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The phonon Boltzmann transport equation (BTE) is a powerful tool for studying non-diffusive 

thermal transport. Here, we develop a new universal variational approach to solving the BTE that 

enables extraction of phonon mean free path (MFP) distributions from experiments exploring 

non-diffusive transport. By utilizing the known Fourier heat conduction solution as a trial 

function, we present a direct approach to calculating the effective thermal conductivity from the 

BTE. We demonstrate this technique on the transient thermal grating (TTG) experiment, which 

is a useful tool for studying non-diffusive thermal transport and probing the mean free path 

(MFP) distribution of materials. We obtain a closed form expression for a suppression function 

that is materials dependent, successfully addressing the non-universality of the suppression 

function used in the past, while providing a general approach to studying thermal properties in 

the non-diffusive regime. 
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The Boltzmann transport equation (BTE) is widely used in analyzing heat transfer at length 

scales and time scales for which Fourier’s law breaks down. In particular, there has been a 

growing interest recently in developing numerical and analytical solutions to the BTE to model 

thermal transport in phonon spectroscopy experiments [1–12] to extract phonon  mean free path 

(MFP) distribution. The thermal conductivity accumulation function has been utilized as an 

elegant metric for understanding which MFP phonons contribute predominantly to thermal 

transport in a material [13–15]. Various experimental tools such as time-domain 

thermoreflectance [4,6,8,12,16,17] (TDTR), frequency-domain thermoreflectance  [18,19] 

(FDTR), and transient thermal grating [3,5,7,20] (TTG) techniques have been utilized 

extensively recently in order to probe and observe non-diffusive transport by using ultrafast time 

scales or ultrashort length scales and gain key insight into the material’s MFP spectrum. 

 

When the length scales in a system become comparable to the MFPs in a material, the 

effective thermal conductivity is reduced compared to its bulk, diffusive limit value  [21,22]. A 

suppression function Sω  is used to quantify this reduction or suppression of thermal 

conductivity, defined as keff = 1
3

CωvωΛωSω dω
0

ωm∫ . The variables Cω, vω,  Λω  are the volumetric 

spectral heat capacity, the group velocity, and the MFP, respectively. The suppression function 

provides the ability to extend the notion of thermal conductivity beyond the diffusive regime in 

which it is defined from Fourier’s law [21,23]. By utilizing the suppression function for a given 

experimental geometry, one can obtain the material’s phonon MFP distribution from the 

experimentally measured thermal conductivity [5,6,12,23]. To obtain the effective thermal 

conductivity, the thermal signal from the experiment is fitted to the results of the Fourier law. 

The suppression function is calculated through modeling of the given experimental geometry 
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with the BTE. However, one key assumption in this method is the universality of the suppression 

function, i.e. the ability to express the suppression function as Sω = S Λω / L( )  so that it depends 

only on the ratio of MFP to a characteristic length for a given experimental configuration, but not 

otherwise on the material properties. This assumption allows one to obtain effective thermal 

conductivities by solving for the suppression function from the gray BTE, i.e. the BTE equation 

with a single MFP [24]. This assumption has been shown to be not strictly valid in the 

past  [24,25] and will be further shown in this work, with an approach that addresses this 

shortcoming. 

 

 The BTE is notoriously difficult to solve, especially for complex geometries, which presents 

difficulty in calculating the effective thermal conductivity of materials in a given experimental 

geometry.  So far almost exclusively, numerical solutions are implemented that directly attempt 

to solve the BTE, and are then fitted to the Fourier heat conduction solution to extract the 

effective thermal conductivity and corresponding suppression function for the experimental 

geometry. Experimental methods have also been utilized that rely on first-principles material 

property data to obtain a calibrated suppression function [6]. The key insight in our work here is 

to utilize the temperature distribution obtained from the Fourier heat conduction equation 

directly in the BTE for the given experimental geometry to facilitate, hence significantly 

simplify, its solution. Furthermore, we develop a variational approach to yield solutions to the 

spectral BTE. By utilizing the temperature field derived from the Fourier heat conduction 

equation and the variational method, we obtain solutions that are both simple yet can reproduce 

the exact numerical results from the BTE in terms of obtaining the effective thermal 

conductivity. Our approach provides a more direct, universal methodology for extracting the 
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effective thermal conductivity and corresponding suppression function to enable the extraction of 

intrinsic material properties such as the phonon MFP distribution from non-diffusive 

experiments. 

