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We show that the interplay of a high density two-dimensional electron gas and localized electrons in
a neighboring Mott insulator leads to kinetic magnetism unique to the Mott/band insulator interface.
Our study is based upon a bilayer Hubbard model at U = ∞ with a potential difference between
the two layers. We combine analytic results with DMRG simulations to show that magnetism, and
especially ferromagnetism, is greatly enhanced relative by the proximity of the two subsystems.
The results are potentially relevant to recent experiments suggesting magnetism in RTiO3/SrTiO3

heterostructures.

I. INTRODUCTION

Kinetic magnetism is a very old and elegant idea,
whereby magnetic order appears solely due to the motion
of the correlated itinerant electrons. The concept dates
back to an argument by Nagaoka from 1966 in which
he proved that ferromagnetism must exist in the Hub-
bard model1. While there have been attempts to extend
these results to a wide range of models2,3, it has become
apparent that Nagaoka’s ferromagnetism is a subtle ef-
fect which seems to be destroyed for any straightforward
extension to realistic parameters4. It remains an out-
standing goal to achieve this effect in an experimentally
realizable model.

In this paper, we consider the relevance of this venera-
ble idea to artificial heterostructures of perovskite tran-
sition metal oxides. These systems have emerged as a
novel venue to explore correlated electron physics in a
highly controlled environment5. The dominant motif is
that of a cubic lattice of Ti d orbitals, with from 0 to
one electron per site. This is a canonical Mott material,
with small overlap-induced hopping amongst neighbor-
ing d orbitals, and large on-site Hubbard repulsion U .
Most of the physics explored experimentally originates
from the so-called “polar discontinuity”. This produces
a high density two-dimensional electron gas (2DEG) at
the interface between two such materials with different
stacking of polar/non-polar atomic layers, ideally consist-
ing of half an electron per planar Ti unit cell for the case
of a unit polar discontinuity. Correlation effects may be
observed for these electrons.

Such a 2DEG is in principle induced for any such po-
lar structure, independent of other details of the con-
stituent materials. For example, it should occur at the
junction between two band insulators, LaAlO3/SrTiO3

(LAO/STO), which is the most studied such oxide
interface6–8. In practice, the electron concentration ob-
served in LAO/STO is greatly reduced from the expected
value, for reasons which are not clear. A polar disconti-
nuity 2DEG is also expected for the interfaces between
Mott insulating titanatesRTiO3 (whereR is a rare earth)
and SrTiO3 (STO), where the proper electron density has

been measured experimentally9–11. These latter studies
have been interpreted by treating the STO as a quan-
tum well, viewing the RTiO3 (RTO) as entirely inert
and serving only to confine the electrons of the 2DEG.
When the 2DEG is sufficiently narrowly confined on both
sides by RTO, indications of magnetism in the 2DEG are
found12,13. In this paper, we tentatively connect this ob-
servation to the storied problem of kinetic magnetism.

A cautionary note is in order. Ferromagnetism is
ubiquitous in theoretical treatments of correlated elec-
tron materials14,15. Most theoretical descriptions of mag-
netism rest on a mean field analysis, which notoriously
overestimates the tendency to ferromagnetism. The vast
majority of theoretical treatments of oxide heterostruc-
tures fit into this category, including all first principles
calculations of magnetism, and even sophisticated vari-
ants like dynamical mean field theory. While such calcu-
lations are useful and suggestive, a controlled approach
is desirable.

We take a distinct view of polar Mott Insulator/Band
Insulator (MI/BI) interfaces. Unlike a band insulator like
LAO, the insulating RTO contains a very high density
of correlated localized electrons, even higher than in the
2DEG. We suggest that the mobile electrons in STO can
have a dramatic effect on these localized electrons, driv-
ing magnetism. We introduce a model which takes into
account both the Mott insulating and itinerant electron
degrees of freedom. We then present a controlled limit
whereby kinetic magnetism in the interface emerges in-
dependent of the bulk physics of either material. We
will further support this analysis with unbiased numer-
ical evidence, which constitutes some of the first exact
numerical results on these systems.

