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The propagation of light through materials in which the density of charge carriers varies smoothly
on a scale smaller than or comparable to the wavelength requires a description that goes beyond the
commonly used Fresnel equations. We propose a method to solve Maxwell’s equations in such a way
that any linear response theory for the bulk material can be combined with a given smooth density
profile for the (free or bound) charge carriers. This method is implemented for linearly polarized
monochromatic light impinging on inhomogeneous multilayer systems, leading to a fast algorithm
that yields reflectance and transmittance for such systems. We apply our algorithm to investigate the
difference in optical response between smooth interfaces and abrupt interfaces in stratified systems
where the materials can have complex bulk permittivities, and find that the smoothening of the
interface on a wavelength scale significantly reduces reflection in favor of absorption. This result
is of importance to current experiments that aim to detect metallic hydrogen and deuterium films
using their optical response. Our results show that for a correct interpretation of these experiments
it is important to consider the smoothness of the density profile of the metallic layer. Also, for
non-absorbing layers, a smooth, rather than abrupt transition, can have an important impact on
the design of optical filters.

I. INTRODUCTION

The study of the optical properties of inhomogeneous
thin films and coatings has a long history1, and re-
mains a very active topic of experimental and theoret-
ical research. Practical applications are abundant and
range from impedance matching2, optical fibers3, blu-ray
players4 to anti-reflection coatings5,6.

When changes in the dielectric constant take place over
a distance much smaller than the wavelength of the light,
the Fresnel equations can be used to knit together the
solutions of Maxwell’s equations for neighboring layers
with each layer having constant permittivity7. When
many such layers are present, matrix methods can be
successfully used to find the reflection and transmission
coefficients8. Although most descriptions focus on non-
absorbing materials, more recent work has attempted to
generalize this procedure to complex permittivities9.

Much less attention has been paid to the case when
the variation of the permittivity takes place on distances
smaller than or comparable to the wavelength of the
light. Except for some specific profiles of the dielec-
tric functions10,11, analytical results are not available.
Amplitude-phase methods have been put to use to tackle
this problem numerically12,13, yielding nonlinear differen-
tial equations either for the amplitude or for the phase.
Thus far, these methods focus on transparent materi-
als in order to determine and optimize reflectance prop-
erties of films and coatings14. Nevertheless, many sys-
tems exhibit a complex dielectric response varying on dis-
tances of the size of the wavelength, such as e.g. systems
in plasma physics15, doped semi-conductors16 and laser-
heated metals in high-pressure experiments17. While the-
ories of the response of the homogeneous electron gas

and other materials grow ever more detailed, the effect
of smooth transitions remains insufficiently understood18

and is neglected in most descriptions: the calculated re-
sponse functions are typically used in conjunction with
the approximation of an abrupt interface19,20.
Here, we present a numerical method based on linear

differential equations, to calculate efficiently the prop-
agation of electromagnetic waves through an inhomoge-
neous medium with a continuous complex dielectric func-
tion that varies along the direction of propagation. We
use our method to investigate inhomogeneous metal films
where the electron density varies over a distance of the
order of the wavelength. In particular we compare the
optical response for media with inhomogeneous dielec-
tric functions as a function of length scale to the usual
approximation of a slab with a uniform dielectric func-
tion in the direction of propagation. For this purpose, we
apply our method to two models: 1) a single slab with
a smoothed-out interface (e.g. by diffusion into its envi-
ronment) and 2) a model of a diamond anvil cell used in
the search for metallic hydrogen, containing a position
dependent mixture of molecular and metallic hydrogen.

II. METHODOLOGY

A. General formalism

Light propagation in a continuous medium is com-
monly described by the classical, microscopic Maxwell
equations for scalar and vector potentials, where these
fields are written as a sum of the externally applied fields
(e.g. the incoming electromagnetic wave), and the in-
duced fields, arising from the response of the material:
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φ = φext + φind and A = A
ext + A

ind. In our formal-
ism, the inhomogeneity of the materials is incorporated
at the level of the response functions through the density

of charge carriers that participate in creating the induced

fields. We write this density as n(r) = f(r)n0 where n0

is the bulk charge carrier density. The inhomogeneity in
the density is taken into account by the “profile function”
f(r).
The charge carriers can be free electrons or holes, or

bound charges allowing polarization. When subject to
the total fields φ and A, the individual charge carriers
at time t and position r are displaced over a distance
X(r, t). The calculation of this displacement field (not
to be confused with the electric displacement field D) is
the goal of response theory. The only restriction that
we impose on the choice of response theory is that the
response is linear in the electric field. For monochromatic
fields of frequency ω, the linearity requirement leads to

