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The scaling of the transition temperature into an ordered phase close to a quantum critical point
as well as the order parameter fluctuations inside the quantum critical region provide valuable
information about universal properties of the underlying quantum critical point. Here, we employ
quantum Monte Carlo simulations to examine these relations in detail for two-dimensional quantum
systems that exhibit a finite-temperature Ising-transition line in the vicinity of a quantum critical
point that belongs to the universality class of either (i) the three-dimensional Ising model for the
case of the quantum Ising model in a transverse magnetic field on the square lattice or (ii) the chiral
Ising transition for the case of a half-filled system of spinless fermions on the honeycomb lattice
with nearest-neighbor repulsion. While the first case allows large-scale simulations to assess the
scaling predictions to a high precision in terms of the known values for the critical exponents at
the quantum critical point, for the later case we extract values of the critical exponents ν and η,
related to the order parameter fluctuations, which we discuss in relation to other recent estimates
from ground state quantum Monte Carlo calculations as well as analytical approaches.

I. INTRODUCTION

Quantum phase transitions in systems of interacting
fermions with a relativistic free dispersion have been in-
vestigated intensively in recent years. Beyond their fun-
damental relevance in relativistic quantum field theory,
such fermion systems also emerge in the low-energy sector
of various condensed-matter systems such as for electrons
on graphene’s honeycomb lattice1, ultracold fermions in
optical lattices2, d-wave superconductors3,4, and surface
states of topological insulators5. In case the density of
states vanishes at the free system’s Fermi energy, effec-
tively relativistic fermion systems are robust to weak in-
teractions, and a finite critical interaction strength is re-
quired to drive an instability towards a Mott-insulating
phase, wherein the fermions acquire a finite mass from
chiral symmetry breaking. For lattice fermions, this is
the case at specific commensurate fillings, such that a
low-coupling semi-metallic phase is separated from an
insulating phase by a finite-coupling quantum critical
point.

Along with the chiral symmetry breaking, the Mott-
insulating ground state may also exhibit long-range order
such as in an antiferromagnetic or charge density wave
(CDW) state. Due to the coupling of the order param-
eter fluctuations to low-energy fermion excitations, the
universal behavior at the corresponding quantum critical
point differs from the one expected from a naive anal-
ysis in terms of the number N of components of the
order parameter field and the system’s dimensionality:
a prominent example is provided by the critical Gross-
Neveu-Yukawa theory6–8 for the quantum critical point
of a system of Nf flavors of relativistic four-component
Dirac fermions with a coupling to anN -component order-
parameter field. The scaling properties, such as critical
exponents, have been investigated in the past by various
analytical and numerical methods, and have been estab-
lished to be distinct from, e.g., those of critical points

captured by the conventional (classical) O(N) symmet-
ric φ4-theory9–13. These distinct universality classes for
chiral symmetry breaking are also referred to as chiral,
e.g., for N = 1 as the chiral Ising (Z2) universality class,
and correspondingly for larger values of N (e.g., chiral
Heisenberg for N = 3).

From a condensed-matter perspective on two-
dimensional quantum lattice systems, the N = 1 case
of the Z2-Gross-Neveu theory exhibits a further inter-
esting aspect, since in addition to the chiral Ising quan-
tum critical point, the discrete symmetry of the system
then allows for an extended symmetry-broken phase also
at finite temperatures, terminated by a line of finite-
temperature phase transitions that restores the chiral
symmetry. Anticipating the decoupling of the fermions
from the critical order parameter fluctuations at finite
temperatures, the finite-temperature transitions belong
to the universality class of the classical two-dimensional
Ising model, in accord with the general principles of
dimensional reduction and universality14. Enhanced
fluctuations however drive the ordering temperature to
zero upon approaching the quantum critical coupling
strength. Based on general scaling considerations within
the scaling regime of the quantum critical point15, the
Ising transition temperature Tc is furthermore expected
to scale with the detuning of the dimensionless interac-
tion strength g from its quantum critical value gc as

Tc ∝ |g − gc|zν , (1)

describing the termination of the transition temperature
at the quantum critical point, and where z denotes the
dynamical critical exponent and ν the correlation length
exponent for the order parameter fluctuations of the un-
derlying quantum critical point. This relation thus con-
nects directly the finite-temperature phase boundary line
near the T = 0 quantum critical point to its quantum
critical exponents16.

