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Bosonic symmetry-protected topological (SPT) states are gapped disordered phases of matter possessing
symmetry-preserving boundary excitations. It has been proposed that, at long wavelengths, the universal prop-
erties of an SPT system are captured by an effective non-linear sigma model field theory in the presence of
a quantized topological f-term. By studying lattice models of bosonic SPT states, we are able to identify, in
their Euclidean path integral formulation, (discrete) Berry phases that hold relevant physical information on the
nature of the SPT ground states. These discrete Berry phases are given intuitive physical interpretation in terms
of instanton effects that capture the presence of a f-term on the microscopic scale.

I. INTRODUCTION

Since the prediction and discovery of topological band in-
sulators,'= the relation between topology and symmetries in
the realization of new phases of matter has been the focus of
intense scrutiny in recent years.

While the classification of non-interacting symmetry-
protected topological (SPT) fermionic phases of matter ap-
pears to have been completely formulated,*”’ the quest for
interacting SPT phases is actively being theoretically stud-
ied.®2” Moreover, it has been recently proposed that bosonic
SPT states could be realized in periodically driven interact-
ing systems,”® as well as in other cold-atom platforms,?*-3
thus opening the interesting possibility to probe and manipu-
late SPT systems.

The simplest example of a bosonic SPT state is provided by
the S = 1 antiferromagnetic Heisenberg chain, whose ground
state is gapped, symmetry unbroken and possesses 2-fold de-
generate edge states that behave as S = 1/2 low energy ex-
citations. Haldane has shown that the Euclidean path inte-
gral of the S = 1 antiferromagnetic chain is described by an
Euclidean action that contains, in addition to a standard non-
linear sigma model term, a topological 6-term action Sy with
the coefficient § quantized in multiples of 27,332
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(n is a 3-component unit vector.) Whereas the presence of the

topological action does not change the partition function when
periodic boundary conditions are imposed on the system [due
to the fact that exp (1 Sp) = exp (i27 X integer) = 1], Sp is
nevertheless directly responsible for the S = 1/2 excitation
in the presence of edges.’3-3%

Recently, Bi et al.>* proposed a classification of bosonic
SPT states in D-dimensional space via an extension of
Eq. (1.1), whereby the gapped symmetric state is assumed to
be described by an O(D + 2) non-linear sigma model aug-

mented with a quantized 6-term action,

Sp = SnrLsm +1Sp
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QD+1

where Qp is the area of the (D + 1)-dimensional sphere
of unit radius. In the strong coupling limit g — oo, the wave
function acquires the form'®
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where 7(x,u) is an extension that satisfies 7(x,0) =
(0,0,....,0,1) and n(x,1) = n(x). The f-term action then
endows the wave function with an amplitude given by a Wess-
Zumino-Witten term at level-1.3%%0

Although the field theory approach adopted in Ref. 24 gives
a useful platform for discriminating various classes of bosonic
SPT states, there remains the question of how the proper-
ties encoded by the long wavelength description Eq. (1.2) are
manifested at the microscopic scale.

In this paper we investigate the effects of the f-term at the
microscopic level, by studying the Euclidean partition func-
tion of microscopic Hamiltonians of bosonic SPT states. Ac-
cording to the work of Chen et al.,'' SPT phases can be char-
acterized by their “short-range entanglement”, in that an SPT
ground state can be connected to a trivial state by the action
of a unitary transformation that preserves the relevant global
symmetry. Recently, one of us,?® using ideas of entangle-
ment spectrum, has constructed explicit unitary transforma-
tions that give rise to one-dimensional SPT chains with time-
reversal and Z,, X Z,, symmetries, as well as two-dimensional
SPT paramagnets with Zo X Zo symmetry, which are a gener-
alization of the Z, paramagnet introduced by Levin and Gu in
Ref. 13. In this work, we shall then use the unitary mappings
studied in Ref. 26 to find an explicit form of the Euclidean
partition function for those classes of SPT states.