 

The variational approach utilized here for the BTE is analogous to the variational method in 

quantum mechanics, used for improving one’s trial solution for the ground state energy of a 

given system [26,27]. The variational principle has been applied to the BTE previously in 

calculating the cross plane heat flux in a thin film [28].  Allen  [28] utilized a specific error 

metric, one that tries to best enforce uniform heat flux through the slab to ensure energy 

conservation, to approximately calculate the thermal flux between a hot wall and cold wall. 

Furthermore, variational techniques have been applied to solving the BTE at the initial stage of 

the partial differential equation itself  [29,30]. In this approach, first described by Ziman [31], the 

partial differential equation for the phonon distribution function is solved utilizing the variational 

principle, and the variational parameter is calculated by optimizing the entropy. In this work, we 

develop the application of the variational principle upon the integral equation for the temperature 

profile, derived from the BTE, and solve for the variational parameter by minimizing the residual 

error in the equation. Although we anticipate that this approach can be applied also directly to 

the BTE, the technique developed here is applied at the stage of the temperature equation for two 

reasons. One being that analytically solving the BTE up to the temperature equation decreases 

inaccuracies that can build up from utilizing approximations earlier on in the solution. Second, 

the temperature equation allows for the direct utilization of the Fourier heat conduction solution 

as the trial function, with effective thermal conductivity (or other properties such as interfacial 
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resistance or boundary temperature slip) as the parameters used to minimize the error of the 

variational trial function. 

 

In this work, we apply the variational technique for the one-dimensional TTG experimental 

geometry as an example.  In the TTG experiment, two laser beams are crossed in order to 

generate a sinusoidal heating profile on a sample, with a spatial periodicity of length λ . Once 

heated, the sample is allowed to relax and the thermal decay profile is measured to yield 

information about the transport within the material. At grating periods on the order of 

micrometers, non-diffusive transport has been observed [3,7,20]. Given the success of this 

experiment in probing non-diffusive transport and the opportunity to yield MFP data using 

reconstruction techniques that have been developed [32], the ability to model this experiment is 

critical. Furthermore, the relative simplicity of the geometry makes it more accessible for 

theoretical modeling. 

 

The TTG in the one-dimensional case has been studied in a two-fluid framework, and with 

simplifying assumptions about the scattering of high and low frequency phonons, an analytical 

suppression function has been calculated [20] and utilized in MFP reconstruction [32], but there 

is a concern that this model is only valid at the onset of non-diffusive transport. Collins et al. 

solved the problem with a numerical approach to obtain the exact solution both in the gray case 

as well as the full spectral case for the BTE for Si and PbSe  [24]. Deviation of the two-fluid 

model from the exact numerical solution was shown for PbSe [24]. Hua and Minnich obtained 

the Fourier transform of the thermal decay analytically, and were able to recover the two-fluid 

model suppression function in the weakly non-diffusive limit [25]. However, there is no closed 
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form expression for the thermal decay rate γ  and the suppression function S that matches 

numerical results. 

 

Utilizing the notation by Collins et al., we begin with the spectral BTE in one dimension 

under the relaxation time approximation  [24] : 

∂gω

∂t
+ μvω

∂gω

∂x
= g0 − gω

τω

         (1) 

where gω  is the phonon energy density per unit frequency interval per unit solid angle above the 

reference background energy, related to the distribution function and density of states as 

gω =
hωD ω( )

4π
fω − f0 T0( )( ) . μ  is the direction cosine, vω  is the group velocity, τω  is the 

relaxation time, and g0  is the equilibrium energy density, given by g0 ≈ 1
4π

Cω T −T0( )  in the 

linear response regime. In the TTG experiment, the temperature initially has a sinusoidal profile 

and in general obeys T x, t( ) = T0 + h t( )Tmeiqx  in complex form where Tm  is the initial amplitude 

of the spatial variation, q = 2π / λ  is the grating wavevector, and h t( )  is the non-dimensional 

temperature that describes the decay of the initial temperature profile. Solving Eq. (1) and 

utilizing the equilibrium condition in the spectral case [33] to close the problem yields the 

integral equation for the non-dimensional temperature obtained previously [24,25]:  

h t( ) Cω

τω

dω
0

ωm∫ = Cω

τω

bω t( ) dω
0

ωm∫ + h ′t( ) Cω

τω
2 bω t − ′t( ) dω

0

ωm∫ d ′t
0

t∫      (2) 