While relativistic invariance locks the value of z = 1,
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other critical exponents, including ν, are less precisely
established for the chiral Ising universality class. In
the past, estimates for these critical exponents were ob-
tained from approximate renormalization group calcula-
tions9–13,17, and more recently have been extracted also
from quantum Monte Carlo (QMC) simulations of appro-
priate fermionic quantum lattice models18–20. We will
review and discuss these various estimates for the criti-
cal exponents in Sec. V. A particular useful lattice-based
regularization of the Nf = 1, Z2-Gross-Neveu theory in
2+1 dimensions is supposed to be provided by a half-filled
system of spinless fermions on the honeycomb lattice,
with a nearest-neighbor hopping amplitude t and inter-
action strength V > Vc. Indeed, only recently has it been
realized18,21, that such a system can be studied by unbi-
ased and sign problem-free continuous-time QMC simu-
lations that can probe directly the correlations across the
quantum critical point that resides at a critical coupling
strength Vc, and which separates a low-V semi-metal
from the CDW state at large values of V . In addition
to the continuous-time interaction expansion (CT-INT)
algorithm of Ref. 18 and 21, also a QMC algorithm based
on a Majorana formulation19,22 (MQMC) and a projec-
tive continuous-time approach20,23 (LCT-INT) have been
applied to this model, yielding consistent findings. More
recently, close connections among these algorithmic ap-
proaches have furthermore been identified24,25. From
these recent QMC simulations, which concentrated on
ground state properties, the value of the quantum critical
interaction strength Vc ≈ 1.355t in units of the hopping
strength has been estimated, and approximate values of
the critical exponent ν and the anomalous exponent η
for the order parameter fluctuations have been obtained,
which we review in more detail below. Furthermore, the
location of the quantum critical point was also confirmed
from analyzing the scaling of entanglement measures in
this model26.

In the following, we employ the CT-INT approach to
examine the spinless fermion t − V model on the hon-
eycomb lattice in more detail at finite temperatures. In
particular, we determine the thermal Ising transition line
in this model and the critical exponent ν from the rela-
tion in Eq. (1), as well as the anomalous exponent η. The
later is estimated from performing finite-temperature
simulations within the quantum critical regime atop the
quantum critical point. In addition to the fermionic
t− V model, we furthermore consider the quantum spin
(transverse-field) Ising model on the square lattice, which
also features a finite-temperature Ising transition termi-
nating at a quantum critical point15. However, in this
case, the quantum critical point belongs to the univer-
sality class of the three-dimensional classical Ising model,
with rather accurately established values for the critical
exponents. This fact allows us to examine the asymptotic
scaling form in Eq. (1) in more detail, in particular since
we can employ in this case large-scale QMC simulations
based on the stochastic series expansion (SSE)27. For the
t− V model, the system sizes accessible by the CT-INT

method are more restricted, due to the cubic scaling of
the algorithmic complexity with the overall system size
(while in the SSE, the numerical effort scales linearly with
the system size).

The further organization of this article is obvious from
the section headings: In Sec. II, we present in more detail
the models and the numerical methods for our analysis.
We then present in Sec. III our results for the finite tem-
perature scaling behavior near the quantum critical point
for the quantum Ising model, and in Sec. IV, we present
our results for the t − V model on the honeycomb lat-
tice and compare to the values of the critical exponents
from previous ground state QMC simulations. Section
V contains our final conclusions.

II. MODELS AND METHODS

The model of primary interest to our investigations is
the t − V model of spinless fermions on the honeycomb
lattice, described by the Hamiltonian

H = H0 +HI , (2)

H0 = −t
∑
〈i,j〉

(
c†i cj + c†jci

)
,

HI = V
∑
〈i,j〉

(
ni −

1

2

)(
nj −

1

2

)
,

where c†i (ci ) creates (annihilates) a spinless fermion on
the i-th lattice sites, and both summations extend over
the set of nearest neighbor bonds of the honeycomb lat-
tice. The interaction term is written in explicit particle-
hole symmetric form at half-filling, which we consider in
the following. While for values of V < Vc, the half-filled
system resides within a semi-metallic phase, a staggered
CDW Mott-insulator state is stabilized at low tempera-
tures for V > Vc. It is signalled by a finite value in the
thermodynamic limit of the squared CDW order param-
eter estimator

M2 =
1

N2
s

∑
i,j

εiεj

〈(
ni −

1

2

)(
nj −

1

2

)〉
, (3)

where Ns denotes the number of lattice sites, and εi is a
binary variable that takes on the values ±1, depending
on the sublattice to which the i-th lattice site belongs,
and thus accounts for the staggered oder in the CDW
phase. We also denote by g = V/t the dimensionless
tuning parameter, and gc refers to its critical value.

This model has been examined in several recent works,
in particular since it was realized, that it can be studied
by unbiased, sign problem-free QMC methods, based ei-
ther on the fermion bag approach18,21,28 or an appropri-
ate decoupling of the interactions20,23,24, e.g., after ex-
pressing it in terms of Majorana fermions19,22. In the
following, we use the continuous-time interaction expan-
sion (CT-INT) approach presented in Refs. 18 and 21 to
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study the system with CT-INT at finite temperatures,
as detailed in Sec. IV. In particular, we explore the fi-
nite temperature properties of this model in the vicinity
of the quantum critical point, which is assumed to be-
long to the chiral Ising universality class, as referred to
in Sec. I.