Expanding on the framework formulated by Chen and
coworkers,!! here we will investigate the structure of the co-
cycles of 1D and 2D spin SPT phases using a path-integral



approach based on the standard mapping between quantum
and classical spin systems using transfer matrices.*'**> A re-
cent treatment of 3D SPT phases has used a similarly inspired
approach.?’ Instead of a triangulation of the Euclidean space-
time, as used in Ref.[11], we will work with simple stacked
lattices in the Euclidean direction and show how the resulting
effective discrete Euclidean action embodies the Berry phases
of these SPT states. Thus, on our route to computing the parti-
tion function for the microscopic SPT models considered here,
we will be able to identify discrete Berry phases that orig-
inate from quantum fluctuations of the degrees of freedom,
upon the evolution of the SPT system in imaginary time. (For
other studies on the role of Berry phase in SPT systems, see
Refs.[43-45]) To these discrete Berry phases, which can be
viewed as instanton effects, we will attach a simple physical
interpretation that will make the physics of the long wave-
length 6-term topological action manifest at the microscopic
scale in connection with the entanglement properties of the
SPT ground state. 2

More specifically, after introducing our general approach in
Section II, we derive explicit forms in Section III for the 1D
time-reversal invariant and Z,, x Z,, invariant SPTs and for
the 2D Levin-Gu model with Z, symmetry and present the
resulting Berry phases for each one of these cases.

II. GENERAL APPROACH

We are interested in evaluating the partition function

Zspr = Tr (e” P Hser) | (2.1)

where the spin Hamiltonian Hgpr describes a bosonic
SPT phase in D-dimensional space. The partition function
Eq. (2.1) encodes (D + 1)-dimensional space-time quantum
fluctuations of the many-body system, with an Euclidean time
direction of length 8 = 1/T (inverse temperature) satisfying
periodic boundary conditions.

Our goal is to express the partition function Eq. (2.1) in a
local basis, in the process of which we will be able to iden-
tify non-trivial discrete Berry phases originating from quan-
tum fluctuations of the local spins. These Berry phases will
establish a simple and intuitive picture of the SPT state from
the point of view of the space-time quantum fluctuations of its
microscopic degrees of freedom.

Important to our discussion is the fact that, if the D-
dimensional spatial manifold on which the SPT system lives
has no boundaries, the SPT Hamitonian Hspt can be gener-
ated from a trivial gapped paramagnetic Hamiltonian H via
a unitary, symmetry-preserving transformation W:'!-26

Hspr = WHy W1, (2.2)
where H( describes a trivial paramagnet, i.e., a paramagnet
whose edge states can be gapped without symmetry violation.
In order to facilitate our obtaining of an explicit representation
of the partition function Eq. (2.1), we choose to work with
microscopic models in their zero correlation length limit [this

choice will not affect the Berry phases, which are the subject
of our attention in Eq. (2.1)]:

N
Ho=-hS X,
0 ; (2.3)
[Xian]:()v V(Zm})

N is the number of lattice sites and h is a positive energy
scale. X; is a Hermitian operator defined solely on site 7. (In
its simplest form, X; = o7 is a Pauli matrix.) Due to the zero
correlation form assumed for H, the Hamiltonian Eq. (2.2) is
a sum of mutually commuting operators,

N N
Hgpr = —h Z O, =—h Z WX, WL,

=1 =1

(2.4)

In order for the ground state of Hgpt to possess non-trivial
entanglement, the transformation W can not be reduced to a
product of on-site terms. As a consequence, the operator O;
acts on site ¢ and the neighborhood thereof.

Despite the distinct entanglement patterns encoded by the
ground states of Hy and Hgpr, when expressed in the same
local basis, the unitary transformation Eq. (2.2) implies that
in a closed spatial manifold, both Hamiltonians have the same
spectra and, hence, the same partition function. Nevertheless,
the fundamental physics of the SPT system can be unveiled
by studying the quantum fluctuations of spins between inter-
mediate Euclidean “time slices” of Eq. (2.1). These instan-
ton events, as we will see by explicit computation, give rise
to non-trivial phase factors in Eq. (2.1), whereby spin fluc-
tuations in imaginary time are coupled to domain wall like
configurations in a way that is consistent with the underly-
ing global symmetry of the SPT state. We shall determine
the phase factors associated to these instanton events for some
cases of interest.

In order to carry out this program, we evaluate the trace
in Eq. (2.1) using the complete set of orthonormal many-
body basis states |0 ) = | 01, 03, ..., 0 ), whereby the trivial,
unique ground state of [ is represented as

1
|‘I’0>:m2|0>~ (2.5)

D denotes the dimension of the Hilbert space and | Uy ) is a

product state expressed in the “ordered” basis | o ) satisfying
X;|¥o) = | ¥y), for every j. In the ordered basis, all the
diagonal matrix elements of X; vanish: (o |X;|o) = 0.