where we have defined for simplicity bω t( ) ≡ e
− t

τω sinc qvωt( )  . This integral equation is easily 

solved with a Laplace transform, and the temperature profile can be solved for with an inverse 
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transform as obtained by Hua and Minnich [25]. Other methods to solving the BTE is to either 

obtain a numerical solution by solving the integral equation by finite differences [8,24], or by 

utilizing Monte Carlo techniques [32,34,35]. We depart from these established approaches by 

treating the unknown temperature distribution as a variational function and rewrite Eq. (2) by 

shifting all terms to one side of the equation to define:   

H t( ) = Cω

τω

bω t( ) dω
0

ωm∫ − h t( ) Cω

τω

dω
0

ωm∫ + h ′t( ) Cω

τω
2 bω t − ′t( ) dω

0

ωm∫ d ′t
0

t∫    (3) 

If the function we guess for the temperature profile is the exact temperature profile that solves 

the BTE, then this function will be identically zero everywhere. The function H  represents the 

error in energy conservation, and can be thought of as an artificial heat source/sink (up to 

constant factors such as 4π  and Tm ) as it has been defined from the temperature integral 

equation which comes from the equilibrium condition of the BTE  [33]. In the exact case it 

should be zero everywhere, but since our trial function will not be the exact solution, we would 

like to optimize the function that makes H t( ) as close to zero as possible to minimize the error 

in our trial solution. 

 

The optimization procedure can be done in several ways. One method is to mathematically 

define an error metric and minimize the error in order to calculate the variational parameter. 

Some common examples of error metrics are least squares Er γ( ) = H 2 t( ) dt
0

∞∫  and least 

absolute error Er γ( ) = H t( ) dt
0

∞∫ . Another approach is to require certain physical conditions to 

be met, and we can impose one physical condition for every variational parameter available in 

the trial solution. A simple, intuitive physical constraint is to impose that energy conservation 

should hold when considering the entire decay time. Given that the system’s temperature rise 



 8

above the background is Tmh t( )eiqx  and the local heat flux in the x direction can be written as 

Q t( )eiqx  in complexified form for simplicity, we will look at energy conservation over a control 

volume of unit width in the y and z directions, and width λ / 2 in the x direction, centered at a 

peak in the temperature (such as x=0) in the sinusoidal spatial temperature profile. Integrating 

Eq. (1) over all phonon frequencies and solid angle yields the local energy conservation 

equation, and by further integrating over the control volume and over all time yields the 

following statement of energy conservation:  

CTm
λ
π

= 2i Q t( ) dt
0

∞∫          (4) 

where C is the volumetric heat capacity obtained by integrating the spectral heat capacity 

C = Cω dω
0

ωm∫  . The left hand side of Eq. (4) represents the energy initially deposited by the 

heating lasers in the control volume since the initial energy density in the system is CTmeiqx , 

while the right hand side represents the total energy over all time exiting the control volume at 

the boundaries at x = ±λ / 4  (the factor of 2 due to the symmetry of the flux out from the right 

and left sides). The heat flux Q t( )eiqx  is calculated by utilizing the spectral energy density solved 

from Eq. (1) as Q t( )eiqx = dω dΩ μvω gω t,μ( )∫∫ . By calculating the heat flux amplitude Q, 

which will depend on the temperature profile, and integrating over all time at the control volume 

boundaries we obtain total energy that has exited the control volume:  

2i Q t( ) dt
0

∞∫ = λTm

π
dω Cω

τω

τω + h t( ) dt
0

∞∫⎡
⎣⎢

⎤
⎦⎥ 1−

arctan ηω( )
ηω

⎡

⎣
⎢

⎤

⎦
⎥∫      (5) 

By inputting the variational temperature profile into Eq. (5) to obtain the heat flux and then 

inputting this result into Eq. (4), we can utilize this physical condition to solve for the variational 



 9

parameter, thus imposing that the trial function will satisfy energy conservation over the entire 

decay time just as the exact solution does. The key point is to optimize the trial function, either 

by imposing physical conditions to be met or mathematical error functions to be minimized and 

there are various ways to do so. We will show that both approaches provide good agreement with 

the exact numerically solved effective thermal conductivity. 