In order to contrast this scenario in a fermionic model
to the corresponding behavior near a conventional Ising
quantum critical point, we also analyse in the following
the quantum Ising model in a transverse magnetic field
with the Hamiltonian

HQ = −J
∑
i,j

σzi σ
z
j − Γ

∑
i

σxi , (4)

of local spin-1/2 degrees of freedom, described in terms
of local Pauli matrices. Here, we consider for convenience
the well-studied case of an underlying square lattice ge-
ometry, with a ferromagnetic nearest neighbor interac-
tion J > 0 and the transverse field Γ. From previous
studies, it is known, that the low-Γ ferromagnetic or-
der is destroyed for transverse fields beyond the critical
field strength of Γc = 3.04438(2)J , where a paramag-
netic alignment of the spins in the field direction sets in,
which destroys the long-ranged correlations of the low-Γ
ferromagnetic phase29. The ferromagnetic order can be
accessed in terms of a finite value in the thermodynamic
limit of the squared order parameter estimator

MQ
2 =

〈(
1

Ns

∑
i

σzi

)2〉
. (5)

For the quantum Ising model, we denote by g = J/Γ
the dimensionless coupling ratio and by gc its critical
value, respectively. This definition of g for the quantum
Ising model is chosen in analogy to the t−V model, such
that in both cases the classical Ising model is recovered in
the large-g limit. For the quantum Ising model, the uni-
versal properties of the quantum critical point at gc are
described by the three-dimensional classical Ising model
universality class, i.e., the three-dimensional N = 1 com-
ponent φ4-field theory at the Wilson-Fisher fixed point15.
As in the case of the t−V model, a line of thermal Ising
transitions terminates at the quantum critical point – in
this case the thermal melting of the ferromagnetic order
of the low-Γ regime. To the best of our knowledge, the de-
tails of the thermal phase boundary in the vicinity of the
quantum critical point has not been reported previously,
and we thus perform for this purpose QMC simulations
employing the SSE algorithm of Ref. 27. We can profit for
this analysis from the feasibility to perform large-system
simulations close to the quantum critical point in order
to assess, e.g., the scaling form in Eq. (1). We thus be-
gin our analysis in the following section on the quantum
Ising model.

III. QUANTUM ISING MODEL

In order to determine the finite-temperature phase di-
agram of the quantum Ising model, we performed SSE
simulations on systems with periodic boundary condi-
tions of linear size L, and Ns = L2 sites, with L up to
to 128 at various values of Γ, focusing on the vicinity of
the quantum critical point, as detailed below. At a given
fixed value of Γ < Γc, we use standard finite-size scaling
analysis to locate the critical temperature. In particular,
we can use for this purpose the exactly known critical
exponents of the two-dimensional Ising model from the
Onsager solution30: ν2D = 1, η2D = 1/4, and β2D = 1/8.
Within the critical regime of the finite-temperature Ising

transition, the order parameter estimator MQ
2 then fol-

lows the leading finite-size scaling form

MQ
2 = L−η2Df(trL

1/ν2D ), (6)

in terms of the reduced temperature tr = (T − Tc)/Tc
and the scaling function f . In addition to MQ

2 , one may
also consider the dimensionless Binder ratio31

BQ =
MQ

4

(MQ
2 )2

, (7)

defined in terms of MQ
2 and the quartic order parameter

estimator

MQ
4 =

〈(
1

Ns

∑
i

σzi

)4〉
, (8)

with the leading finite-size scaling form

BQ = fB(trL
1/ν2D ), (9)

which is often employed to locate the critical point, in
particular if the critical exponents for the phase transi-
tion are not known. In fact, the above leading scaling
form implies that right at the critical temperature (tr =
0), the finite-size data of BQ for different system sizes L

intersect, while for MQ
2 the intersection at T = Tc occurs

for the appropriately rescaled data Lη2DMQ
2 . However,

corrections to this leading finite-size scaling form lead
to a systematic drift in the crossing points of the data
for successively larger system sizes. This is seen also in
the data in Fig. 1, for the case of Γ/J = 2.5, where
we plot the finite-size data of both quantities across the
thermal critical region for various values of L. Also in-
dicated in Fig. 1 is the value 1.16793(1) of the critical
Binder ratio for the classical Ising model (Γ = 0) from
Ref. 32. Closer inspection of the figure shows that the
crossing points in the interpolated Binder ratio data for
the largest considered system sizes already stabilize at
this asymptotic value. Our data is thus consistent with
the expectation, that BQ takes on this thermodynamic
limit value along the thermal transition line also for finite
values of Γ. In the vicinity of the quantum critical point,
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FIG. 1. (Color online) Finite size data for BQ (left panel)

and Lη2DMQ
2 (right panel) for the quantum Ising model at

Γ/J = 2.5 in the critical region of the thermal Ising transition.
The dashed line indicates the value of the critical Binder ratio
for the classical Ising model (Γ = 0) on the square lattice.
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FIG. 2. (Color online) Left panel: Successive crossing points
for system sizes L and L + ∆L in the quantities BQ (cir-

cles) and MQ
2 (squares) as functions of 1/L for ∆L = 16,

as obtained from simulations of the quantum Ising model at
different values of Γ. Right panel: closeup for Γ/J = 3.0.