The advantage of working with the representation Eq. (2.5)
for the trivial ground state is that W is diagonal in the | o ) ba-
sis: W o) =W |g). (See examples in Sec I1I.) Hence,
the SPT ground state in the zero correlation limit reads

1 i o
|‘I’SPT>:WZ€W()‘U>- (2.6)

Normalization factors aside, e (?) is the SPT ground state
wavefunction in the | o ) basis. Hence the phase factor "’ (?)
in Eq. (2.6) plays the role of the WZW term in Eq. 1.3.



In order to explicitly capture the non-trivial quantum fluc-
tuations associated with the SPT Hamiltonian, we convention-
ally represent the trace in Eq. (2.1) as:

M
ZspT = Z Z HZSPT[U(Tk)ao'(TkJrl) , (2.7a2)

o(m1) o(tm) k=1

Zspr (7). 0(rip)| = (o(m) |7 57T | o))

i [W(om))fvv(a(ml))}

—e VA [U(Tk)va(Tk-&-l)

eiAWk,k+1 ZO {U(Tk), U(Tk+1):| ,

(2.7b)
where, in Eq. (2.7a), we have introduced M time intervals
of length 7411 — 7 = 7 = /M with the periodic bound-

ary condition in imaginary time o(7p+1) = o(71) implied.
[See Fig. 1(a).] Also, in Eq. (2.7b) we have used the uni-
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FIG. 1. Fig. 1(a) depicts the slicing of the partition function into
M intervals, as described by Eq. (2.7a). At each time slice, we have
an instantaneous representation of the D-dimensional SPT system,
which, without boundaries, is generically represented by a circle.

Fig. 2(a) depicts the slicing of Zgpr [U(Tk), U(Tk+1):| into N sub-
intervals, as described by Eq. (2.10)

tary transformation given in Eq. (2.2) to relate the imaginary
time evolution of the SPT Hamiltonian at each time slice with

Zo|o(7i),0(Tra1) | = (o(m) [ e~ "o [ o(mhsn) ).
Since Zy {O'(Tk),U(T/H_l)} > 0, all the non-trivial Berry
|

=2 >

o (7k,1) 0(Tk,2)

>

Zspr [U(Tk)ﬂT(TkJrl)}

It is worthwhile to remind the reader that, even though, by

N
[T ¢ irmod) (o(mi 1) 1" 05 (7h 5) ) -

o(Tk,N—1) J=

phases associated with quantum fluctuations of the SPT sys-
tem are given by the phase factor on the second line of
Eq. (2.7b). Moreover, this phase factor has the interpretation
of a surface term since it only depends on the configurations
at the time slices 7 and 754 1.

While the phases appearing in Eq. (2.7b) account for
the space-time quantum fluctuation of the whole system
(recall that o(7) refers to the many-body configuration at
time 7), we can gain further information about the na-
ture of the SPT system by studying Berry phases picked
up by local spin fluctuations. In order to do this,
we divide each time interval (7j,7x4+1) into N subin-
tervals (7g, Tk + €, ooy Tk + 56, ooy Tie + (N — 1)€, Tgy1)
(Tk,O; Thyls ooy Thyjs oo Tk,NflaTk,N) of length ¢ = T/N
B/(MN) [see Fig 1(b)] and rewrite Eq. (2.7b) as

Zspr[o(m).o(mn)| = X0 D D

0(Tk,1) 0(Tk,2)  o(Th,N—1)

N (2.8)
< [ (o(rkj-1) [€" | o(7i5) ) -
j=1

In going from Eq. (2.7b) to Eq. (2.8) we have used the fact
that the local operators O; in Eq. (2.4) commute among them-
selves and we have introduced the identity operator (N — 1)
times in the form of a complete summation over intermediate
many-body configurations o (7x.,1), ..., o (T, N—1)-

We are now faced with the evaluation of the transfer ma-
trices between many-body configurations of local operators
e<9i | which, straightforwardly, yields

(o(hj—1) [€" o (rr5))

(S (e s ; ' (2.92)
= S0 TeD) (g (m 51) [ o) )

ei [W(U(Tk,j—l))—W(U(Tk.j))}

el Si(Thj—1,Tk:d) —

(2.9b)

where Aj (74 j—1,7;) = 1177 Oou(ras 1).00(rs ;) eNfOICES
that all spins at time slices 73 ;1 and 73 ; be the same, ex-
cept at site j. Thus the phase el (™.i-1:7:7) in Eq. (2.9b)
accounts for the Berry phase contribution due to the quantum
fluctuations of a single spin at site j in the presence of an
instantaneous configuration of adjacent spins. Therefore, the
contribution of the partition function between time slices 7
and 741, which takes into account the Berry phases picked
up by local spin fluctuations, can be cast in the form

(2.10)
1

(

construction, the right hand sides of Eq. (2.7b) and Eq. (2.10)

Aj(Thj—1:Th,j) 5



are identical, the latter equation makes evident the Berry
phases due to local instanton effects while the former equation
captures the quantum fluctuations of the entire D-dimensional
system as it propagates in imaginary time.