X(r, ω) = α(ω)E(r, ω), (1)

with α(ω) a (complex) proportionality constant. For ex-
ample, solving the Lagrangian equation of motion of an
electron using the Drude formalism for metallic materials
results in

αDrude =
e

mω (ω + i/τ)
, (2)

with m the electron mass, e its charge, and with τ the
Drude relaxation time. In general, the proportionality
constant α can be written in terms of the relative bulk
permittivity εm through en0α/ε0 = 1 − εm with ε0 the
vacuum permittivity. Any response formalism capable of
calculating εm can be used instead of the Drude example
above.

The displacements of the charge carriers lead to a po-
larization field that is modulated by the profile function,
P(r, ω) = −n0ef(r)X(r, ω). Hence, the induced charge
density and current can be calculated from the displace-
ment field via

ρind (r, ω) = en0∇ · [f (r)X (r, ω)] , (3)

J
ind (r, ω) = iωn0f (r)X (r, ω) . (4)

In turn, the induced fields φind and A
ind are deter-

mined by the Maxwell equations with the induced charges
and currents as source terms. Eliminating the induced
charges and currents from these equations yields the fol-
lowing differential equations:

∆φind (r, ω) = ε0 (1− εm) {∇f (r) · [−∇φ (r, ω) + iωA (r, ω)]− f (r)∆φ (r, ω)} , (5)
(

∆+
ω2

c2

)

A
ind (r, ω) = i

ω

c2
(1− εm) f (r) [∇φ (r, ω)− iωA (r, ω)]− i

ω

c2
∇φ. (6)

These equations are given in SI units rather than in cgs,
and c is the velocity of light in vacuum. The Coulomb
gauge ∇ ·A = 0 has been used. Given an external per-
turbation (described by φext, Aext) and a profile function
f(r), the solution for the induced fields φind, Aind can be
found and used to calculate transmittance, reflectance,
and absorptance. In the next subsection, we present a
numerical scheme that solves this for a one-dimensional
inhomogeneous geometry.

B. Discretization

The specific models discussed in this paper are one-
dimensional, with the x-axis along the direction of
the beam propagation. The incoming wave is a lin-
early polarized plane wave with φext = 0 and A

ext =
exp (+ikx) ey.

Rewriting the differential equations (5) and (6) for this
system quickly shows that the solution will have φind =
Aind

x = Aind
z = 0, leaving only Aind

y to be determined

from

{

∆+ k2 [1− (1− εm) f (x)]
}

Aind
y (x, ω)

= k2 (1− εm) f (x) eikx. (7)

Discretization on a grid using N grid points with spacing
δx (a non-uniform grid is a trivial extension) yields

uj+1 =
{

2− [1− (1− εm) fj] k
2δx2

}

uj − uj−1

+ (1− εm) fjk
2δx2eikxj . (8)

Here uj (with j = 1...N) is the solution array for Aind
y .

The density profile at jth grid point is fj , and the position
of this grid point is given by xj .
The first and last two grid points should be situ-

ated well outside the inhomogeneous thin film. This
ensures that the solution u for the induced vector po-
tential at the first grid points describes the reflected
wave. Hence, these must be of the form u1 = CR and
u2 = CRexp (−ikδx), with CR an a priori unknown
complex coefficient connected to the reflectance through
R = |CR|2.
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Having fixed the first two grid points, we obtain the
entire solution array u from the recurrence relation (8)
as a function of CR. The algorithm that we propose
consists in determining CR by requiring that the induced
vector potential at the last couple of grid points, at the
other side of the thin film, represents a purely outgoing
wave. Since at the end of the grid, the induced potential
is an outgoing wave, it should not contain contributions
of the form exp (−ikx), resulting in a measure

D (u) = |uN−1exp (ikδx)− uN | (9)

that indicates the goodness of the solution u. By min-
imising D [u (CR)] with respect to CR, we obtain the re-
flectance. We also find the value for the induced vector
potential at the last grid point, uN = CT exp (+ikxN).
The coefficient CT of this outgoing wave (in combina-
tion with the external wave) determines the transmit-

tance through T = |1 + CT |2.