II. THE MODEL

We consider a minimal model that captures the physics
of the MI/BI interface. It consists of a two layer square
lattice, with one layer each for the MI and BI. If the
two were decoupled, the MI would have “exactly” one
electron per site, and the BI a lower concentration n per
site, where we expect n ≤ 1/2, the maximum achiev-
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able if all the electrons in the 2DEG are in the first
layer of the BI. In reality, inter-layer hopping allows the
charge to redistribute, and we include a (large) poten-
tial offset ∆ to favor more electrons in the MI layer, and
fix the total electron concentration to 1 + n per two Ti
sites. We further stress our use of an effective single band
model, which captures the effects of orbital splitting at
the interface16,17 and includes only the electrons which
make up the large majority Fermi surface18–20.

We model interactions by the extreme limit U = ∞,
which forbids double occupancy. The justification is that
exchange in the RTO titanates is quite weak, for example
the most studied materials with R=Sm, Gd show anti-
ferromagnetism and ferromagnetism, respectively, with
Tc ≈ 30K in both cases21, indicating exchange |J | is of
order 1 meV, while t ∼ 0.3 eV and U ∼ 4 − 8 eV. Since
J ∼ t2/U � t, U , the very small exchange supports the
large U limit.

With this motivation, the U =∞ limit maps the Hub-
bard model to the so called ‘t-J model’ with J = 0:

H = −t
∑
〈ij〉zσ

Pc†iσzcjσzP − t
∑
iσ

P(c†iσ1ciσ2 + h.c.)P

+
∑
izσ

(∆δz,1 − µ)niσz, (1)

where P =
∏
i(1−ni↑ni↓). The only free parameters are

the filling 1+n = 1
LxLy

∑
izσ〈niσz〉 (or chemical potential

µ) and the ratio of hopping to the potential difference
(t/∆).

The single layer, single band, U = ∞ Hubbard model
has been the subject of many studies. At half filling,
the system is a Mott insulator since the projection op-
erator prevents electron hopping. Nagaoka famously
showed in1 that when the half-filled system is doped
with a single hole, the exact ground state is the fully
polarized state with maximum Stotal. This magnetism
is the result of delicate quantum effects arising from
the kinetic motion of the single hole through the lat-
tice. The question of whether this ferromagnetism can
be extended to finite doping has been attacked via mean
field calculations22, variational studies23,24, and unbiased
numerical approaches including quantum Monte Carlo25

and most recently DMRG calculations26. While it ap-
pears that a ferromagnetic metal is stable over a fi-
nite range of filling n, it is clear that at lower densities
(0 ≤ n ≤ 0.75), the ground state is a paramagnetic metal.
In this letter we will show that the bilayer model with
finite band separation, ∆, contains much richer magnetic
structure at all filling densities. In particular, at large
band separation we are able to stabilize Nagaoka’s ferro-
magnetism over a wide range of electron densities n.

III. PERTURBATIVE REGIME (∆� t)

In the limit of large ∆ we can demonstrate analytic
control over the model. At ∆ = ∞, the two layers are

FIG. 1: The bilayer lattice geometry. For the numerical
simulations, an elongated geometry which is optimal for the
DMRG algorithm was used.

completely decoupled, where the upper layer is a degener-
ate spin system and the bottom layer behaves according
to the results of Ref.26. In particular, for 〈n〉 < 3

4 , the
bottom layer is a paramagnetic metal. If we now tune
away from ∆ =∞, we can derive an effective low-energy
Hamiltonian perturbatively in (t/∆). To lowest order in
the perturbative expansion,

Heff = H00 +H01
1

E −H11
H10. (2)

where H10 hops an electron from the top to the bot-
tom layer, and H01 brings us back into the ground state
subspace of no holes in the top layer. Assume that the
density in the bottom layer is such that there is a para-
magnetic metal. In this case, the virtual contribution to
the energy when there is a single hole in the top layer,
by Nagaoka’s result, is minimized when the top layer is a
fully polarized ferromagnet. Then for nearly all densities
at large ∆, the degenerate groundstate subspace splits in
a way that causes the ferromagnetic state to become the
true ground state. However, this argument breaks down
at the lowest electron densities, since here there are no
electrons present at different spatial sites to fill the vir-
tual hole in the top layer. The electron is then effectively
localized and the ferromagnetism is lost.