  

Typically in the variational approach, one uses a trial function that is known from intuition about 

the system, and the trial function is optimized to minimize the chosen error function. The 

accuracy of the variational approach hinges upon the utilization of an appropriate trial function, 

which can be difficult to deduce. In solving the BTE with this variational approach, the Fourier 

heat conduction solution provides this trial function, especially since our goal is to extract the 

effective thermal conductivity (or in other cases properties such as interfacial thermal resistance, 

diffusivity, etc.) of the system. 

 

For the one-dimensional TTG, the exact temperature solution of the Fourier heat conduction 

equation is T x, t( ) = T0 +Tmeiqxe−αq2t  where α  is the thermal diffusivity.  Therefore, we take for 

the trial function h t( ) = e−γt  with  αeff = γ / q2 . While other trial functions can be inputted to 

approximately solve the BTE, the elegance of this approach is that it immediately utilizes the 

Fourier heat conduction temperature field appropriately modified as an input, and optimizes to 

find the modified properties such as effective thermal conductivity that solves the BTE with 

minimized error, converting the difficult task of solving an integral equation for the temperature 

distribution into a simple task of performing integration. This provides a more direct approach to 

obtaining the effective thermal conductivity and no longer needs to fit the derived solution to an 
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exponential as the trial function itself takes this functional form. We note that in other heat 

transfer configurations, there can be multiple parameters in the trial solution, such as temperature 

slip that can occur due to the boundary resistance as well as effective thermal conductivity in the 

non-diffusive regime, but the Fourier heat conduction solution provides the starting point.  Here, 

we demonstrate the technique on this simple case where only one variational parameter will be 

needed for simplicity. 

 

Using the trial function, we can solve the condition of Eq. (4) to obtain for the thermal decay 

rate:  

γ =
dω Cω

τω

1− 1
ηω

arctan ηω( )
⎡

⎣
⎢

⎤

⎦
⎥0

ωm∫

dωCω
1

ηω

arctan ηω( )
0

ωm∫
       (6) 

where we have defined the non-dimensional Knudsen number ηω = qΛω = 2πΛω / λ  where λ  is 

the grating period. 

 

We utilize the normalized effective thermal conductivity for simplicity, defined as 
keff

kbulk

= Cγ
q2kbulk

. 

The bulk thermal conductivity is given by kbulk = 1
3

CωvωΛω dω
0

ωm∫ . In Fig. 1, we compare results 

obtained for Si and PbSe, for which previous approaches for obtaining the effective thermal 

conductivity include assuming a constant MFP distribution  [24], an exact numerical 

solution  [24,25], and the two-fluid model [20].  The spectral numerical results are obtained by 

fitting the exact solution of Eq. (2), obtained by finite differences, to the Fourier exponential 

profile  [24]. The spectral variational results are plotted from Eq. (6) using the physical condition 
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of Eq. (4). The least squares results are obtained numerically by inputting a set of values for the 

effective thermal conductivity into the function H, calculating the least squares integral for H as 

the error metric, and finding the appropriate value of the effective conductivity which minimizes 

the error.  The gray variational results are obtained by taking the gray limit of Eq. (6), extracting 

a gray suppression function, and inputting into the effective thermal conductivity, i.e. 

keff , gray = 1
3

CωvωΛωSgray ηω( )dω
0

ωm∫ . Note that this gray approximation is identical to the 

‘frequency integrated gray medium’ approach performed numerically by Collins et al.  [24]. 

Silicon is known to have a wide range of MFPs, and shows that the gray solution derived 

suppression function does a poor job in reproducing the exact numerical results. We also look at 

PbSe, which has a narrower range of MFPs. We utilize the same material properties for Si and  

PbSe as utilized by Collins et al. for comparing between the numerical spectral solution and the 

variational solution developed here. Note that the optimized solution, both from the least squares 

method and from imposing a physical condition method, agree excellently with the exact 

numerical solution, which demonstrates the predictive power of the variational approach and the 

freedom to perform the optimization in different ways. Here the two-fluid model deviates from 

the exact solution at smaller grating periods.  The gray suppression function performs better for 

this material due to its narrower range of MFP’s as compared to silicon  [24]. 
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FIG. 1 Effective thermal conductivity of silicon (a) and PbSe (b). Here the effective thermal 

conductivity is plotted to compare the variational technique with the exact numerical technique 

and various approximations. The variational technique for the full spectral BTE, both with the 

physical condition of Eq. (4) and with least squares optimization, demonstrates excellent 

agreement with the exact numerical solution. 