C. Multiple materials

For some applications it is necessary to include mul-
tiple materials and mixtures of materials with different
properties. When the overall response remains additive
in the densities of charge carriers in the different mate-
rials, the extension of the formalism is straightforward.
Indexing the bulk permittivities εℓm and profile functions
f ℓ(r) for the different materials by ℓ, the solution for the
induced fields can be found by simply replacing

(1− εm)f(r) →
∑

ℓ

(1− εℓm)f ℓ(r) (10)

in equations (5) and (6). In the discretized equation for
the 1D case, this leads to

uj+1 =

[

2−
(

1−
∑

ℓ

(

1− εℓm
)

f ℓ
j

)

k2δx2

]

uj − uj−1

+
∑

ℓ

(

1− εℓm
)

f ℓ
jk

2δx2eikxj , (11)

where ℓ runs over the different materials. This obvi-
ously also works when the film consists of several non-
overlapping materials. For mixtures, this corresponds to
a weighted averaging of the εℓm. When the bulk permit-
tivities differ strongly, a better approximation consists in
averaging the cube root of the εℓm

21:

∑

ℓ

εℓmf ℓ(r) →
(

∑

ℓ

f ℓ(r)(εℓm)1/3

)3

, (12)

where we assume
∑

ℓ f
ℓ(r) = 1.

D. Jumping over homogeneous layers

If the film contains a layer of thickness ∆ through
which the density of charge carriers is uniform, it is pos-
sible to speed up the implementation without loss of ac-
curacy by incorporating the known analytic solution for
the induced field in such a homogeneous layer. Setting
f equal to 1, the differential equation (7) has the well
known solution

Aind
y = −eikx + c1 cos (kx

√
εm) + c2 sin (kx

√
εm) . (13)

Using two calculated values uj and uj+1 within the
layer, the unknown coefficients c1 and c2 can be found.
Next, the analytical solution can be used to calculate
u (xj +∆) and u (xj +∆+ δx) for arbitrary large ∆,
traversing slabs with constant εm, after which Eq. (8)
can be used to resume the calculation with varying f .

III. RESULTS

A. Single soft-edged slab

Consider a slab of a material with permittivity εm =
−1.47 + 13.6i (similar to that of metallic hydrogen20) in
a vacuum environment. The density profile of the slab is
described by

fslab (x) =
1

2

exp
(

d
κ

)

cosh
(

d
κ

)

+ cosh
(

2x−x0

κ

) , (14)

where d indicates the thickness, κ the smoothing and
x0 the position of the center of the slab. This profile is
shown in inset b of Fig. 1 for κ = 5 nm and several values
of d. If κ → 0, the profile becomes a hard-wall (step)
profile, and the calculation gives the same values as the
analytical Fresnel equations7 for sharp interfaces. For κ
sufficiently small as compared to d the integrated value
of the smooth profile is the same as that of the unit step
(κ = 0), so that changing κ does not change the amount
of charge carriers. However, if κ becomes too large as
compared to d, the profile will no longer reach 1 in the
center and the integral will diminish.
The reflectance for this system is shown in Fig. 1 as

a function of the thickness for several values of κ. This
clearly shows that the reflectance drops as the extent of
the smoothness increases, which means that absorption
must increase since the transmittance does not change.
The decrease of the reflectance as a function of κ is also
shown in inset a of Fig. 1, which clearly shows that for
very large κ the reflectance can differ substantially from
the bulk reflectance and even go to zero meaning that
almost all the energy is absorbed.
Fig. 1 also demonstrates the behaviour of the optical

properties of slabs as their dimensions become smaller.
For a thick slab, transmission is zero and the reflectance
is constant for thicknesses greater than a certain value,
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Figure 1. Reflectance of a slab with εm = −1.47 + 13.6i,
as a function of thickness d and for various values of κ: 0
nm (disks), 5 nm (squares), 10 nm (triangles) and 15 nm
(diamonds). The solid line represents the analytical result for
a sharp edged profile. The dashed line on the main figure
shows the transmittance which is not affected by changing κ.
Inset a) shows the reflectance of a large 500 nm thick slab
as a function of κ. Inset b) demonstrates three profiles with
κ = 5 nm but different thicknesses. The reflectance of these
profiles are indicated by the arrows. These calculations have
been performed with λ = 500 nm.
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Figure 2. a) Contour plot showing the ratio between the re-
flectance calculated with κ = 15 nm and κ = 0 nm for dif-
ferent permittivities and for d = 100 nm. Light colors mean
almost no difference, dark colors means the reflectance drops
for larger κ. b) Reflectance for κ = 15 nm (dashed) and
κ = 0 (solid) for positive permittivities with negligible imag-
inary part. Calculations are performed for λ = 500 nm.