i.e., for Γ close to Γc, we observe an enhanced impact
of scaling corrections, reflecting the fact that the regime
of classical scaling surrounding the thermal phase transi-
tion line narrows close to the quantum critical point. To
account for such scaling corrections we determine, based
on the data shown in Fig. 1, the location of the crossing
points between the data for system sizes L and L+ ∆L,
and plot the obtained crossing points Tc(L) as functions
of 1/L in for both quantities in Fig. 2, where we employed
an offset ∆L = 16. We find that (i) the Binder ratio
BQ data exhibits larger finite-size drifts in the crossing

points than does Lη2DMQ
2 , (ii) the finite-size drifts in-

crease when Γ approaches closer to the quantum critical
point, and (iii) the crossing points in the Binder ratio BQ

data and for Lη2DMQ
2 approach the limiting values from

opposite sites, thus providing an estimate of the critical
temperature within the temperature window bound by
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FIG. 3. (Color online) Data collapse plot of the data for MQ
2

of the quantum Ising model at Γ/J = 2.5 (full symbols). The
line denotes the expanded scaling function. Also included are
linearly rescaled data for MQ

2 at Γ/J = 3 (open symbols), as
detailed in the text.

the crossing points for the largest system size. A more
refined estimate of Tc can be obtained using the lead-
ing finite-size scaling behavior of Tc(L) that describes for
fixed ∆L the convergence of the crossing points towards
the critical temperature Tc in the scaling limit33,

Tc(L)− Tc ∝ L−1/ν2D−ω2D , (10)

where the dominant irrelevant exponent for the two-
dimensional Ising universality class takes on the value
ω2D = 2 (cf. Ref. 34). The right panel illustrates the
results from a fit to these scaling forms at Γ/J = 3, i.e.,
close to the quantum critical point. The extrapolated
values of Tc from both quantities agree within their sta-
tistical uncertainty: Tc/J = 0.2977(9) is obtained from

the Binder ratio BQ and Tc/J = 0.2960(8) from MQ
2 .

We performed the same analysis for various values of g
in order to determine the thermal phase boundary of the
ferromagnetic regime.

We also compared our results from the crossing point
extrapolation to a standard data collapse analysis, based

on the finite-size scaling form of MQ
2 in Eq. (6). This al-

lows us to extract an approximation for Tc, since it enters
via the scaling ansatz in terms of the reduced tempera-
ture tr. For this purpose, the scaling function f is ex-
panded up to forth order in its argument and we use the
Levenberg-Marquardt scheme to fit the finite-size data to
the scaling ansatz. To obtain reliable errors on the fit pa-
rameters, we performed a bootstrap sampling during the
fitting procedure. In addition to finite-size restrictions,
corrections to scaling arise if the difference to the critical
temperature becomes too large. In particular, to remain
within the scaling regime, the condition |tr|L1/ν � 1 on
the argument of the scaling function should be fulfilled,
which also justifies the expansion of the scaling function.



5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Γ/J

0.0

0.5

1.0

1.5

2.0

2.5
T
/

J

Ferromagnetic
order

FIG. 4. (Color online) Thermal phase diagram of the quan-
tum Ising model on the square lattice.

Nevertheless, in practice, the scaling ansatz is often found
reasonable up to |tr|L1/ν ∼ O(1). From our analysis of
the shifting crossing points, cf. Fig. 2, we expect a good
data collapse based on Eq. (6) for values of Γ sufficiently
below the quantum critical point, such that subleading
finite-size corrections to the scaling ansatz do not prevail
within the range of the available system sizes. As an ex-
ample, we show the result of such a fitting procedure on
the data for Γ/J = 2.5 in Fig. 3. Even though the data
collapse appears satisfactory, we obtain from the boot-
strap analysis a mean value for χ2/d.o.f. ≈ 3.5(5), which
is slightly larger than what may have been expected and
hints at remaining finite-size effects. To account for the
corresponding systematic errors in a more quantitative
way, we examined the shift of Tc upon varying the mini-
mum system size used in the fitting procedure, and arrive
this way at a final estimate of the critical temperature at
Γ/J = 2.5 of Tc/J = 1.27369(5), which compares well
to the estimates from the extrapolated crossing points,
Tc/J = 1.2735(7) (based on BQ), and Tc/J = 1.2736(6)

(based on MQ
2 ). While the data collapse method can thus

in principle provide rather accurate estimates of Tc, care
has to be taken with regards to the subleading finite-size
effects that become even more pronounced closer to the
quantum critical point. For Γ/J = 3, we obtain an esti-
mate of Tc/J = 2.95(1) upon varying the fitted system
sizes. Even with enhanced finite-size effects, this esti-
mate is still in reasonable agreement with the crossing
point analysis discussed above. As anticipated from uni-
versality, the scaling functions obtained from the data
collapses within the critical regime at different values of
Γ are furthermore equal up to a linear rescaling of their
arguments and a global prefactor. This is illustrated in
Fig. 3, where the data for Γ/J = 3 is plotted in the
same figures as the data for Γ/J = 2.5, after having per-
formed such a linear rescaling of the Γ/J = 3 data (i.e.,

trL
1/ν2D → a × trL1/ν2D and Lη2DMQ

2 → b × Lη2DMQ
2 ,

with a = 0.1570 an b = 2.9985).
Based on our combined analysis of crossing points and

data collapses, we construct the thermal phase diagram
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/

Γ

FIG. 5. (Color online) Scaling of the thermal transition tem-
perature Tc in the vicinity of the quantum critical point.
The dashed line indicates the asymptotic scaling according
to Eq. (1), with z = 1 and ν = ν3D.

