Junno,
K. He, L. Han, H. Zhao, J. Shan, W. R. L. Lambrecht,
and K. Kash, Phys. Rev. B 91, 205207 (2015), URL http:

//link.aps.org/doi/10.1103/PhysRevB.91.205207.
7 N. Feldberg, J. D. Aldous, W. M. Linhart, L. J. Phillips,

K. Durose, P. A. Stampe, R. J. Kennedy, D. O. Scan-
lon, G. Vardar, R. L. Field, et al., Applied Physics Letters
103, (2013), URL http://scitation.aip.org/content/

aip/journal/apl/103/4/10.1063/1.4816438.
8 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
9 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

10 U. von Barth and L. Hedin, Journal of Physics C: Solid
State Physics 5, 1629 (1972), URL http://stacks.iop.

org/0022-3719/5/i=13/a=012.
11 http://www.lmsuite.org/.
12 M. Methfessel, M. van Schilfgaarde, and R. A. Casali,

in Electronic Structure and Physical Properties of Solids.
The Use of the LMTO Method, edited by H. Dreyssé
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