which is about 60 nm for an abrupt interface (κ = 0) in
the case shown in Fig. 1. However the value of the thick
film reflectance depends on κ, and the threshold for the
changeover to thin film reflectance is lowered if the profile
is smoother (κ larger).
The change in reflectance is also dependent on the bulk

permittivity of the material as demonstrated in Fig. 2a,
which shows the ratio between the reflectance for κ = 15
nm and κ = 0 nm for different bulk permittivities and for
a film of thickness 100 nm. Negative but real bulk per-
mittivities show no difference in reflectance between the
sharp and smoothed profiles. The largest difference oc-
curs for positive permittivities, where oscillations occur
due to interference between multiple reflections in the
film. Figure 2b shows the reflectance for both profiles
in this oscillatory region. Smoothing the profile changes
how well the light fits in the cavity and thus the construc-
tive or destructive nature of the interference. In this case
the influence of the profile is largest and reflectance can
be both promoted and suppressed.

B. Multilayer films

As a second example of this algorithm we present
a model inspired by the recent search for metallic
hydrogen22 at static pressures using a diamond anvil
cell with pulsed laser heating and metallic deuterium23

using programmed shock compression. The transition
from molecular to metallic hydrogen is accompanied by
a change in the optical properties, notably an abrupt
change in reflectance and transmittance when a phase
line is crossed from liquid molecular to atomic metal-
lic hydrogen. The sudden change in optical properties is
used to experimentally characterize the transition. In the
laser heated diamond anvil cell the thickness of the metal-
lic film varies from a few nm to ∼ 50-100 nm depending
on the temperature, and the reflectance increases to a
thick film saturation value of ∼ 0.55. Since this is the
value expected for bulk metallic hydrogen our analysis
implies that the electron density of the film rapidly rises
and the there is little smoothing, so the profile must be
that of a sharp block, according to Fig. 1.
The shocked deuterium sample is much thicker, about

10 microns, and at the end of the ramp is expected
to be completely transformed to a metallic liquid. A
monochromatic beam of light passes through the deu-
terium and reflects back off of an Al surface; when the
deuterium is metallic the reflectance of the beam is about
0.45. However during the ramp up in pressure and tem-
perature, the reflected beam is strongly attenuated and
then recovers to reach 0.45. This attenuation was in-
terpreted as being due to interband transitions of the
molecular deuterium. However, the spectrum was not
measured, to confirm this. The authors state that during
the compression to the metallic state there is probably
spatial heterogeneity in the density. Using our analysis,
an alternate explanation is that during the formation of
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the thick metallic film an inhomogeneous liquid metal de-
velops with a large value of κ as in Fig. 1, so that the
reflectance approaches zero and recovers as the inhomo-
geneity collapses into a uniform slab of metal.

Modeling the diamond anvil cell setup requires includ-
ing several layers of materials and a mixture of molecu-
lar and metallic hydrogen. A tungsten film is present
as a heating source for the experiment, and is sepa-
rated from the hydrogen by a transparent cladding layer
for which we assume vacuum permittivity. The mate-
rials used in the calculations are tungsten with εW =
4.28 + 18.3i25, molecular hydrogen with εH2

= 6.2726

(calculated for 150 GPa) and metallic hydrogen with
εMH = −1.47 + 13.6i20. All calculations are preformed
with λ = 500 nm. The thickness of the tungsten film,
as reported in the experiment22, is ∼ 8.5 nm. The
experiment also characterized the optical properties of
the tungsten film approximately: R=0.25, T=0.25 and
A=0.5. Using the algorithm presented here, we find that
these optical properties are achieved for a tungsten film
with a thickness of 8.8 nm, in accordance with the re-
ported thickness. An additional layer of vacuum is added
on the left hand side of the grid in order to place u1, u2,
uN−1 and uN outside the stack of films as required by our
algorithm. The resulting DAC forms a cavity mode, so
that the results are sensitive to how well standing waves
fit in between its edges. In order to mitigate this effect
the results shown are averages over DAC widths within
a wavelength interval.

As the exact density profile of the metallic hydrogen
film is not known, we compare two extreme cases: (1)
a sharp-edged block and (2) an exponential decay away
from the heater and into the molecular hydrogen. The
profile functions for the two cases are illustrated in the
insets of figure 3, where the dot-dashed curves represent
the profile for the tungsten, the full curve that for metal-
lic hydrogen, and the dashed line that of molecular hy-
drogen.