of the quantum Ising model, shown in Fig. 4. In the
limit of vanishing transverse field, Γ → 0, the criti-
cal line flattens and Tc tends towards the critical tem-
perature of the classical two-dimensional Ising model30,
T 2D
c /J = 2/ ln(1 +

√
2) ≈ 2.269185. Close to the quan-

tum critical point, we instead observe an enhanced de-
pendence of Tc on the detuning of Γ from the quan-
tum critical value. To assess, if the asymptotic scal-
ing of Tc in the vicinity of the quantum critical point
indeed follows the scaling form of Eq. (1), we show in
Fig. 5 the dependence of Tc on the relative distance
(g − gc)/gc to the quantum critical point on a logarith-
mic scale. We observe a weak, systematic variation in
the slope of this curve, with a trend towards an asymp-
totic scaling in accord with Eq. (1) and values of z = 1
and ν = ν3D = 0.62998(3), taken from Ref. 35, as in-
dicated by the dashed line in Fig. 5 (where the quoted
recent estimate of ν3D is based on the conformal boot-
strap method35). Furthermore, the crossover to the lim-
iting large-g behavior Tc ∝ J ∝ g of the classical Ising
model take place for a relative detuning (g − gc)/gc ≈ 1
of g from the quantum critical coupling strength. For a
more quantitative assessment of the asymptotic scaling
form of Tc near gc, we plot in Fig. 6 the relative devia-
tion to ν3D of the value of ν that results from fitting the
values of Tc to the scaling from in Eq. (1) with z = 1, de-
pending on the end point gend of the fit window [gc, gend].
Within the uncertainty set by the fitting procedure, we
find that (i) the effective exponent ν indeed approaches
the anticipated value ν3D upon narrowing the fit win-
dow towards gc, (ii) for a fit window of relative width
(gend−gc)/gc ≈ 1, an error of about 5% results in the es-
timate of ν, and (iii) a relative deviation below 2% in the
estimate for ν is achieved for a relative width of the fit
window below about 10%. We can thus extract from the
form of the thermal phase transition line in the vicinity
of the quantum critical point a reasonable estimate for
the critical exponent ν for this quantum phase transition.
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FIG. 6. (Color online) Deviation of the effective exponent ν
to the value of ν3D as a function of the relative size of the fit
window for the critical line in the quantum Ising model close
to the quantum critical point.

In addition to the shape of the thermal phase transition
line, we furthermore examine the finite-temperature scal-
ing within the quantum critical regime. This is accessed
most conveniently upon probing the finite-temperature
correlations right at g = gc, i.e. atop the quantum crit-
ical point. In fact, the general finite-temperature, two-

parameter scaling form for MQ
2 then reduces to36

MQ
2 = L−z−η f̃(TLz), (11)

while for the Binder ratio, the scaling form is given as

BQ = f̃B(TLz). (12)

We can employ the above scaling form of the Binder ra-
tio data to confirm the anticipated value of z = 1 by a
fitting procedure. However, in contrast to the data col-
lapse analysis discussed above, the scaling function f̃B
cannot be represented well by polynomial expansions (cf.
Fig. 7). We therefore solved the optimization problem for
extracting the exponent z through Bayesian inference,
which allows us to fit parameters of unknown continuous
functions by Gaussian process regression37. The errors
on the fit parameters are again estimated using bootstrap
sampling and varying the initial parameter estimates. To
locate the minimum of the log-likelihood function, we use
the Newton conjugate gradient algorithm.

The left panel of Fig. 7 shows the resulting collapse
plot of the Binder ratio data for various system sizes
and temperatures, taken at the quantum critical cou-
pling ratio. We obtain from this analysis an estimate
of z = 1.0027(24), well in accord with the anticipated
value of z = 1.

Fixing thus z = 1, we next use the above scaling form

for MQ
2 to perform a similar data collapse analysis to ex-

tract the anomalous exponent η of the underlying quan-
tum critical point. The right panel of Fig. 7 shows the

corresponding collapse of the MQ
2 data for various sys-

tem sizes and temperatures, also taken at the quantum
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FIG. 7. (Color online) Data collapse of the finite temperature

data for BQ (left panel) and MQ
2 (right panel) of the quantum

Ising model atop the quantum critical point. The lines denote
the scaling functions f̃B and f̃ respectively, obtained from a
Gaussian process regression.

critical coupling ratio. We obtain from this analysis an
estimate of η = 0.0367(10), which agrees well with the
expected value of the three-dimensional Ising universal-
ity class, η3D = 0.03630(2), which is again taken from
Ref. 35. The data in Fig. 7 clearly demonstrates the dif-
ficulty of approximating the scaling functions f̃B and f̃
by low-order polynomial expansions, as alluded to above.
In particular, we find the scaling function f̃ to exhibit
a maximum, which implies that for a given finite sys-
tem, the order parameter estimate shows an initial in-
crease upon increasing the temperature, starting from
the ground state (there is correspondingly a minimum