We will now make this argument precise. We expand
the Hamiltonian to order (t/∆)3, by using the identity

1

ω −H
=

1

ω
+

1

ω
H

1

ω −H
. (3)

The lowest order effect, which occurs at order (t/∆)2, is

H ′(1) = − t3

∆2

∑
〈ij〉

∑
σσ′σ′′

c†i2σci1σc
†
j2σ′ci2σ′c

†
j1σ′′cj2σ′′

= − t3

∆2

∑
〈ij〉

∑
αβ

[
~Si · ~Sj δαβ +

1

2
(~Si + ~Sj) · ~σαβ

− i(~Si × ~Sj) · ~σαβ
]
Pc†j1αci1βP (4)

This expression suggests an obvious way to decouple the
terms at the mean field level, by taking expectation val-
ues of operators in the same layer. This leaves us with
an effective spin model for the upper layer and a doped
electron system in the bottom layer. The antisymmetric
form of the third term in Eq. (4) implies we can ignore
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FIG. 2: We embed the classical phases of the J1 − J2 − J3

Heisenberg model into our bilayer Hubbard phase diagram,
using the form of J1, J2 and J3 given in the text. These
results become rigorous for large ∆/t. The highest densities
are ferromagnetic by Nagaoka’s theorem.

its mean field effect at this order in perturbation the-
ory. The first term then gives the effective interaction in
the upper layer as a ferromagnetic Heisenberg interaction

with JFM = −t3〈c†jci〉/∆2 ∼ (t3n)/∆2.
At zero temperature, the energy can be lowered at the

mean-field level if the upper layer forms a fully polarized
ferromagnet. The second term of Eq. (4) then provides
an effective magnetic field in the ordering direction of the
upper layer spins. If n → 0 then JFM → 0 also, and we
must look at the next order in perturbation theory. At
this order, we derive additional antiferromagnetic inter-
actions which compete with the lowest order term. These
can be written as

H ′(2) =
4t4

∆3
〈(1− n)〉2

∑
〈ij〉

~Si · ~Sj (5)

+
t4

∆3

∑
〈〈ijk〉〉

〈c†i ck〉
[
(~Si + ~Sj + ~Sk) · (~Si + ~Sj + ~Sk)

]
where 〈〈ijk〉〉 implies the sum is over all connected clus-
ters of 3 sites on the same layer. This therefore describes
next and third nearest-neighbor interactions.

When (t/∆) is small, we can treat the upper layer of
our bilayer model as a spin system with nearest, next-
nearest and third-nearest neighbor interactions. The re-
sulting effective Hamiltonian is equivalent to the so called
J1 − J2 − J3 Heisenberg model. The parameters, J1, J2,
and J3, are related to the original parameters t and ∆ via
the results of the previous section. J1 can thus be either
ferromagnetic (FM) or antiferromagnetic (AFM), but J2
and J3 are always antiferromagnetic. Away from n ≈ 1
and ∆/t ≈ ∞, this effective Hamiltonian is frustrated.
While a full quantum solution for such a model on the
square lattice is still lacking, the classical solution is well
understood27–31. We embed this classical solution in the
t − n phase diagram in Fig. 2. There are four distinct
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FIG. 3: Results of (a) the variational calculation and (b) the
Gutzwiller approximation. (a) The stability of the fully po-
larized FM state to the Gutzwiller projected trial state with
a single flipped spin. The FM state becomes unstable inside
the area bounded by the solid line. (b) Ground state energy
with respect to n1 =