II1I. EXAMPLES
A. D =1, time-reversal symmetric SPT state

A one-dimensional periodic SPT chain, invariant under
time-reversal Z1 operation,

3.1)

(K denotes complex conjugation) can be constructed using
the unitary transformation®

N 1—0% o?
i60; i+1 (%)
Wrrs = H e )

j=1

7
Oiit1 = 70 (3.2)

where at every site of the chain there is a spin-1/2 de-
gree of freedom represented by a Pauli operator of with
a =1,2,3 = x,y, 2. The unitary operator Eq. (3.2) endows
a many-body basis state | ) = | 01, 03, ...,0n ) with a phase

factor exp {i(w/2)Nd(a)} = +1, where Nq(o) denotes the

(even) number of domain walls in the state | o). Moreover,
this transformation commutes with the time-reversal operator
Eq. (3.1) and each local unitary piece creates a maximally en-
tangled state between nearest neighbor spins.?®

So, under Eq. (3.1), one can map the trivial time-reversal
symmetric ground state

+\e" 1
vy = ()" - S 0o), e
of
N
Hy = —h Z ol (3.3b)
j=1
into

1 iZ o
[Wrrs ) = Wrrs [ Vo) = 5575 D 2N g) (349

which is the unique ground state of the SPT Hamiltonian

N
Hgpr = Wrrs HoWigg = h Z 05 ,0507,,. (3.4b)

j=1

It is immediate to see that the SPT Hamiltonian Eq. (3.4b),
when open boundary conditions are imposed, possesses 2-fold
degenerate states per edge.

Now, applying our discussion of Sec. II to the time-reversal
symmetric SPT Hamiltonian Eq. (3.4b) yields the phase con-
tribution Eq. (2.9b) due to a single spin fluctuation to be

el Si(Thj—1,7k,7) —
in(Uj(Tk,j—1;*°j<7k,.j)) (”Hl“k,.ﬂ;"j—l“k,j))

[the product of delta functions A;(7x j—1, 7%, ;) in Eq. (2.9b)

is omitted in Eq. (3.5)]. Combining the result Eq. (3.5) due
to single spin processes yields, according to Eq. (2.7b), the
total Berry phase as the one-dimensional SPT chain evolves
in imaginary time:

(3.5)

€ )

ei Z [Nd(U(Tk))*Nd(U(Tkﬂ)) 3.6)

eiAWk,k+1 _

Eq. (3.5) implies that a single spin fluctuation at site j con-
tributes a phase —1 to the partition function if the neighbor
spins are antiparallel and +1 if they are parallel to each other.
Summing up these individual phase contributions throughout
the chain gives ¢! ® Wr#+1 = —1 if the change in domain wall
number is 4m+2 (m € Z)and ' ® Wrk+1 = 11 if the change
in domain wall number is 4m.

B. D =1,Z, X Z, symmetric SPT state

We consider a periodic chain with an even number N of
sites where, at every site j, there exists a clock operator o
and its conjugate operator 7; satisfying the algebra

ot =" =1 O'T = gn_l TT = 7?"_1
J J ’ J J 7 J ’
, (3.7
T — iirm
TjO'jTj—UJO’j, w=e n .

For the n = 2 case, Eq. (3.7) admits a Hermitian rep-
resentation in terms of Pauli matrices o; = o} and 7; =
a;"; otherwise these clock operators are not Hermitian (see
Ref. 46 for a recent discussion). We shall denote by |o; ),
for o; € {l,w,...,w™ '}, the eigenstates of o;, and by
|o)=|0o1,...,0n ) the corresponding many-body state. (The
distinction between operators and their eigenvalues should be
clear from the context.)