 

 

 From the definition of the effective thermal conductivity and the thermal decay rate of Eq. 

(6), we extract the suppression function: 

Sω =

3
ηω

2 1−
arctan ηω( )

ηω

⎡

⎣
⎢

⎤

⎦
⎥

dϖ Cϖ

C
arctan ηϖ( )

ηϖ
0

ωm∫
        (7) 
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We note that although the numerator is dependent only on the ratio of MFP to the grating 

spacing and hence universal, the denominator depends in general on the material properties,  

This result is significant not only because it shows the suppression function is not universally 

dependent on a ratio of MFP to a length in the system, but also because we now have a way to 

properly address this problem analytically and more generally, numerically. The numerator is 

equal to the suppression function previously derived by Maznev et al. [20] and has been called 

the weakly quasiballistic suppression function [25]. Hua & Minnich have shown that there is in 

fact a correction to the suppression function in the full form, but their expression depends on the 

thermal decay time which intrinsically depends on the temperature solution to the BTE [25]. Our 

optimized solution provides the suppression function and illuminates its dependence on the 

grating period as well as its material property dependence. Furthermore, we can determine the 

validity domain of the two-fluid model by comparing the denominator of the optimized 

expression to unity. Thus, the following quantitative metric is obtained for the validity of the 

two-fluid model, dω Cω

C
arctan ηω( )

ηω

−1
0

ωm∫ <<1. One could Taylor the suppression function of 

Eq. (7) expand for large values of the grating period relative to MFP to get an expression that is a 

first order correction to the two-fluid approximation for the thermal decay rate. In Fig. 2, we 

show the denominator of Eq. (7) for both Si and PbSe. We find that the two-fluid model can 

predict the effective thermal conductivity of Si with less than 5% error for grating spacings of 1 

micron or higher.  For PbSe, the two-fluid model has less than 5% error for grating spacings of 

0.1 micron or higher.  The cutoff grating spacing is larger for Si than for PbSe because Si has a 

MFP distribution that has a larger maximum MFP value than for PbSe, as shown in Fig. 1, hence 

demonstrates earlier deviation from the exact result. 
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FIG. 2: Denominator of optimized spectral suppression function for Si (red) and PbSe (blue), 

yielding a metric for the validity of the two-fluid model. 

 

The variational method can, of course, be applied to the gray case, for which we extract a 

suppression function that only depends on the Knudsen number. We take Eq. (7) and assume a 

constant MFP distribution to obtain:  

Sgray ηω( ) = 3
ηω

2 1−
arctan ηω( )

ηω

⎡

⎣
⎢

⎤

⎦
⎥

ηω

arctan ηω( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
       (8) 

The term in the curly brackets is the additional factor we have obtained compared to the two-

fluid model. The gray suppression function demonstrates a weaker suppression (higher effective 

thermal conductivity) than the two-fluid model due to this additional factor. The gray 

suppression function of Eq. (8) excellently reproduces the results of the normalized gray medium 

effective diffusivity obtained numerically previously by Collins et al. [24]. However, we have 

shown that indeed this approach of inputting the gray suppression function into the effective 

thermal conductivity expression is not universal, and performs rather poorly, especially for 

silicon as shown by the gray variational results from Fig.1. 
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In summary, we have developed a variational approach that yields a new way of extracting the 

effective thermal conductivity of the system by exploiting knowledge of the Fourier solution. In 

general, this approach to solving the temperature equation for the spectral BTE can directly yield 

the effective thermal conductivity from quasi-ballistic phonon transport experiments without 

brute force numerical solution of the BTE. We demonstrate the power of this approach by 

calculating the thermal decay rate as well as an analytical suppression function for one-

dimensional transient grating experiments. Our spectral suppression function yields the exact 

suppression of thermal conductivity. We have shown that the suppression function is not 

universal, and utilizing the gray solution to the BTE does not perform well in reproducing the 

exact spectral data. Moreover, the variational approach developed here can be used as a universal 

technique for solving the BTE and obtaining both experimental observables, such as measured 

heat flux or thermal decay rate, as well as the effective thermal conductivity. This technique can 

be extended beyond the TTG problem, and can be used to calculate the effective thermal 

conductivities and suppression functions in different experimental geometries. This technique 

and our results here will allow for a better understanding of transport beyond the diffusive limit. 
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