In figure 3 we show the results for the reflectance R(d)
and transmittance T (d) as a function of the thickness d of
the layer. Both quantities are normalized by their value
(due to the tungsten film) at d = 0, when no metallic
hydrogen is present. The presence of the metallic hydro-
gen increases the reflectance (upper two curves, red), and
decreases the transmittance (lower two curves, blue). To
compare the sharp-edged block (dashed curves) with the
exponentially decaying profile (full curves), we choose a
decay length such that the integrated density of the MH
is the same in both cases. In agreement with the results
from the previous subsection, we find that smoothing the
profile reduces reflectance and, to a lesser extent, also
transmittance. Note that for the smoothed metallic hy-
drogen our formalism enables us to take into account the
molecular hydrogen at the smoothed interface.

The true density profile of the layer of metallic hydro-
gen is unknown, and will depend on the specific experi-
mental procedure followed. It is likely to be in between
the extremes of a hard wall and an exponential smooth

Figure 3. (color online) The upper two curves show the re-
flectance R(d), normalized to R(0), as a function of the thick-
ness d of the metallic hydrogen film, for (1) a smooth, ex-
ponential density profile (full curve) and (2) a hard-wall pro-
file (dashed curve). These profiles are shown in the inset
(full curves), along with the profile for the tungsten heating
layer (dash-dotted curve) and the molecular hydrogen (dashed
curve). The lower two curves show the same results, but for
the transmittance T (d), again normalized to T (0). The dash-
dotted line shows the result for the intermediate case of a layer
that first grows with a smooth profile until it reaches 8 nm,
and then thickens by growing a uniform metallic hydrogen
layer.

profile. Hence, the true reflectance and transmittance
are expected to lie in between the dashed curves and the
full curves. This region (shaded in figure 3) indicates the
uncertainty stemming from not knowing the true density
profile of the film of metallic hydrogen. The dash-dotted
curve in Fig. 3 shows an “intermediate” case, lying in
this region. It represents a layer that starts to grow as
a smooth interface between metallic and molecular hy-
drogen, until this interface reaches 8 nm thickness. Then
it continues to grow by adding a uniform density layer
of metallic hydrogen behind the smooth interface. This
appears to describe the profile of the experimentally pro-
duced metallic hydrogen for which the reflectance rises
to the expected bulk value for thicker films.
Several recent papers have made improvements in the

calculation of the dielectric function for bulk metallic
hydrogen19,20, and relate these results to the reflectance
and transmittance via the Fresnel equations for abrupt
interfaces. However, the present results indicate that the
experimental verification of these improvements in the
response theory of metallic hydrogen will require a more
careful analysis of the density profile.

IV. CONCLUSIONS

By separating the density profile from the bulk proper-
ties of materials we have derived general differential equa-
tions for the optical response of a system with smoothly
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varying density profiles, and we have proposed a numer-
ical discretization and minimization algorithm to solve
these equations in a one-dimensional system. The result-
ing algorithm is fast, easy to implement and powerful, ca-
pable of handling large systems, multiple materials with
arbitrary density profiles and even mixtures of materials.
Using the algorithm, we find that there is a signifi-

cant difference in response between a layer with abrupt
interface and a layer with smoothly varying charge car-
rier density. Qualitatively, the reflectance is lowered in
favor of the absorption when smoothing the transition
between two layers, one of which has complex bulk per-
mittivity. Interfaces with large smoothing can completely
suppress reflection, which can be of use for creating high-
absorbing structures. A very strong impact is also found
for materials with permittivities with positive real part
and negligible imaginary part. The optical response of
films of such materials are already dependent on the dis-
tance between their interfaces, as in a Fabry–Pérot in-
terferometer. Smoothing the edges directly impacts the
interference between the interfaces.
Finally, we note that the results presented here are

of importance to the interpretation of ongoing exper-
iments searching for the transition between molecular
and metallic hydrogen by detecting a change in the
optical properties. These experiments produce metallic
hydrogen by pulsed laser heating, which is not expected
to create a uniform slab with an abrupt interface. We

estimate that discrepancies as large as 10% in reflectance
can be expected when assuming an abrupt interface.
Many more applications of this algorithm can be con-
ceived, e.g. in the area of plasmas where the density is
important and may vary spatially, in semiconductors
where doping alters the density or when pn-junctions are
created, and for systems with negative refractive index
materials. The algorithm presented here opens a new
way of investigating the optical properties of smoothly
varying density profiles on a nanoscopic scale.
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