We choose to work with a representation in which the gen-
erators of the Z,, x Z,, symmetry implement transformations
0; — wo; independently for the operators on even and odd
sublattices, and hence are given by

S‘éi): H Tj, S’éi): H Tj -

JE€even j€odd

(3.8)

A trivial ground state and its parent Hamiltonian, both in-
variant under the action of the operators in Eq. (3.8), are given
by

(|1>—|—|w>—|\—/7.€..—|—|w"1>)®N

1
:W2‘0>7

{o}

| W)
(3.92)



(3.9b)

N
—h Z (Tj +TJT) .
j=1

There exist n — 1 unitary transformations W% , p €

{1,...,n — 1}, that (i) map the product state Eq. (3.9a) into

a new state where every spin is maximally entangled with

its nearest neighbors and (ii) commutes with the symmetries
Eq. (3.8):%°

72419 (0§, 1 72)°
(w@—1) (w®-1)

(of
() _ g2y, yrs 2
Wyl =e (3.10)

WP o) =W @ o), WP (o) eR.

Each of the W%p ) for p # 0 gives rise to an SPT ground state,
and hence, there are n — 1 SPT classes.!l:%*

With the transformation Eq. (3.10), one then arrives at the
SPT Hamiltonian?®

Hff) = ng) H, (W%p))_

=—h Z { {TQJ 02j-105;,1)" +Taj41 (0} 02j+2)p}

+ H.c.}
(3.1D)

and its ground state

[OP ) =W |0y =

1 iW(p) o
N/ {Z;@ " DNa). 312

The SPT Hamiltonian Eq. (3.11), when open boundary con-
ditions are imposed, possesses an n-fold degenerate states per
edge.

Now, applying our discussion of Sec. II to the SPT Hamil-
tonian Eq. (3.11) yields the phase contribution Eq. (2.9b) due
to a single spin fluctuation to be

et Si (T j—1,Tk:d) —

=a =a
.9 —1 | % T,j—1)—07 (7k,5) 41Tk, ]) o _ 10Tk 5)
enJ'ITer a=1 |~ . o =

(3.1’3)

where 7; = 11if j is even, and n; = —1if j is odd. [the prod-
uct of delta functions A (7 j_1, 7k ;) in Eq. (2.9b) is omitted
in Eq. (3.13)]. According to Eq. (3.13) the Berry phases due
to a single spin fluctuation in imaginary are non-zero provided
the neighbor spins are not parallel to each other. Using the ex-
pression Eq. (A6) in the appendix, one can show that if the
spin at site j fluctuates between values o (7y ;1) = whot*
and 0(7y,,j) = w', for £y, £ € {0, ...,n— 1}, then the expres-
sion Eq. (3.13) reduces to the simple form el i (Tk.5-1:7k:7) =
(5j+1 gj_l)m tp.

Combining the result Eq. (3.13) due to single spin processes
yields, according to Eq. (2.7b), the total Berry phase as the

one-dimensional Z,, x Z,, symmetric SPT system evolves in
imaginary time:

J [W#Ma(m»fwé,p)(a(rkm)} (3.14)

eiAWk,k+1 _

C. D = 2,7 symmetric SPT state

We now analyze the 2D Z, SPT model proposed by Levin
and Gu.!? This is an exactly solvable model where spin-1/2
degrees of freedom are defined on the vertices of a triangular
lattice. The Hamiltonian of the system is

iz S l1—ojo;
7, = h E 0-]73@4Z</z,z’>( G e'),

J

h>0, (315

Where the summat[ion ZQ ¢,0> extends over nearest neighbor
spins around the site j.
The ground state of the Levin-Gu model is

2N/2 Z

where L(c) counts the number of loops, defined in the dual
(hexagonal) lattice, associated with domain wall configura-
tions of the the many-body state | o ) in the o basis.

There exists a unitary transformation Wy, , connecting the
Levin-Gu Hamiltonian to a trivial 2D paramagnetic Hamilto-

I \1122 L(U)l O

(3.16)

nian
Hy=-hY_ o7, (3.17)
J
whose ground state is a simple product state
1
o) = 5x73 D o) (3.18)
Such transformation, having the property
Wz, o) = (-1)X o), (3.19)
reads
W2 :He_i%Uij({az})’ (320)
J
where D;({o*}) = 37 ,o 1_0250;’) defines the domain

wall operator around the close loop formed by the six sites
nearest neighbors of site j.
One verifies that

T oZ T ‘ (1— Uzaz)

78 =Wy, 0t Wy ! = —0% T Zcitoy P

Y =Wz, 0! Wz = - yel42<u>g<1wk>7 (3.21)
] 2 J

4

2 =Wy, 0f Wy =07



As seen in Eq. (3.21), the unitary transformation Eq. (3.20)
gives rise to a new set of Pauli operators whose phase factors
depend on the domain wall operator D;({c*}) surrounding
site j. Notice that since this domain wall operator takes even
integer values, the phase factors in Eq. (3.21), and hence 7¢,
are Hermitian.