in f̃B). Note, that this behavior is however purely a
finite-size effect, as the order parameter scales to zero
at any finite temperature for g = gc, as well as in the
ground state. In fact, the temperature scale set by the
maximum in f̃ scales proportional to L−1 → 0 in the
thermodynamic limit. The observed maximum suggests
that increasing the temperature for a fixed system size at
g = gc reduces the effect of the transverse field terms and
thereby favours magnetic ordering, which increases the

order parameter estimator MQ
2 . Only when the temper-

ature rises beyond the scale set by the maximum in f̃ will
the competing thermal fluctuations eventually reduce the
magnetic order. As already mentioned, this effect how-
ever disappears completely in the thermodynamic limit,
where critical fluctuations prevail in the ground state.
Finally, since for a given finite temperature at g = gc the
systems is not ordered, the values of the Binder ratio BQ

in the thermodynamic limit approaches a value of 3, and

MQ
2 approaches 0, which also set the limiting values of

the scaling functions f̃ and f̃B for large values of their
argument, in accord with the behavior seen in Fig. 7.

To summarize this section on the quantum Ising model,
we find that for the considered scenario of a conventional
Ising quantum critical point, we can accurately deter-
mine the finite-temperature thermal transition line and
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FIG. 8. (Color online) Finite size data for B (left panel) and
Lη2DM2 (right panel) for the spinless fermion t−V model at
V/t = 1.75 in the critical region of the thermal Ising transi-
tion. The dashed line indicates the value of the critical Binder
ratio for the Ising model on the honeycomb lattice.

the order parameter fluctuations atop the quantum criti-
cal point. The obtained data fits well to universal scaling
forms, allowing us to estimate the values of the critical
exponents of the underlying quantum critical point. Mo-
tivated by these observations, we next turn to the case of
the t−V model, and perform a similar analysis based on
the recent advances in QMC algorithms to explore the
finite-temperature scaling properties near a chiral Ising
quantum critical point.

IV. HONEYCOMB LATTICE t− V MODEL

For the CT-INT simulations of the t − V model on
the honeycomb lattice, a triangular lattice with a two-
site unit cell, we employ finite lattices with a rhom-
bus shape. We considered lattices of linear size L and
Ns = 2L2 lattice sites, with L a multiple of 3 in order to
ensure that the Dirac points, which characterize the low-
energy physics of the half-filled system, are included in
the discretized reciprocal lattice when employing period
boundary conditions. Using the CT-INT algorithm we
were able to access values of L up to 21 at temperatures
T down to 0.06t in the vicinity of the quantum critical
point.

From an analysis of the Binder ratio B and the rescaled
quadratic order parameter estimator Lη2DM2 at various
values of V/t, we can extract the thermal transition line,
similarly to the analysis performed in the previous sec-
tion. However, in the present case, we are restricted in
the range of accessible system sizes, which will be seen to
limit our precision as compared to the case of the quan-
tum Ising model. As an example of our analysis, we show
in Fig. 8 the CT-INT results at a value of g = V/t = 1.75.
As for the case of the quantum Ising model, we observe a
systematic drift of the crossing points upon increasing the

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
trL1/ν2D

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
2L
η

2D

V/t = 1.75 L = 9
L = 12
L = 15
L = 18

FIG. 9. (Color online) Data collapse plot of the data for M
of the t − V model at V/t = 1.75 . The line denotes the
expanded scaling function.

system size. We again find that both quantities approach
convergence from opposite directions, which allows us to
bound the transition temperature in the thermodynamic
limit. Due to the limited range of accessible system sizes,
we are not in a position to employ the asymptotic scaling
law for the crossing points, and thus estimate the ther-
mal transition temperatures for the t − V model based
on the interval of the bounding crossing points from the
largest available system sizes. From the data shown in
Fig. 8, we then obtain the estimate Tc/t = 0.325(10) for
V/t = 1.75. We also employed the data collapse analysis
for the M2 data according to

M2 = L−η2Df(trL
1/ν2D ), (13)

from which the obtain an estimate of Tc/t = 0.315(20)
for V/t = 1.75, with the corresponding data collapse plot
shown in Fig. 9. We also verified, that the scaling func-
tion f obtained for the t− V model can be related by a
global rescaling combined with a linear rescaling of the
argument to those of the quantum Ising model. Figure 8
furthermore includes the value of the critical Binder ratio
for the classical Ising model on the honeycomb lattice, for
which we performed classical Monte Carlo simulations,
and which we find to agree with the previous, high preci-
sion value 1.1645157(3) for the Ising model on the trian-
gular lattice32 (for these simulations, we used the method
of Ref. 38 at the critical temperature Tc/J = 1.51865
of the classical Ising model on the honeycomb lattice39,
keeping the same, rhombus-shaped finite clusters as for
the t−V model). Our CT-INT data for B in the critical
regime is consistent with an approach towards this criti-
cal Binder ratio in the thermodynamic limit also for the
t− V model in the vicinity of its quantum critical point,
even though on the accessible system sizes, the crossing
points still reside above this asymptotic value. Overall,
these observations confirm the anticipated scenario that
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FIG. 10. (Color online) Thermal phase diagram of the spinless
fermion t−V model on the honeycomb lattice. The solid line
is a fit of the numerical data to the scaling from from Eq. (1),
and the dashed line indicates the asymptotic scaling of the
critical temperature Tc = 0.37966V in the large-V limit.

the thermal transitions out of the CDW phase belong to
the universality class of the two-dimensional Ising model
for the full range of V > Vc.