∑
σ〈niσ1〉 calculated by Gutzwiller ap-

proximation at n = 0.

phases. When ∆ is large, J1 is large and positive and the
ground state is a simple ferromagnet. At lower densities,
J1 is large and negative and the system is in a Néel phase.
Between these limits, the two contributions to J1 nearly
cancel, and the second and third neighbor terms become
important. In these cases the ground state is either a
striped phase with wave-vector peaked at (0, π), or a spi-
ral phase which interpolates between the striped and FM
or the striped and Néel phases. We note that, quantum
mechanically, the regime of competing exchanges might
host another exotic state such as a valence bond solid or
quantum spin liquid.

IV. INSTABILITY OF FERROMAGNETISM

We next study the instability of ferromagnetism using
a variational method. Since double occupancy is forbid-
den automatically in the fully polarized or ‘half-metallic
ferromagnet’ (HMF) state due to fermi statistics, its en-
ergy can be calculated exactly. We then can prove that
this state is not the ground state if we find any state with
lower variational energy. We consider the same trial state
as in Ref.24,

|ψ〉 = Pψ†↓|FM
′〉 (6)

ψ↓ =
∑
iα

ξiαc
†
iα↓ (7)

where |FM ′〉 = c~kF |FM〉 is the fully polarized metal

with one less electron than |ψ〉, and P is the Gutzwiller
projection operator which forbids double occupancy of
any site, and ξiα are variational parameters.

Further details of the variational calculation are given
in the appendixes. The results are shown in Fig. 3(a).
The trend is towards increased ferromagnetism for larger
∆, in agreement with the perturbative results. This im-
plies that for large enough hole concentrations, the Na-
gaoka state is unstable to flipping an electron spin, consis-
tent with the intuitive picture. The instability, however,
weakens for larger ∆ and we could not find an unstable
region for ∆ >∼ 6.5.
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FIG. 4: The structure factors for the 6x24x2 system for (from
top to bottom) ∆ = 4, 6 and 10. The highest densities are
always ferromagnetic. Néel order becomes more stable for
smaller ∆, and the intermediate regions show no strong peaks.

We next turn our attention to the metal-insulator tran-
sition (MIT) at n = 0 with increasing ∆. To inves-
tigate the MIT, we here study the model in Eq. 1 by
the Gutzwiller approximation assuming a paramagnetic
solution33–36. In this framework, the MIT is character-
ized by the absence of electrons in the bottom layer. As
is shown in Fig. 3(b), this occurs at ∆ ' 8t. This is con-
sistent with our DMRG results, where we find the single
particle excitation gap Eg = E(n+1)−2E(n)+E(n−1)
becomes nonzero continuously in the 4 leg ladder at
∆ = 6t.

V. NUMERICAL RESULTS

We will now demonstrate the consistency of our an-
alytic arguments with unbiased numerical results. We
performed a series of DMRG calculations on bilayer sys-
tems of up to six leg ladders. The total number of sites
is then 2×24×6. We keep 4000 to 6000 states and the
truncation error is of the order of 10−6 in the ferromag-
netic phase, but increases to 10−4 in the paramagnetic
phase.

In our DMRG set up, we first combine the two layer
system into an effective one layer system. The new rung
index is Rnewx = 2 ∗ (Rx − 1) + τ where Rx is the rung
index of each layer, and τ = 1, 2 is the layer index. The
DMRG study for the effective one layer system follows
the standard DMRG for a cylinder. The two layer sys-
tem is reflected in the Hamiltonian of the effective one

layer system (which has a doubled unit cell along x, be-
sides the open boundary conditions we used). The con-
vergence crucially depends on which state we obtain in
the different parameter regimes. For the ferromagnetic
ground state, we are able to go to a large total Sz sub-
space, which has a substantially reduced Hilbert space
dimension. For other phases (the metallic phase in par-
ticular), DMRG indeed has a large truncation error and
the results are not converged for such a bilayer system
(which is not the focus of our study).