From the explicit form of the unitary transformation
Eq. (3.20), we find, according to Eq. (2.9b), that the Berry
phase contribution due to a single spin fluctuation at site j is
given by

eisj("'k,j—lﬂ'kuj) —

s (0T i—1) =i (T, 5) j 1=0p(7k,5)00r (Th, 5)
e_m( 1= ;)[1+%2J<u,>< D7t (g )}

o= (T i)
—1#(—] L) 12 FASLIY ) (1+%Dj(‘f'k,j))
=e .

(3.22)

Hence, the spin fluctuation at site j contributes with —1 to
the partition function if the configuration of surrounding spins
has D; = {0, 4}, while it contributes with +1 to the partition
function if the configuration of surrounding spins has D; =
{2,6} (see Fig. 2). Moreover, as the full two dimensional
system evolves in imaginary time, it picks a phase factor

T [L(a(‘rk))fL(U(TkH))

)

whichis —1if AL =1 (mod 2), or +1 if A L = 0 (mod 2).

AWkt — (3.23)

IV. SUMMARY AND DISCUSSION

We have studied the path integral of bosonic SPT systems,
focusing on the manifestation of the so called topological 6-
terms on the lattice scale. We did so by investigating lattice
models of bosonic SPT states, which allowed us to compute
the Berry phase contributions appearing in the path integral
due to the quantum fluctuations of local degrees of freedom.
In the examples we have considered, these non-trivial Berry
phases involve the coupling of local spin fluctuations with sur-
rounding domain wall like configurations, and thus illustrate,
in a intuitive way, the connection between Berry phase effects
and the non-trivial entanglement characteristic of SPT states.

Although here we have focused entirely on bosonic sys-
tems, we close by mentioning some works that address the
character of Berry phases in fermionic systems. At the level
of relativistic free field theories (coupled to gauge fields) this
problem has been studied in the high-energy literature in the
context of anomalies and obstruction to gauging certain sym-
metries.*’™ It has been known from that work that there
is indeed a connection between these anomalies and Berry
phases. Also, a recent discussion of Berry phases in fermionic
SPT systems that can be described by band theory and free
fermions has been given in Ref. 50. The bosonic cases stud-
ied here are strongly coupled and cannot be examined by the
same methods as in the field-theoretic anomalies. The nature
of Berry phases in strongly coupled fermionic systems is an
interesting open problem.
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FIG. 2. Figures 2(a) and 2(b) capture the fluctuation of the middle
spin giving a phase €'/ = —1 [Eq. (3.22)), as the configuration of
nearest neighbor spins has D; = 0. Figures 2(c) and 2(d) capture the
fluctuation of the middle spin giving a phase €'/ = +1 [Eq. (3.22)],
as the configuration of nearest neighbor spins has D; = 2.
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Appendix A: Z,, operators

A possible representation for the (o, 7) operators satisfying
Eq. (3.7) is as follows

o O O
oo € o
o oo
€
fo oo
iR
oo~
o or~ocO
o Rooo
cococo
o ococor

—_

(A1)
where o is a clock variable (in the diagonal representation)
and 7 is a raising and lowering operator.
Consider the following Hermitian operator:

n—1 a

1
qo) =" —+> a}fﬁ - (A2)

a=1




We now prove that this operator satisfies

q(a:wﬁzei%”) =6, 6=0,..,n—1. (A3)

In order prove Eq. (A3), we start by showing that ¢(w®) =
0:

n—1 11
o n—
q(w)— 2 +Z@a_1

a=1
n—1
n—1 w*—1
(S ]
2 az::l |wa — 112 (A4)
n—1
n—1 1
-2 ()
a=1

Now it is simple to verify that the following relation holds:

n—1
g(@o) = q(o) + > o". (A5)
a=1

7

From the fact that 3"} 0 = n — 1if o = w® = 1 and
SPlo® = —lifo = w’ § € {1,..,n — 1}, then it is
possible to use Eq. (A5) to establish Eq. (A3) by induction.

Thus combining Eq. (A2) and Eq. (A3) yields

n—1 T . “
27 [n—1 (Uj UJ’) p
exp 1—n 5 + z:: a1 = (0; O'jf) )
(A6a)
27 |n—1 s (Uj Uj’) + p
exp{ —1—— 5 e = (aj o'j/) ,
(A6b)

forp € {0,...,n — 1} (mod n).
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