From an analysis of the CT-INT data for various values
of V/t, we eventually obtain the thermal phase diagram
shown in Fig. 10. In this figure, we also indicated by the
dashed line the asymptotic scaling Tc/V = 1.51865/4 =
0.37966 that holds in the large-V limit39. We find that
the data within the window (g − gc)/gc < 1 fits well to
the scaling form in Eq. (1): with z = 1 from relativistic
invariance and leaving gc and ν as free parameters, we
thereby estimate a value of gc = 1.359(30) for the critical
interaction strength and ν = 0.74(4) for the correlation
length exponent of the CDW order parameter fluctua-
tions of the underlying quantum critical point. These
values may be compared to previous estimates based on
ground state QMC calculations: in Refs. 18 and 20, val-
ues of gc = 1.356(1) and ν = 0.80(3) were reported (in
Ref. 20 the values obtained in Ref. 18 were used and
checked for consistency, but no independent finite-size
analysis was performed), and values of gc = 1.355(1) and
ν = 0.77(3) in Ref. 19. Our results are in overall accord
with these previous ground state estimates, and show
that the chiral nature of the underlying quantum critical
point affects the scaling of the finite-temperature Ising
transition line in a characteristic way.

To explore further the quantum critical regime, we also
examined the scaling of the finite-temperature fluctua-
tions of the CDW order parameter atop the quantum
critical point, considering the value of gc = 1.355, taken
from Ref. 19. The finite-size values for bothB andM2 are
shown in the left and the right panel of Fig. 11, respec-
tively. We consider temperatures up to T ≈ t, and sig-
nificantly larger temperatures eventually extend beyond
the universal, quantum critical regime. For both L = 6
and L = 9, we can clearly identify the low-temperature
saturation of both quantities towards their ground state
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T/t

1.8

2.0

2.2

2.4

2.6

2.8

3.0

B

V/t = 1.355

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T/t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
2

V/t = 1.355 L = 6
L = 9
L = 12
L = 15
L = 18
L = 21

FIG. 11. (Color online) Finite-temperature data for B (left
panel) and M2 (right panel) for the spinless fermion t − V
model at V/t = 1.355, atop the quantum critical point, for
various system sizes.
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FIG. 12. (Color online) Data collapse of the finite temper-
ature data for B (left panel) and M2 (right panel) for the
spinless fermion t− V model at V/t = 1.355, atop the quan-
tum critical point, for various system sizes. The lines denotes
the scaling functions f̃B and f̃ , obtained from a Gaussian
process regression.

values. For L = 12, the onset of this saturation can still
be seen, while for all larger values of L, this saturation
apparently happens at a lower temperature scale ∝ 1/L
than considered here.

For the dimensionless Binder ratio, we expect a data
collapse upon plotting the values of B as a function of
TLz, which derives from the scaling form

B = f̃B(TLz) (14)

in the quantum critical regime atop the quantum critical
point, i.e., for g = gc, as considered here. As shown in
the left panel of Fig. 12, such a data collapse is indeed
feasible over the full range of the finite-temperature data,
only the L = 6 data exhibit systematic deviations, in par-
ticular at low temperatures, indicative of the finite-size
saturation effects already mentioned above. Again, the
obtained quantum critical Binder ratio data is in accord
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FIG. 13. (Color online) Attempted data collapse of the finite
temperature data M2 for the spinless fermion t − V model
at V/t = 1.355, atop the quantum critical point, for various
system sizes with η = 0.3 [18 and 20] (left panel) and η =
0.45 [19] (right panel), and z = 1.

with an asymptotic approach towards a value of 3 for
large values of TLz. However, the statistical noise in the
data for the larger system sizes limits the stability of data
fitting procedures in this regime. An unbiased fit of the
Binder ratio data, using the Bayesian inference method37

applied to the scaling function f̃B over the fit range for
TLz from 0.5 to 4 results in a value of z = 0.99(1), also
indicated in Fig. 12. This result is in accord with the
anticipated value of z = 1. The good overall collapse of
the Binder ratio data indicates that within the accessible
range of system sizes and temperatures, we can indeed
probe the scaling regime atop the quantum critical point.

We thus also performed a data collapse analysis of the
finite-temperature data for M2, based on its scaling form

M2 = L−z−η f̃(TLz), (15)

at g = gc, in terms of the critical exponents z = 1 and
η. Due to the explicit η dependence, we can estimate the
value of this critical exponent upon monitoring the qual-
ity of the data collapse for varying values of η. A good
overall data collapse results for η ≈ 0.25, as shown in the
right panel of Fig. 12, with again the L = 6 data exhibit-
ing the most pronounced deviations at low temperatures.
A fit based on the Bayesian inference method37 applied
to the scaling function f̃ over the fit range for TLz from
0.5 to 4 results in a value of η = 0.255(10), indicated in
Fig. 12.