Due to the difficulty of the simulations, we limit our
search over phase space to values of ∆/t = 4, 6 and
10 and the fillings n = 0, 0.25, 0.5, 0.75 and 0.875. We
focus mainly on the spin-spin structure factor S(q) =∑
j e
i~q·~xij 〈~Si·~Sj〉. These results are summarized in Fig. 4.

For n ≥ 0.75 and all ∆ ≥ 4, we find very large peaks
in the structure factor at wave-vector (qx, qy) = (0, 0),
consistent with a nearly fully polarized ground state. In
all cases, the total spin S satisfies S ≥ 0.90Smax. In fact,
for {n = 0.875; ∆ = 4, 6}, we find S ≥ 0.98Smax. Note
that this does extend the range of ferromagnetism from
the results of Ref.26, which find the HMF in the single
layer model only up to fillings n = 0.8.

At the lowest densities n = 0 and n = 0.25, we find
very strong agreement with our predicted results from
perturbation theory. At {n = 0,∆ = 6, 10}, there are
large peaks in the structure factor at the (π, π) wave-
vector. This suggests the presence of strong staggered
magnetism consistent with a Néel phase. For n = 0.25,
we find a smaller Néel peak at ∆ = 6, which then dis-
appears as ∆ is increased to ∆ = 10. This is again con-
sistent with our perturbative results which suggest that
AFM exchange is stronger for smaller ∆.

From the classical phase diagram of the effective per-
turbative spin model we expect striped or spiral order
to interpolate between the Néel and FM phases. Our
results on 6-leg ladders for {n = 0.5; ∆ = 6, 10} and
{n = 0.25; ∆ = 10} show no strong evidence of magnetic
order. We do observe small peaks which may presage
spiral or stripe order in larger systems.

We provide further evidence for this magnetic ordering
in the appendix, by calculating the momentum distribu-
tion function.

Finally, we would like to stress that although ferro-
magnetism occurs over a smaller range of densities in the
numerical results, our perturbative phase diagram must
be exactly correct for sufficiently large ∆. However, it is
possible that the range of ∆ accessible in our simulations
is not large enough to see the full extent of this effect.

VI. CONCLUSIONS

In closing we note that a more faithful represen-
tation of the oxide interface would include additional
complications such as multiple t2g electron orbitals and
super-exchange interaction J . For R=Gd,Sm, which are
strongly distorted from the cubic structure, the intrinsic
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J is so weak that the kinetic mechanism described here
is dominant or at least competitive with J , and orbital
splittings are large. In general, however, these effects
may work to stabilize certain types of magnetic order37.
For example, directional hopping of the t2g orbitals may
act to favor ferromagnetism for smaller values of ∆. Our
model avoids these complications by considering a sim-
ple limit where only the filling n and band offset ∆ are
free parameters, yet nevertheless provides a picture of
the physics. We suggest that scattering experiments to
directly probe the magnetic order in the vicinity of these
interfaces would be the most direct test of our theoretical
predictions.
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Appendix A: Momentum Distribution Function

In this section, we present the momentum distribution
function as calculated using DMRG for a 6-leg ladder and
∆ = 4. We can estimate the position of the Fermi sur-
face from the apparent discontinuity in the distribution
function. We only show the results for ∆ = 4. We again
exclude 2LyLx/4 sites on each end of the ladder for the
purpose of reducing boundary effects.

For the largest two densities, n = 0.75 and n = 0.875,
the volume enclosed by the Fermi surface is Vol/(2π)2 =
0.75 and 0.875 respectively. This Luttinger volume is
consistent with a polarized Fermi gas, whereby the up-
per band is completely filled and every electron fills a
different momentum state in the lower band. The dis-
continuity gives the quasiparticle residue. We see that
this value is slightly less than that of a noninteracting
polarized Fermi gas, signaling the fact that the ground
state here is nearly fully polarized with a few flipped spins
(i.e. S > 0.90Smax).

In Fig. 6 shows the same calculation for n = 0.25 and
n = 0.5. The top layer is filled very uniformly, with
all momentum states occupied. The Fermi surface then
encloses a volume equal to half that of the number of
electrons in the bottom layer. This is consistent with the
small Fermi volume of an unpolarized Fermi liquid. For
n = 0.25 the structure factor indicates the presence of
Néel order, which implies there is a doubling of the unit
cell. This allows the upper layer electrons to form a com-

n=0.875
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FIG. 5: The momentum distribution function of the 6-leg bi-
layer model, for ∆ = 4 and high electron densities. The Lut-
tinger volume is consistent with a polarized state. We show
only the ky cuts that are not related by inversion symmetry.
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FIG. 6: The momentum distribution function for n = 0.25
and n = 0.5. With the smaller Luttinger volume, the discon-
tinuity now gives twice the quasiparticle residue.

pletely filled band so that only the lower layer electrons
contribute to the Luttinger volume. For n = 0.5, we find
the same Luttinger volume as the n = 0.25 case. Here,
however, the structure factor showed no evidence of mag-
netic order. The fact that only the lower layer electrons
contribute to the Fermi volume, however, rules out the
possibility of a trivial paramagnetic metal. If the ab-
sence of magnetic order survived to the thermodynamic
limit, this would be the FL∗ phase, which describes a
quantum paramagnetic metal with a ‘small’ Fermi vol-
ume. We also see that the quasiparticle residue is much
smaller in this regime, indicating that the ground state
here is a strongly interacting state.

Finally, we look at the case when n = 0. For this fill-
ing, there exists a metal insulator transition at a critical
∆c. When ∆ = 4, we are on the metallic side of this tran-
sition. From Fig. 7, we see no apparent discontinuities
in the momentum distribution. This could indicate the
existence of a non-Fermi liquid ground state in this pa-
rameter range. Note that although we are on the metallic
side of the MIT, the structure factor shows a small (π, π)
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peak. This type of spin-density wave transition coupled
to a Fermi surface has been studied extensively in the
literature and is strongly suspected to show non-Fermi
liquid behavior.

0 0 0 0
0.0

0.5

1.5

2.0

1.0n=0.0

FIG. 7: When n = 0, and at ∆ = 4, there appear to be no
sharp discontinuities.

Appendix B: Variational Results

In the main text, we show the instability of the fully-
polarized ferromagnetic state by comparing the energy
to a trial state. Here, we present details of the method
we used.

In the variational calculation, we consider a trial state

|ψ〉 = Pψ†↓|FM
′〉 (A1)

ψ↓ =
∑
iα

ξiαc
†
iα↓ (A2)

where |FM ′〉 = c~kF |FM〉 is the fully polarized metal

with one less electron than |ψ〉, and P is the Gutzwiller

projection operator which forbids double occupancy of
any site, and ξiα are variational parameters.

With some calculation, we obtain

ε↓ =
〈ψ|H − EFM|ψ〉

〈ψ|ψ〉
=
∑
k

ξ̂khk ξ̂k, (A3)

where EFM is the ground state energy for the fully-

polarized state and ξ̂k = (ξk1, ξk2) with ξkα =∑
i ξiα exp(i~k · ~ri), α = 1, 2. Additionally, hk is a 2 × 2

effective Hamiltonian whose explicit form is

hk =

(
−t̃0εk − T0 −t̃′
−t̃′ t̃1εk + ∆̃− T1

)
, (A4)

with

t̃a =
t

R
〈(1− nia↑)(1− nja↓)〉 (A5)

t̃′ =
t′

R
〈(1− ni1↑)(1− nj2↓)〉 (A6)

∆̃ =
∆

R
(A7)

Ta =
1

R

∑
j,b

tia,jb〈c†ia↑cjb↑〉 (A8)

and where R2 = 〈ψ|ψ〉. The optimal variational param-
eters are then just given via the solution of this single
particle problem, and ε↓ is given by the smallest eigen-
value of hk.
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