We next compare our estimate for η to the values ob-
tained from previous QMC simulations, which targeted
ground state correlations. In Refs. 18 and 20, a value of
η = 0.307(2) was obtained from simulations with L up
to 18. In Ref. 19, employing simulations up to L = 24,
a value of η = 0.45(2) was reported. Figure 13 shows
attempted collapse plots of our finite-temperature data,
using values of η = 0.3 (left panel) and η = 0.45 (right
panel). While for η = 0.3, an acceptable collapse of
the data is observed at least for TLz < 2t, a value of

Method ν η

4 − ε, 1st order [9] 0.709 0.577

4 − ε, 2st order [9] 0.797 0.531

FRG (linear cutoff) [10 and 11] 0.927 0.525

FRG (exp. cutoff) [10] 0.962 0.554

FRG [13] 0.929 0.602

1/N expansion [11] 0.738 0.635

CT-INT (GS) [18] 0.80(3) 0.302(7)

MQMC (GS) [19] 0.77(3) 0.45(2)

LCT-INT (GS) [20] 0.80(3) 0.302(7)

CT-INT (finite T ), here 0.74(4) 0.275(25)

TABLE I. Overview of reported estimates for the critical ex-
ponents ν and η for the Nf = 1, Z2-Gross-Neveu theory in
2+1 dimensions (analytic approaches) as well as the spinless
fermion t − V model on the honeycomb lattice (QMC ap-
proaches). GS indicates that ground state correlations were
targeted, while the results reported here (in the last row)
were obtained from the finite-temperature scaling. Note, that
for the LCT-INT results in Ref. 20, with system sizes up to
L = 18, the values of Ref. 18 (with L up to 15) were used and
checked for consistency, but no independent finite-size analy-
sis was performed. In the MQMC approach of Ref. 19, system
sizes up to L = 24 were employed.

η = 0.45 does not lead to a good data collapse. While
corrections to scaling may still explain the systematic de-
viations from a perfect collapse seen in the left panel of
Fig. 13 for η = 0.3, a value of η = 0.45 appears too large:
the fact that the Binder ratio data exhibits a good overall
collapse on the accessible system sizes and temperatures
(independently of the value of η) suggests that one can
also collapse the available data for M2, given an appro-
priate value of η. From this analysis, we thus estimate a
value of η ≈ 0.25− 0.3 = 0.275(25) to be in accord with
our finite-temperature data inside the quantum critical
regime.

Finally, and on a more qualitative account, we note
that for the t− V model the scaling function f̃ does not
exhibit a local maximum (cf. the right panel of Fig. 12),
in contrast to the corresponding scaling function for the
quantum Ising model (cf. Fig. 7). This observation pro-
vides a direct qualitative distinction of the two different
universality classes at the corresponding quantum critical
points.

V. DISCUSSION

We employed quantum Monte Carlo simulations to an-
alyzse thermal Ising transition lines in the vicinity of
quantum phase transitions of two-dimensional quantum
lattice models and related the thermal scaling properties
to the critical properties of the quantum critical point.
For the quantum Ising model on the square lattice, our
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numerical results for the critical exponents ν and η, which
we obtained from the scaling of the Ising transition line
and the order parameter correlations in the quantum crit-
ical regime, compare well to previous estimates of these
critical exponents for the three-dimensional Ising univer-
sality class. In the case of the spinless-fermion t − V
model on the honeycomb lattice, our simulations have
shown that it is feasible to estimate the quantum critical
scaling exponents from the finite-temperature scaling and
the Ising transition-line, allowing us, e.g., to discern the
conventional Ising quantum phase transition in the quan-
tum Ising model from the chiral Ising transition in the
fermionic system. We obtained values of ν and η, which
compare well to previous results based on ground-state
calculations. The critical exponents of the associated
Nf = 1, Z2-Gross-Neveu theory in 2+1 dimensions have
also been estimated within various analytic approaches,
based on field theoretic and resummation techniques. Ta-
ble I summarizes these various results for the critical ex-
ponents (cf. Ref. 40 for a similar compilation of estimates
for the critical exponents of various chiral universality
classes). For the ε-expansion and the 1/N -expansion,
the critical exponent ν is in reasonable agreement with
the quantum Monte Carlo values, while the reported val-
ues from the functional renormalization group (FRG) are
systematically slightly larger. The anomalous exponent
η is obtained larger than the quantum Monte Carlo es-
timates by all the analytical approaches, with a factor
of about two difference to the results of Refs. 18 and
20 and our finite-temperature findings; the difference to
the value reported in Ref. 19 is less prominent. In gen-
eral, one may consider an inssuficient approach to the

scaling region to plague quantum Monte Carlo estimates
of critical exponents. However, the Binder ratio data in
our simulations exhibits a good overall relativistic scaling
(and independently of the values of ν and η), suggesting
that the critical exponents have also been accessed within
the scaling regime. For the future, it would be desirable
to eventually overcome the reported deviations between
the various estimates and to eventually reconcile analytic
and numeric approaches for the chiral Ising universality
class to a similar precision as has been achieved for the
Wilson-Fisher fixed-points.

Note – An independent finite-temperature study of the
t−V model, based on a hybrid SSE CT-QMC algorithm,
has been performed by Wang, Liu and Troyer41. When-
ever there is an overlap, their results are in full agreement
to those reported here.
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